I am running a self invoked function, and I would like to change the Array object in it, and only in its scope.
var foo = "Foo Outer";
(function(){
var foo = 'Foo Inner !';
console.log('INNER>',foo);
// prints INNER> Foo Inner !
var Array = {};
var Array = Object.getPrototypeOf([]).constructor;
Array.prototype.filter = ()=>{return "Array filter inner"}
console.log('INNER> array filter literal:', [1,2,3].filter(x=>x));
// prints INNER> array filter literal:Array filter inner
})()
console.log('OUTER> foo ', foo);
// prints OUTER> foo Foo outer
console.log('OUTER> Array filter', [1,2,3].filter(x=>x));
// prints OUTER> Array filter Array filter inner
// I want ->
// OUTER> Array Filter [1,2,3]
How can I variable shadow Array and its methods only inside the scope of the self invoked function, while keeping it the same for the rest of the script ?
So in javascript, Arrays are passed around by reference. That means that you're always referencing the same "source" thing. If you mutate the array in one place, those changes will be reflected on all the references to that array.
That means that if you want changes to one version of shadow Array to be different than another version, you need to make a copy of it and change that copy.
It also looks like what you're really trying to accomplish here is a local monkey patch of the native array filter method. I believe that the technique you're looking for here is a proxy. Using a proxy, you can intercept the call to the native filter() method and substitute in your own. Proxies were introduced in ECMAScript2015.
see https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
This previous answer might be most relevant to you Extending Array / Proxy in ES6 correctly?
Apparently the answer (as was written in the comment by #Bergi) is that it isn't possible to variable shadow Array)
Related
Arrays are quite something in JavaScript when compared with other programming languages and it's not without its full set of quirks.
Including this one:
// Making a normal array.
var normalArray = [];
normalArray.length = 0;
normalArray.push(1);
normalArray[1] = 2;
normalArray; // returns [1, 2]
normalArray.length // returns 2
So yes, the above is how we all know to make arrays and fill them with elements, right? (ignore the normalArray.length = 0 part for now)
But why is it that when the same sequence is applied on an object that's not purely an array, it looks a bit different and its length property is off by a bit?
// Making an object that inherits from the array prototype (i.e.: custom array)
var customArray = new (function MyArray() {
this.__proto__ = Object.create(Array.prototype);
return this
});
customArray.length = 0;
customArray.push(1);
customArray[1] = 2;
customArray; // returns [1, 1: 2]
customArray.length // returns 1
Not entirely sure what's going on here but some explanation will be much appreciated.
This may not be the perfect answer, but according to my understanding of Javascript arrays, they are a little bit different than usual objects. (Mainly due to the fact that it maintains a length property, and Objects don't).
So if we take your code for an example:
var normalArray = [];
This is the right way to create an array in Javascript. But what about the below one?
var customArray = new (function MyArray() {
this.__proto__ = Object.create(Array.prototype);
return this
});
Are they same? Let's see..
Array.isArray(normalArray); // true -> [object Array]
Array.isArray(customArray); // false -> [object Object]
So it is clear that although you inherit from the array prototype, it doesn't really create an object with Array type. It just creates a plain JS object, but with the inherited array functions. That's the reason why it updates the length when you set the value with customArray.push(1);.
But since your customArray is only a regular object and for a regular JS object, [] notation is used to set a property, it doesn't update the length (because Objects don't have a length property)
Hope it's clear :)
The array you are trying to create is not a pure array (as you are perhaps aware). Its basically a JavaScript object and is supposed to behave like an object.
While treating an object like an array, its up to you to maintain all it's array like features.
You specifically have to assign a length property to it and you did it correctly.
Next, the push method from Array.prototype is supposed to insert an element to the array and increment the length property (if any), so it did increment 0 to 1. There you go, the length now is 1.
Next you used the literal notation of property assignment to Object, which is similar to something like customArray['someProperty'] = 1.
While using literal notation, no method from Array.Prototype is being invoked and hence the customArray object never knows that it has to behave like an Array and its length property remains unaffected. It simply behaves like an object and you get what you got.
Remember the length is just a property on Array class and this property is appropriately incremented and decremented by every method on Array.
Note: Array like objects are not recommended and its up to you entirely to maintain the index and other Array stuff for such objects.
From what I can see, you have a problem with your function:
return this
This should be
return (this);
Just fixes any potential errors you might have. Another thing is you're not using the var keyword to declare customArray. These errors might be breaking your code.
I am working with Node for the first time and I have two modules. One module defines an array of objects, and also has functions that are exported for use in the other module - including lookupbyID, lookupbyLastName, and addEmployee.
My issue is that when I call the functions from module 1 in module 2, which return objects from the original array and assign those objects to a variable, and then I modify that variable, it modifies the original data. Please see the following code:
Module 1:
const us = require('underscore')
var data = [
{id:1, firstName:'John', lastName:'Smith'},
{id:2, firstName:'Jane', lastName:'Smith'},
{id:3, firstName:'John', lastName:'Doe'},
]
exports.lookupByID = function (given_id) {
var found_id = us.findWhere(data, {id:given_id});
return found_id;
}
Module 2:
const employeeFunctions = require("./employeeModule");
var id_2_answer = employeeFunctions.lookupByID(2);
id_2_answer.firstName = 'Mary'
console.log(employeeFunctions.lookupByID(2))
As you can see, I changed the name of Jane to Mary. Even though I assigned the object to a variable, changing the variable changed the original object data, which I verified by printing the lookupbyID function a second time.
Can you help me understand why this happens? Can you help me understand possible ways to prevent this from happening? I would like to be able to assign the object to a variable, and be able to change the values within the variable without affecting the original data.
Thank you!
In js objects are assigned by reference so:
var foo = {bar:1};
var baz = foo;
baz.bar; // 1
baz.bar = 2;
foo.bar; // 2
Use Object.assign to clone objects instead:
var foo = {bar:1};
var baz = Object.assign({}, foo);
baz.bar; // 1
baz.bar = 2;
foo.bar; // 1
The short answer is that you can't - you've hit on a key aspect of programming: value vs reference. You can read more about it here but the long and short of it is that both of these variables point to the same object in memory, so changing it for one changes it for the other.
The solution will necessarily involve creating a new object - the neatest way is probably to use Object.assign to copy over values, but bear in mind that in your example, you'll probably need to delete your old entry too.
Sorry for asking a noob question but if I have an array:
MyArray["2cd"]="blah1";
MyArray["3cx"]="blah3";
MyArray["8cz"]="blah2";
And a string myStr="2cd";
And then I use MyArray[myStr] to get the value of blah, how can I get the number I am accessing in the object/array or 0 in this case?
If I may read between the lines, it sounds like you're thinking that the code you posted:
MyArray["2cd"] = "blah1";
MyArray["3cx"] = "blah3";
MyArray["8cz"] = "blah2";
will automatically become the equivalent of:
MyArray[0] = MyArray["2cd"] = "blah1";
MyArray[1] = MyArray["3cx"] = "blah3";
MyArray[2] = MyArray["8cz"] = "blah2";
and therefore you can get the string "blah1" either of these two ways:
var foo = MyArray[0]; // sets foo to "blah1"
var bar = MyArray["2cd"] // also sets bar to "blah1"
But that's not how JavaScript works.
You certainly can set things up so you can use my MyArray[0] and MyArray["2cd"] to fetch the same value, but you have to do it explicitly as in my example.
One thing you didn't mention is how you declared MyArray itself. Is it an Array or an Object? That is, before the code you posted, did you create MyArray with:
var MyArray = {}; // or equivalently, var Array = new Object;
or:
var MyArray = []; // or equivalently, var Array = new Array;
The first example creates an Object, the second an Array.
What is a bit confusing is that JavaScript has both of these two types, which in many cases you can use somewhat interchangeably. But it's customary to use an Object when you are using arbitrary (generally but not necessarily non-numeric) keys into the object, as in your example. Conversely, it's customary to use an Array when you are primarily using strictly numeric indexes.
In fact, JavaScript's Array type inherits from the Object type. An Array is simply an Object with some additional behavior:
An Array has additional methods such as .push() which appends an item to the array.
An Array has a .length property which is automatically updated when you add elements with .push() or a direct array[123] assignment, or when you remove elements with .pop() or other methods.
What JavaScript doesn't have, as FabrÃcio pointed out, is an "associative array" that behaves like what you might find in some other languages. It has Objects and it has Arrays (which inherit from Objects), and you have to deal with each of those on their own terms.
I'm experiencing an odd behavior (maybe it isn't odd at all but just me not understanding why) with an javascript array containing some objects.
Since I'm no javascript pro, there might very well be clear explanation as to why this is happening, I just don't know it.
I have javascript that is running in a document. It makes an array of objects similar to this:
var myArray = [{"Id":"guid1","Name":"name1"},{"Id":"guid2","Name":"name2"},...];
If I print out this array at the place it was created like JSON.stringify(myArray), I get what I was expecting:
[{"Id":"guid1","Name":"name1"},{"Id":"guid2","Name":"name2"},...]
However, if I try to access this array from a child document to this document (a document in a window opened by the first document) the array isn't an array any more.
So doing JSON.stringify(parent.opener.myArray) in the child document will result in the following:
{"0":{"Id":"guid1","Name":"name1"},"1":{"Id":"guid2","Name":"name2"},...}
And this was not what I was expecting - I was expecting to get the same as I did in teh parent document.
Can anyone explain to me why this is happening and how to fix it so that the array is still an array when addressed from a child window/document?
PS. the objects aren't added to the array as stated above, they are added like this:
function objTemp()
{
this.Id = '';
this.Name = '';
};
var myArray = [];
var obj = new ObjTemp();
obj.Id = 'guid1';
obj.Name = 'name1';
myArray[myArray.length] = obj;
If that makes any difference.
Any help would be much appreciated, both for fixing my problem but also for better understanding what is going on :)
The very last line might be causing the problem, have you tried replacing myArray[myArray.length] = obj; with myArray.push(obj);? Could be that, since you're creating a new index explicitly, the Array is turned into an object... though I'm just guessing here. Could you add the code used by the child document that retrieves myArray ?
Edit
Ignore the above, since it won't make any difference. Though, without wanting to boast, I was thinking along the right lines. My idea was that, by only using proprietary array methods, the interpreter would see that as clues as to the type of myArray. The thing is: myArray is an array, as far as the parent document is concerned, but since you're passing the Array from one document to another, here's what happens:
An array is an object, complete with it's own prototype and methods. By passing it to another document, you're passing the entire Array object (value and prototype) as one object to the child document. In passing the variable between documents, you're effectively creating a copy of the variable (the only time JavaScript copies the values of a var). Since an array is an object, all of its properties (and prototype methods/properties) are copied to a 'nameless' instance of the Object object. Something along the lines of var copy = new Object(toCopy.constructor(toCopy.valueOf())); is happening... the easiest way around this, IMO, is to stringency the array withing the parent context, because there, the interpreter knows it's an array:
//parent document
function getTheArray(){ return JSON.stringify(myArray);}
//child document:
myArray = JSON.parse(parent.getTheArray());
In this example, the var is stringified in the context that still treats myArray as a true JavaScript array, so the resulting string will be what you'd expect. In passing the JSON encoded string from one document to another, it will remain unchanged and therefore the JSON.parse() will give you an exact copy of the myArray variable.
Note that this is just another wild stab in the dark, but I have given it a bit more thought, now. If I'm wrong about this, feel free to correct me... I'm always happy to learn. If this turns out to be true, let me know, too, as this will undoubtedly prove a pitfall for me sooner or later
Check out the end of this article http://www.karmagination.com/blog/2009/07/29/javascript-kung-fu-object-array-and-literals/ for an example of this behavior and explanation.
Basically it comes down to Array being a native type and each frame having its own set of natives and variables.
From the article:
// in parent window
var a = [];
var b = {};
//inside the iframe
console.log(parent.window.a); // returns array
console.log(parent.window.b); // returns object
alert(parent.window.a instanceof Array); // false
alert(parent.window.b instanceof Object); // false
alert(parent.window.a.constructor === Array); // false
alert(parent.window.b.constructor === Object); // false
Your call to JSON.stringify actually executes the following check (from the json.js source), which seems to be failing to specify it as an Array:
// Is the value an array?
if (Object.prototype.toString.apply(value) === '[object Array]') {
//stringify
I have a situation, where I need to create a new JavaScript object that is inherited from Array. I am using the following code:
// Create constructor function.
var SpecialArray = function () {};
// Create intermediate function to create closure upon Array's prototype.
// This prevents littering of native Array's prototype.
var ISpecialArray = function () {};
ISpecialArray.prototype = Array.prototype;
SpecialArray.prototype = new ISpecialArray();
SpecialArray.prototype.constructor = SpecialArray;
// Use Array's push() method to add two elements to the prototype itself.
SpecialArray.prototype.push('pushed proto 0', 'pushed proto 1');
// Use [] operator to add item to 4th position
SpecialArray.prototype[4] = 'direct [] proto to 4';
// Create new instance of Special Array
var x = new SpecialArray();
// Directly add items to this new instance.
x.push('pushed directly on X');
x[9] = 'direct [] to 9'
console.log(x, 'length: ' + x.length);
Quite interestingly, the [] operation seem to be useless and the console output is:
["pushed proto 0", "pushed proto 1", "pushed directly on X"] length: 3
What am I missing here?
It is not possible to subclass the Array class and use t this way.
The best solution for you is to extend just the array class and use it as it is.
There are two other options that I do not like but they exist
http://ajaxian.com/archives/another-trick-to-allow-array-subclasses
http://dean.edwards.name/weblog/2006/11/hooray/
This is one of those that always trips people up. The length property only applies to the ordered elements. You can't extend an array then insert an arbitrary non-sequitous key and expect it to work. This is because the relationship between the length property and the array contents is broken once you extend the array. Pointy's link above does a very good job of explaining this in more detail.
To prove this add this to the end of your example:
console.log(x[4]);
As you can see your entry is present and correct, it's just not part of the ordered array.
Like everything else in javascript the Array object is just a Associative Array with string keys. Non numerical, non sequitous keys are hidden to fool you into thinking it's a 'proper' numerically indexed array.
This strange mixed design of the Array object does mean you can do some strange and wonderful things like storing ordered and unordered information in the same object. I'm not saying this is a good idea, I'm just saying it's possible.
As you will have noticed by now when iterating structures like this the non sequitous keys don't appear which makes sense for the general use case of arrays for ordered information. It's less useful, or in fact useless when you want to get keyed info. I would venture that if ordering is unimportant you should use an object not an array. If you need both ordered and unordered store an array as a property in an object.
The best way I have found to create a child prototype of an "Array" is to not make a child prototype of "Array" but rather create a child of an "Array-Like" prototype. There are many prototypes floating around that attempt to mimic the properties of an "Array" while still being able to "inherit" from it, the best one I've found is Collection because it preserves the ability to use brackets []. The major downfall is that it doesn't work well with non-numeric keys (i.e. myArray["foo"] = "bar") but if you're only using numeric keys it works great.
You can extend this prototype like this:
http://codepen.io/dustinpoissant/pen/AXbjxm?editors=0011
var MySubArray = function(){
Collection.apply(this, arguments);
this.myCustomMethod = function(){
console.log("The second item is "+this[1]);
};
};
MySubArray.prototype = Object.create(Collection.prototype);
var msa = new MySubArray("Hello", "World");
msa[2] = "Third Item";
console.log(msa);
msa.myCustomMethod();