Iterator should print every value within range but its only printing alternate nos.
function iterator(rangeStart, rangeEnd) {
if (rangeStart == 0 && rangeEnd == 0) {
return null;
}
var iterate = function*(start = 0, end = 5, step = 1) {
let iterationcount = 0;
for (let i = start; i <= end; i += step) {
yield i;
iterationCount = i;
}
return iterationCount;
}
var values = iterate(rangeStart, rangeEnd);
var tmp = [];
while (values.next().value != undefined) {
tmp.push(values.next().value);
}
return tmp.join(",");
}
console.log(iterator(0, 10))
expected
[0,1,2,3,4,5,6,7,8,9,10]
Result
[1,3,5,7,9,10]
Every call to next will consume a value from the iterator, so the while condition is consuming a value that will therefore not get into tmp.
But... JavaScript allows you to consume values in much easier ways. For instance with Array.from or spread syntax you can collect all values from the iterator into an array.
Not your question, but:
iterationCount serves no purpose in your code, so just drop that part.
Why would the function behave differently when both range start and end are 0 than when start and end are both 10? I would remove that case. When the range end would be less than the start, it would make sense to exit, but that will happen anyway without any if statement.
The name iterator for your function is somewhat misleading, as the return value is not an iterator, but a comma separated string. I would therefore call it rangeToCsv
function rangeToCsv(rangeStart, rangeEnd) {
var iterate = function*(start = 0, end = 5, step = 1) {
for (let i = start; i <= end; i += step) {
yield i;
}
}
var values = iterate(rangeStart, rangeEnd);
return Array.from(values).join(",");
}
console.log(rangeToCsv(0, 10))
Related
Let's say we have this string:
BBBBAAAABBAAAAAACCCCCBDDDDEEEEEEE,FFF
As you can see, here B is occurring 4 times at first but B is also present before DDDD.
Similarly, A is occurring 4 times at the beginning and later 6 times.
I want the expected output if I am searching B it should 4 times as the max occurrence B is 4. However if I am searching A then it should return 6 because the most occurrence for A is 6.
Here is my code I tried:
function checkRepeatativeString(str) {
let hashMap = {};
let seen = new Set();
let counter = 1;
let maxValue = 1;
let isPreviousValueSame = false;
let isNextValueSame = true;
for (let i = 0; i < str.length; i++) {
/**
* is previous value same
*/
if (str[i] == str[i-1]) {
isPreviousValueSame = true;
}
/**
* is next value same
*/
if (str[i] == str[i+1]) {
isNextValueSame = true;
}
if (seen.has(str[i]) && isPreviousValueSame) {
hashMap[str[i]][0]++;
hashMap[str[i]][1]++;
isPreviousValueSame = false;
} else if(seen.has(str[i]) && !isNextValueSame) {
maxValue = Math.max(hashMap[str[i]][1], maxValue);
counter = 0;
hashMap[str[i]] = [counter, maxValue];
} else {
maxValue = Math.max(maxValue, counter);
seen.add(str[i]);
hashMap[str[i]] = [counter, maxValue];
isPreviousValueSame = false;
}
}
return hashMap;
}
let str = "BBBBAAAABBAAAAAACCCCCBDDDDEEEEEEE,FFF";
console.log(checkRepeatativeString(str));
This code is working but if you look for B, I am getting stuck at the beginning of value.
My program returns out for B:
B: [ 1, 1 ]
^ ^
Inside array, 1 is a counter which scans the string and second 1 in array is a max value which should return the output. However my program is returning 1 for B. I am expecting 4 as max value.
Help would be appreciated~
Quick and dirty.
function maxConsecutiveCharacters(check, haystack) {
if(check.length !== 1) return false;
let result = 0;
let buffer = 0;
for(let i = 0; i < haystack.length; i++) {
if(haystack[i] === check) {
buffer++;
}
else {
if(buffer > result) {
result = buffer;
}
buffer = 0;
}
if(buffer > result) {
result = buffer;
}
}
return result;
}
That looks overly complicated. Consider approaching the problem from a different angle - first split up the string into segments of repeating characters, and group them into an object based on the length of the longest substring for a given character.
const checkRepeatativeString = (str) => {
const longestCounts = {};
for (const consecutive of (str.match(/(.)\1*/g) || [])) {
const char = consecutive[0];
longestCounts[char] = Math.max(
longestCounts[char] || 0, // Use the existing value in the object if it exists and is higher
consecutive.length // Otherwise, use the length of the string iterated over
);
}
return longestCounts;
};
let str = "BBBBAAAABBAAAAAACCCCCBDDDDEEEEEEE,FFF";
console.log(checkRepeatativeString(str));
Simpler code often means less surface area for bugs.
Just was performing simple task in JS which was to take integer as an input, divide it into single digits and multiply them ignoring all zeros in it.
I have solved it but had some troubles which were simply solved by changing the loop. I am just curious why the code did not work properly with the for loop and started to work as I it for for of loop. I could not find out the answer by my self. If somebody could tell where I am wrong.
First one works as intended, second one always returns 1.
function digitsMultip1(data) {
var stringg = data.toString().split("", data.lenght);
for (let elements of stringg) {
if (elements != 0) {
sum = parseInt(elements) * sum
} else {
continue
};
}
return sum;
}
console.log(digitsMultip1(12035))
function digitsMultip2(data) {
var sum = 1;
var stringg = data.toString().split("", data.lenght);
for (var i = 0; i > stringg.lenght; i++) {
if (stringg[i] != 0) {
sum = parseInt(stringg[i]) * sum
} else {
continue
};
}
return sum;
}
console.log(digitsMultip2(12035))
There is no big difference. for..of works in newer browsers
The for...of statement creates a loop iterating over iterable objects, including: built-in String, Array, Array-like objects (e.g., arguments or NodeList), TypedArray, Map, Set, and user-defined iterables. It invokes a custom iteration hook with statements to be executed for the value of each distinct property of the object.
Several typos
length spelled wrong
> (greater than) should be < (less than) in your for loop
Now they both work
function digitsMultip1(data) {
var sum=1, stringg = data.toString().split("");
for (let elements of stringg) {
if (elements != 0) {
sum *= parseInt(elements)
} else {
continue
};
}
return sum;
}
console.log(digitsMultip1(12035))
function digitsMultip2(data) {
var sum = 1, stringg = data.toString().split("");
for (var i = 0; i < stringg.length; i++) {
if (stringg[i] != 0) {
sum *= parseInt(stringg[i])
} else {
continue
};
}
return sum;
}
console.log(digitsMultip2(12035))
You might want to look at reduce
const reducer = (accumulator, currentValue) => {
currentValue = +currentValue || 1; return accumulator *= currentValue
}
console.log(String(12035).split("").reduce(reducer,1));
I'm trying to get whatever number is the most frequently occuring number in an array, so for an array containing 1,2,10,5,1 the result should be 1. The code I wrote returns me the frequency for each number, so 1 occurs twice, 2 occurs once, 10 occurs once etc. Any suggestions how I can fix my result?
function mode(arr) {
var uniqNum = {};
var numCounter = function(num, counter) {
if(!uniqNum.hasOwnProperty(num)) {
uniqNum[num] = 1;
} else {
uniqNum[num] ++;
}
};
arr.forEach(numCounter);
return uniqNum;
}
I've kept your code unchanged and added some extra statements. Here is the demo: http://codepen.io/PiotrBerebecki/pen/rrdxRo
function mode(arr) {
var uniqNum = {};
var numCounter = function(num, counter) {
if(!uniqNum.hasOwnProperty(num)) {
uniqNum[num] = 1;
} else {
uniqNum[num] ++;
}
};
arr.forEach(numCounter);
return Object.keys(uniqNum)
.sort((a,b) => uniqNum[b] - uniqNum[a]) // sort by frequency
.filter((val,ind,array) => uniqNum[array[0]] == uniqNum[val]) // leave only most frequent
.map(val => Number(val)); // convert text to number
}
console.log( JSON.stringify(mode([3,3,2,4,4])) ) // [3,4]
console.log( JSON.stringify(mode([2,4,3,3])) ) // [3]
I think it could be done only with a little modification to your forEach loop and the assistance of another auxiliary data structure:
function mode(arr) {
var freq = [], uniqNum = {}, i;
arr.forEach(function (num) {
uniqNum[num] = i = (uniqNum[num] || 0) + 1;
freq[i] = (freq[i] || []).concat(num);
});
return freq[freq.length - 1];
}
console.log(mode([1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 6, 7, 1, 6]));
With only one iteration over all the elements of the array we can gather enough information to print out the result:
uniqNum is the set you created to gather info about the element's frequency.
freq will be an array which last element will contain an array with the elements of higher frequency.
Fiddle. Hope it helps.
First we want to make an array where we count the number of occurrences of a certain value up to that point.
Then we use the reduce function to return an array of values read from the original array for the indexes whose values have the current max appearances. We redefine max and empty the final output array of modes (if new max is established) as we go along. We want this to be a collection in case there is a tie for maximum appearances.
Additional advantage of the below is that it doesn't require sort which is more expensive o(nlog n) and keeps the time complexity down to just linear. I also wanted to keep the functions used down to only two (map and reduce) as it is all that is need in this case.
edit: fixed a major bug uniqNum[e] += 1 instead of uniqNum[e] + 1 which went unnoticed as my initial case array was still returning expected result. Also made the syntax more concise in favor of more comments.
var arr = [1,2,10,5,1,5,2,2,5,3,3];
//global max to keep track of which value has most appearances.
var max = -1;
var uniqNum = {};
var modeArray = arr.map(function(e) {
//create array that counts appearances of the value up to that point starting from beginning of the input arr array.
if(!uniqNum.hasOwnProperty(e)) {
uniqNum[e] = 1;
return 1;
} else {
return uniqNum[e] += 1;
}
//reduce the above appearance count array into an array that only contains values of the modes
}).reduce(function (modes, e1, i) {
//if max gets beaten then redefine the mode array to only include the new max appearance value.
if(e1 > max){
//redefining max
max = e1;
//returning only the new max element
return [arr[i]];
//if its a tie we still want to include the current value but we don't want to empty the array.
}else if(e1 == max){
//append onto the modes array the co-max value
return[...modes, arr[i]];
}
return modes;
},[]);
alert(modeArray);
Here is a test you can run of my solution against #acontell. In my browser (Chrome with V8) my solution was around three-four times faster for arrays with large number of repeating values and even bigger advantage with distributions with lower number of repeating values. #acontell 's is a cleaner looking solution for sure, but definitely not faster in execution.
var arr = [];
for(var i=0; i < 100000; i++){
arr.push(Math.floor(Math.random() * (100 - 1)) + 1);
}
console.time("test");
test();
function test(){
var max = -1;
var uniqNum = {};
var modeArray = arr.map(function(e) {
//create array that counts appearances of the value up to that point starting from beginning of the input arr array.
if(!uniqNum.hasOwnProperty(e)) {
uniqNum[e] = 1;
return 1;
} else {
return uniqNum[e] += 1;
}
//reduce the above appearance count array into an array that only contains values of the modes
}).reduce(function (modes, e1, i) {
//if max gets beaten then redefine the mode array to only include the new max appearance value.
if(e1 > max){
//redefining max
max = e1;
//returning only the new max element
return [arr[i]];
//if its a tie we still want to include the current value but we don't want to empty the array.
}else if(e1 == max){
//append onto the modes array the co-max value
modes.push(arr[i])
return modes;
}
return modes;
},[]);
}
console.timeEnd("test");
console.time("test1");
test1();
function test1 () {
var freq = [],
uniqNum = {},
i;
arr.forEach(function(num) {
uniqNum[num] = i = (uniqNum[num] || 0) + 1;
freq[i] = (freq[i] || []).concat(num);
});
return freq[freq.length - 1];
}
console.timeEnd("test1");
I've tried as an exercise to solve this with native js functions.
var arr = [1,2,10,5,1];
// groupBy number
var x = arr.reduce(
function(ac, cur){
ac[cur]?(ac[cur] = ac[cur] + 1):ac[cur] = 1;
return ac;
}, {}
);
// sort in order of frequencies
var res = Object.keys(x).sort(
function(a,b){ return x[a] < x[b]}
);
res[0] has the most frequent element
In Javascript, I don't see any tutorials clearly explain how to create like
MyItems[Row][Index][categories]
so that
MyItems[0][0][0]=1
MyItems[1][0][0]='stock'
MyItems[5][1][0]='pending'
My use case is each Index will contain different value which is integer or string.
What is the best way to avoid error when accessing MyItems[0][1][0] that has no value?
Because JS doesn't have actual multidimensional arrays, but instead merely have nested arrays that don't necessarily form a rectangular structure, you'd need to check for each nested array first. A simple "truthy" test would be fine.
if (myItems[0] && myItems[0][0])
myItems[0][0].push(1);
If you wanted to create the arrays that aren't there, then you can do that like this:
if (!myItems[0])
myItems[0] = [];
if (!myItems[0][0])
myItems[0][0] = [];
myItems[0][0].push(1);
Of course this assumes that the first and second levels should always be arrays, and only the third level will hold the actual values. You'll need to adjust it if that's not the case.
Also, a function would be a good idea to get rid of the repetition.
function addNested(outer, idx1, idx2, idx3, value) {
if (!outer[idx1])
outer[idx1] = [];
if (!outer[idx1][idx2])
outer[idx1][idx2] = [];
outer[idx1][idx2][idx3] = value;
}
addNested(myItems, 1, 0, 0, 'stock');
This is how you'd make a 3D array, but I'd recommend against mixing data types in your array, that's not exactly a common or standard practice.
// just filler stuff, ignore the body of this function
function getStringOrNumber(row, col, cat) {
var thing = row * cols * cats + col * cats + cat;
return Math.random() < .5 ? thing : thing.toString();
}
// something to deal with each value
function doSomething(value) {
switch (typeof value) {
case 'string':
// logic for string type
break;
case 'number':
// logic for number type
break;
default:
// unexpected?
break;
}
}
// here's how you make your 3D array
var rows = 10,
cols = 10,
cats = 10,
array3d = new Array(rows),
i, j, k;
for (i = 0; i < rows; i++) {
array3d[i] = new Array(cols);
for (j = 0; j < cols; j++) {
array3d[i][j] = new Array(cats);
for (k = 0; k < cats; k++) {
array3d[i][j][k] = getStringOrNumber(i, j, k);
doSomething(array3d[i][j][k]);
}
}
}
If you want to check whether an index exists on the 3d array, try a function like this:
function setValue(array3d, row, col, cat, value) {
if (array3d[row] && array3d[row][col] && array3d[row][col][cat]) {
array3d[row][col][cat] = value;
} else {
throw new RangeError("Indices out of range");
}
}
If you were to allocate each array at each index in a breadth-first pattern before accessing any of it, then this would work without any special handling.
However, as you've correctly recognized, if you want to be able to access indexes that may not have been allocated yet, this won't work.
Actually, to be more specific, you are allowed to attempt to read an index outside the length of an array, in which case you'll get undefined. The problem is that if you get undefined for the first or second depth, then an attempt to index that undefined value will fail.
Thus, to prevent this error, you must guard against undefined first- or second-depth indexes.
The best way to do this is to write a class that provides a getter and setter that automatically take care of the special handling requirements. Here's an example of such a class, defined using the prototype pattern:
(function() {
var Array3D = function() {
this.data = [];
};
Array3D.prototype.get = function(r,c,z) {
if (this.data.length <= r) return undefined;
if (this.data[r].length <= c) return undefined;
return this.data[r][c][z];
};
Array3D.prototype.set = function(r,c,z,v) {
if (this.data.length <= r) this.data[r] = [];
if (this.data[r].length <= c) this.data[r][c] = [];
this.data[r][c][z] = v;
return this;
};
window.Array3D = Array3D;
})();
var a = new Array3D();
alert(a.get(0,0,0)); // undefined, no error
a.set(0,0,0,'x');
alert(a.get(0,0,0)); // 'x'
a.set(234,1234,342,'y');
alert(a.get(234,1234,342)); // 'y'
alert(a.get(0,1,0)); // undefined, no error
alert(a.get(12341234,243787,234234)); // undefined, no error
Since this completely differs from my other answer, I thought it would be helpful to suggest another approach using nested sparse arrays which could be implemented using associative arrays or objects. Try this:
// N-dimensional array
function ArrayND() {
// nothing to do here, seriously
}
ArrayND.prototype.setValue = function (value) {
var indices = arguments,
nest = this,
index, i;
// note the range of values since the last recursion is being set to a value
for (i = 1; i < indices.length - 2; i++) {
index = indices[i];
if (nest[index] instanceof ArrayND) {
nest = nest[index];
} else if (typeof nest[index] === "undefined") {
// recursive functionality!
nest = nest[index] = new ArrayND();
} else {
// we don't want to get rid of this value by accident!
return false;
}
}
// now "nest" is equal to the ArrayND you want to set the value inside of
index = indices[i];
nest[index] = value;
// we set the value successfully!
return true;
}
ArrayND.prototype.getValue = function () {
var indices = arguments,
nest = this,
index, i;
// note the range because we're getting the last value
for (i = 0; i < indices.length; i++) {
index = indices[i];
// for last recursion, just has to exist, not be ArrayND
if (nest[index]) {
nest = nest[index];
} else {
// nothing is defined where you're trying to access
return undefined;
}
}
return nest;
}
var arrayND = new ArrayND();
arrayND.setValue(1, 0, 0, 0);
arrayND.setValue("stock", 1, 0, 0);
arrayND.setValue("pending", 5, 1, 0);
// you can treat it like a normal 3D array if you want
console.log(arrayND[0][0][0]); // 1
console.log(arrayND[1][0][0]); // "stock"
console.log(arrayND[5][1][0]); // "pending"
// or use a nicer way to get the values
console.log(arrayND.getValue(1, 0, 0)); // "stock"
// phew, no errors!
console.log(arrayND.getValue(3, 1, 0)); // undefined
// some awesome recursive functionality!
console.log(arrayND.getValue(5).getValue(1).getValue(0)); // "pending"
Let's say I have a simple array like this:
var myArr = [0,1,2,3,4,5,6,7,8,9]
I'd like to extract a number of elements, starting from a specific index, like this:
myArr.getElementsFromIndex(index, numberOfElements)
where, unlike .slice(), if we hit the last index, elements from the start of the array should be returned instead (so that the total number of elements returned will always be respected). Either pure javascript or a library like underscore/lodash can be used.
Examples:
myArr.getElementsFromIndex(3, 5)
should return[3,4,5,6,7]
and
myArr.getElementsFromIndex(8, 5)
should return [8,9,0,1,2]
Use the below code
var myArr = [0,1,2,3,4,5,6,7,8,9];
function getElementsFromIndex(startIndex, num) {
var elems = [];
for(var iter = 0; iter<num; iter++) {
if(startIndex >= myArr.length) {
while(startIndex >= myArr.length) {
startIndex -= myArr.length;
}
}
elems.push(myArr[startIndex]);
startIndex++;
}
return(elems);
}
Array#slice takes a start and end index (not a start index and a number of elements).
Array#splice does what you want, except for the wrapping around (but also modifies the original array).
You can write a wrapper function using slice (which will not modify the original array):
function getElementsFromIndex(arr, start, numElements) {
if(start + numElements > arr.length) {
var endOfArr = arr.slice(start, arr.length);
var elementsFound = arr.length - start;
var restElements = getElementsFromIndex(arr, 0, numElements - elementsFound);
return endOfArr.concat(restElements);
}
return arr.slice(start, start + numElements);
}
This function returns what you require (see example), and even wraps around multiple times, if needed.
If you want to tie the function to arrays, in order to use it as you propose (ie. myArr.getElementsFromIndex(start, numElements)), you can add it to Array's prototype. You might want to look up arguments for/against modifying prototypes of built-in types, though.
Array.prototype.getElementsFromIndex = function(start, numElements) {
if(start + numElements > this.length) {
var endOfArr = this.slice(start, this.length);
var elementsFound = this.length - start;
return endOfArr.concat(this.getElementsFromIndex(0, numElements - elementsFound));
}
return this.slice(start, start + numElements);
};
See example of the last one here.
Add this to your js code:
Array.prototype.getElementsFromIndex = function (start, len) {
var newArray = [],
origArray = this,
i = start;
while (newArray.length < len) {
newArray.push(origArray[i++]);
if (i >= origArray.length)
i = 0;
}
return newArray;
}
You can use it exactly the way you wanted:
var myArr = [0,1,2,3,4,5,6,7,8,9];
alert(myArr.getElementsFromIndex(8, 5));
JSFIDDLE DEMO: http://jsfiddle.net/x6oy0krL/1
Maybe some people will say that it is not right to extend objects like Array, documentElement and so on, but the result here is as the OP wanted.
I want to say that the original array will not be modified, too.
Just concatenate the array to itself, then use slice:
function sliceWrap(arr, start, num) {
return arr.concat(arr).slice(start, start+num);
}
Another approach, which wraps around:
function sliceWrap2(arr, start, num) {
var result = [], i, end = start+num, len = arr.length;
for (i=start; i<end; i++) {
result.push(arr[i % len]);
}
return result;
}