Related
I have a 2D board made with KonvaJS and tokens that can move on a square grid. I can already add fog of war and remove it manually. However, I would like to make it so, when each token moves, it reveals a certain around it, taking into account walls. Most of the work is done, however it's not entirely accurate.
Basically for each wall, I'm checking if the token is on the top/right/bottom/left of it. And then depending on which one it is, I reduce the width/height of the revealing area so it doesn't go beyond the wall. Here is an image explaining what I have and what I need
Legend:
Gray is fog of war
Red area is the wall/obstacle
Token is the movable token
Blue area is the revealed area
Blue lines inside red area is where it intersects
Purple lines are squares that should be revealed (aka, it should be blue)
Basically, in this case, an intersection was detected and the token is on the right side of the obstacle. So I got the right side of the wall (the x coordinate), and made the blue area starting point be that x coordinate and removed from the total width of the blue area the intersection width(the blue lines, so 1 square of width was removed).
However, because of that, the purple lines don't get filled in. Unfortunately, I can't just check the intersection points between blue and red and only remove those, because if the blue area is bigger than the red area, it would reveal the other side of the obstacle(which I don't want).
Here is the code I'm using to iterate the walls, checking if there is an intersection, checking where the token is, and then removing the width or height according to the intersection.
const tokenPosition = { x: 10, y: 10 };
const haveIntersection = (r1, r2) => !(
r2.x > r1.x + r1.width || // Compares top left with top right
r2.x + r2.width < r1.x || // Compares top right with top left
r2.y > r1.y + r1.height || // Compare bottom left with bottom right
r2.y + r2.height < r1.y // Compare bottom right with bottom left
);
walls.forEach(wall => {
const redArea = { x: wall.x, y: wall.y, width: wall.width, height: wall.height };
// blueArea has the same properties as redArea
if (haveIntersection(blueArea, redArea)) {
const tokenToTheRight = tokenPosition.x > wall.x + wall.width;
const tokenToTheLeft = tokenPosition.x < wall.x;
const tokenToTheTop = tokenPosition.y < wall.y;
const tokenToTheBottom = tokenPosition.y > wall.y + wall.height;
if (tokenToTheRight) {
let diff = wall.x + wall.width - blueArea.x;
blueArea.x = wall.x + wall.width;
blueArea.width = blueArea.width - diff;
}
if (tokenToTheLeft) {
let diff = blueArea.x + blueArea.width - wall.x;
blueArea.width = blueArea.width - diff;
}
if (tokenToTheTop) {
let diff = blueArea.y + blueArea.height - wall.y;
blueArea.height = blueArea.height - diff;
}
if (tokenToTheBottom) {
let diff = wall.y + wall.height - blueArea.y;
blueArea.y = wall.y + wall.height;
blueArea.height = blueArea.height - diff;
}
}
});
Any idea on how to fix this or if I should be taking a different approach?
You'll have to do something ray-tracing like to get this to work.
In the snippet below, I:
Loop over each cell in your token's field-of-view
Check for that cell center whether
it is in a box, or
a line between the token and the cell center intersects with a wall of a box
Color the cell based on whether it intersects
Note: the occlusion from the boxes is quite aggressive because we only check the center for quite a large grid cell. You can play around with some of the settings to see if it matches your requirements. Let me know if it doesn't.
Legend:
Red: box
Light blue: in field of view
Orange: blocked field of view because box-overlap
Yellow: blocked field of view because behind box
// Setup
const cvs = document.createElement("canvas");
cvs.width = 480;
cvs.height = 360;
const ctx = cvs.getContext("2d");
document.body.appendChild(cvs);
// Game state
const GRID = 40;
const H_GRID = GRID / 2;
const token = { x: 7.5, y: 3.5, fow: 2 };
const boxes = [
{ x: 2, y: 3, w: 4, h: 4 },
{ x: 8, y: 4, w: 1, h: 1 },
];
const getBoxSides = ({ x, y, w, h }) => [
[ [x + 0, y + 0], [x + w, y + 0]],
[ [x + w, y + 0], [x + w, y + h]],
[ [x + w, y + h], [x + 0, y + h]],
[ [x + 0, y + h], [x + 0, y + 0]],
];
const renderToken = ({ x, y, fow }) => {
const cx = x * GRID;
const cy = y * GRID;
// Render FOV
for (let ix = x - fow; ix <= x + fow; ix += 1) {
for (let iy = y - fow; iy <= y + fow; iy += 1) {
let intersectionFound = false;
for (const box of boxes) {
if (
// Check within boxes
pointInBox(ix, iy, box) ||
// Check walls
// Warning: SLOW
getBoxSides(box).some(
([[ x1, y1], [x2, y2]]) => intersects(x, y, ix, iy, x1, y1, x2, y2)
)
) {
intersectionFound = true;
break;
}
}
if (!intersectionFound) {
renderBox({ x: ix - .5, y: iy - .5, w: 1, h: 1 }, "rgba(0, 255, 255, 0.5)", 0);
ctx.fillStyle = "lime";
ctx.fillRect(ix * GRID - 2, iy * GRID - 2, 4, 4);
} else {
renderBox({ x: ix - .5, y: iy - .5, w: 1, h: 1 }, "rgba(255, 255, 0, 0.5)", 0);
ctx.fillStyle = "red";
ctx.fillRect(ix * GRID - 2, iy * GRID - 2, 4, 4);
}
}
}
ctx.lineWidth = 5;
ctx.fillStyle = "#efefef";
ctx.beginPath();
ctx.arc(cx, cy, GRID / 2, 0, Math.PI * 2);
ctx.fill();
ctx.stroke();
}
const renderBox = ({ x, y, w, h }, color = "red", strokeWidth = 5) => {
ctx.fillStyle = color;
ctx.strokeWidth = strokeWidth;
ctx.beginPath();
ctx.rect(x * GRID, y * GRID, w * GRID, h * GRID);
ctx.closePath();
ctx.fill();
if (strokeWidth) ctx.stroke();
}
const renderGrid = () => {
ctx.lineWidth = 1;
ctx.beginPath();
let x = 0;
while(x < cvs.width) {
ctx.moveTo(x, 0);
ctx.lineTo(x, cvs.height);
x += GRID;
}
let y = 0;
while(y < cvs.height) {
ctx.moveTo(0, y);
ctx.lineTo(cvs.width, y);
y += GRID;
}
ctx.stroke();
}
boxes.forEach(box => renderBox(box));
renderToken(token);
renderGrid();
// Utils
// https://errorsandanswers.com/test-if-two-lines-intersect-javascript-function/
function intersects(a,b,c,d,p,q,r,s) {
var det, gamma, lambda;
det = (c - a) * (s - q) - (r - p) * (d - b);
if (det === 0) {
return false;
} else {
lambda = ((s - q) * (r - a) + (p - r) * (s - b)) / det;
gamma = ((b - d) * (r - a) + (c - a) * (s - b)) / det;
return (0 <= lambda && lambda <= 1) && (0 <= gamma && gamma <= 1);
}
}
function pointInBox(x, y, box) {
return (
x > box.x &&
x < box.x + box.w &&
y > box.y &&
y < box.bottom
);
}
canvas { border: 1px solid black; }
Has anyone implemented a flood fill algorithm in javascript for use with HTML Canvas?
My requirements are simple: flood with a single color starting from a single point, where the boundary color is any color greater than a certain delta of the color at the specified point.
var r1, r2; // red values
var g1, g2; // green values
var b1, b2; // blue values
var actualColorDelta = Math.sqrt((r1 - r2)*(r1 - r2) + (g1 - g2)*(g1 - g2) + (b1 - b2)*(b1 - b2))
function floodFill(canvas, x, y, fillColor, borderColorDelta) {
...
}
Update:
I wrote my own implementation of flood fill, which follows. It is slow, but accurate. About 37% of the time is taken up in two low-level array functions that are part of the prototype framework. They are called by push and pop, I presume. Most of the rest of the time is spent in the main loop.
var ImageProcessing;
ImageProcessing = {
/* Convert HTML color (e.g. "#rrggbb" or "#rrggbbaa") to object with properties r, g, b, a.
* If no alpha value is given, 255 (0xff) will be assumed.
*/
toRGB: function (color) {
var r, g, b, a, html;
html = color;
// Parse out the RGBA values from the HTML Code
if (html.substring(0, 1) === "#")
{
html = html.substring(1);
}
if (html.length === 3 || html.length === 4)
{
r = html.substring(0, 1);
r = r + r;
g = html.substring(1, 2);
g = g + g;
b = html.substring(2, 3);
b = b + b;
if (html.length === 4) {
a = html.substring(3, 4);
a = a + a;
}
else {
a = "ff";
}
}
else if (html.length === 6 || html.length === 8)
{
r = html.substring(0, 2);
g = html.substring(2, 4);
b = html.substring(4, 6);
a = html.length === 6 ? "ff" : html.substring(6, 8);
}
// Convert from Hex (Hexidecimal) to Decimal
r = parseInt(r, 16);
g = parseInt(g, 16);
b = parseInt(b, 16);
a = parseInt(a, 16);
return {r: r, g: g, b: b, a: a};
},
/* Get the color at the given x,y location from the pixels array, assuming the array has a width and height as given.
* This interprets the 1-D array as a 2-D array.
*
* If useColor is defined, its values will be set. This saves on object creation.
*/
getColor: function (pixels, x, y, width, height, useColor) {
var redIndex = y * width * 4 + x * 4;
if (useColor === undefined) {
useColor = { r: pixels[redIndex], g: pixels[redIndex + 1], b: pixels[redIndex + 2], a: pixels[redIndex + 3] };
}
else {
useColor.r = pixels[redIndex];
useColor.g = pixels[redIndex + 1]
useColor.b = pixels[redIndex + 2];
useColor.a = pixels[redIndex + 3];
}
return useColor;
},
setColor: function (pixels, x, y, width, height, color) {
var redIndex = y * width * 4 + x * 4;
pixels[redIndex] = color.r;
pixels[redIndex + 1] = color.g,
pixels[redIndex + 2] = color.b;
pixels[redIndex + 3] = color.a;
},
/*
* fill: Flood a canvas with the given fill color.
*
* Returns a rectangle { x, y, width, height } that defines the maximum extent of the pixels that were changed.
*
* canvas .................... Canvas to modify.
* fillColor ................. RGBA Color to fill with.
* This may be a string ("#rrggbbaa") or an object of the form { r: red, g: green, b: blue, a: alpha }.
* x, y ...................... Coordinates of seed point to start flooding.
* bounds .................... Restrict flooding to this rectangular region of canvas.
* This object has these attributes: { x, y, width, height }.
* If undefined or null, use the whole of the canvas.
* stopFunction .............. Function that decides if a pixel is a boundary that should cause
* flooding to stop. If omitted, any pixel that differs from seedColor
* will cause flooding to stop. seedColor is the color under the seed point (x,y).
* Parameters: stopFunction(fillColor, seedColor, pixelColor).
* Returns true if flooding shoud stop.
* The colors are objects of the form { r: red, g: green, b: blue, a: alpha }
*/
fill: function (canvas, fillColor, x, y, bounds, stopFunction) {
// Supply default values if necessary.
var ctx, minChangedX, minChangedY, maxChangedX, maxChangedY, wasTested, shouldTest, imageData, pixels, currentX, currentY, currentColor, currentIndex, seedColor, tryX, tryY, tryIndex, boundsWidth, boundsHeight, pixelStart, fillRed, fillGreen, fillBlue, fillAlpha;
if (Object.isString(fillColor)) {
fillColor = ImageProcessing.toRGB(fillColor);
}
x = Math.round(x);
y = Math.round(y);
if (bounds === null || bounds === undefined) {
bounds = { x: 0, y: 0, width: canvas.width, height: canvas.height };
}
else {
bounds = { x: Math.round(bounds.x), y: Math.round(bounds.y), width: Math.round(bounds.y), height: Math.round(bounds.height) };
}
if (stopFunction === null || stopFunction === undefined) {
stopFunction = new function (fillColor, seedColor, pixelColor) {
return pixelColor.r != seedColor.r || pixelColor.g != seedColor.g || pixelColor.b != seedColor.b || pixelColor.a != seedColor.a;
}
}
minChangedX = maxChangedX = x - bounds.x;
minChangedY = maxChangedY = y - bounds.y;
boundsWidth = bounds.width;
boundsHeight = bounds.height;
// Initialize wasTested to false. As we check each pixel to decide if it should be painted with the new color,
// we will mark it with a true value at wasTested[row = y][column = x];
wasTested = new Array(boundsHeight * boundsWidth);
/*
$R(0, bounds.height - 1).each(function (row) {
var subArray = new Array(bounds.width);
wasTested[row] = subArray;
});
*/
// Start with a single point that we know we should test: (x, y).
// Convert (x,y) to image data coordinates by subtracting the bounds' origin.
currentX = x - bounds.x;
currentY = y - bounds.y;
currentIndex = currentY * boundsWidth + currentX;
shouldTest = [ currentIndex ];
ctx = canvas.getContext("2d");
//imageData = ctx.getImageData(bounds.x, bounds.y, bounds.width, bounds.height);
imageData = ImageProcessing.getImageData(ctx, bounds.x, bounds.y, bounds.width, bounds.height);
pixels = imageData.data;
seedColor = ImageProcessing.getColor(pixels, currentX, currentY, boundsWidth, boundsHeight);
currentColor = { r: 0, g: 0, b: 0, a: 1 };
fillRed = fillColor.r;
fillGreen = fillColor.g;
fillBlue = fillColor.b;
fillAlpha = fillColor.a;
while (shouldTest.length > 0) {
currentIndex = shouldTest.pop();
currentX = currentIndex % boundsWidth;
currentY = (currentIndex - currentX) / boundsWidth;
if (! wasTested[currentIndex]) {
wasTested[currentIndex] = true;
//currentColor = ImageProcessing.getColor(pixels, currentX, currentY, boundsWidth, boundsHeight, currentColor);
// Inline getColor for performance.
pixelStart = currentIndex * 4;
currentColor.r = pixels[pixelStart];
currentColor.g = pixels[pixelStart + 1]
currentColor.b = pixels[pixelStart + 2];
currentColor.a = pixels[pixelStart + 3];
if (! stopFunction(fillColor, seedColor, currentColor)) {
// Color the pixel with the fill color.
//ImageProcessing.setColor(pixels, currentX, currentY, boundsWidth, boundsHeight, fillColor);
// Inline setColor for performance
pixels[pixelStart] = fillRed;
pixels[pixelStart + 1] = fillGreen;
pixels[pixelStart + 2] = fillBlue;
pixels[pixelStart + 3] = fillAlpha;
if (minChangedX < currentX) { minChangedX = currentX; }
else if (maxChangedX > currentX) { maxChangedX = currentX; }
if (minChangedY < currentY) { minChangedY = currentY; }
else if (maxChangedY > currentY) { maxChangedY = currentY; }
// Add the adjacent four pixels to the list to be tested, unless they have already been tested.
tryX = currentX - 1;
tryY = currentY;
tryIndex = tryY * boundsWidth + tryX;
if (tryX >= 0 && ! wasTested[tryIndex]) {
shouldTest.push(tryIndex);
}
tryX = currentX;
tryY = currentY + 1;
tryIndex = tryY * boundsWidth + tryX;
if (tryY < boundsHeight && ! wasTested[tryIndex]) {
shouldTest.push(tryIndex);
}
tryX = currentX + 1;
tryY = currentY;
tryIndex = tryY * boundsWidth + tryX;
if (tryX < boundsWidth && ! wasTested[tryIndex]) {
shouldTest.push(tryIndex);
}
tryX = currentX;
tryY = currentY - 1;
tryIndex = tryY * boundsWidth + tryX;
if (tryY >= 0 && ! wasTested[tryIndex]) {
shouldTest.push(tryIndex);
}
}
}
}
//ctx.putImageData(imageData, bounds.x, bounds.y);
ImageProcessing.putImageData(ctx, imageData, bounds.x, bounds.y);
return { x: minChangedX + bounds.x, y: minChangedY + bounds.y, width: maxChangedX - minChangedX + 1, height: maxChangedY - minChangedY + 1 };
},
getImageData: function (ctx, x, y, w, h) {
return ctx.getImageData(x, y, w, h);
},
putImageData: function (ctx, data, x, y) {
ctx.putImageData(data, x, y);
}
};
BTW, when I call this, I use a custom stopFunction:
stopFill : function (fillColor, seedColor, pixelColor) {
// Ignore alpha difference for now.
return Math.abs(pixelColor.r - seedColor.r) > this.colorTolerance || Math.abs(pixelColor.g - seedColor.g) > this.colorTolerance || Math.abs(pixelColor.b - seedColor.b) > this.colorTolerance;
},
If anyone can see a way to improve performance of this code, I would appreciate it. The basic idea is:
1) Seed color is the initial color at the point to start flooding.
2) Try four adjacent points: up, right, down and left one pixel.
3) If point is out of range or has been visited already, skip it.
4) Otherwise push point onto to the stack of interesting points.
5) Pop the next interesting point off the stack.
6) If the color at that point is a stop color (as defined in the stopFunction) then stop processing that point and skip to step 5.
7) Otherwise, skip to step 2.
8) When there are no more interesting points to visit, stop looping.
Remembering that a point has been visited requires an array with the same number of elements as there are pixels.
To create a flood fill you need to be able to look at the pixels that are there already and check they aren't the color you started with so something like this.
const ctx = document.querySelector("canvas").getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20);
ctx.lineTo(250, 70);
ctx.lineTo(270, 120);
ctx.lineTo(170, 140);
ctx.lineTo(190, 80);
ctx.lineTo(100, 60);
ctx.lineTo(50, 130);
ctx.lineTo(20, 20);
ctx.stroke();
floodFill(ctx, 40, 50, [255, 0, 0, 255]);
function getPixel(imageData, x, y) {
if (x < 0 || y < 0 || x >= imageData.width || y >= imageData.height) {
return [-1, -1, -1, -1]; // impossible color
} else {
const offset = (y * imageData.width + x) * 4;
return imageData.data.slice(offset, offset + 4);
}
}
function setPixel(imageData, x, y, color) {
const offset = (y * imageData.width + x) * 4;
imageData.data[offset + 0] = color[0];
imageData.data[offset + 1] = color[1];
imageData.data[offset + 2] = color[2];
imageData.data[offset + 3] = color[0];
}
function colorsMatch(a, b) {
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
}
function floodFill(ctx, x, y, fillColor) {
// read the pixels in the canvas
const imageData = ctx.getImageData(0, 0, ctx.canvas.width, ctx.canvas.height);
// get the color we're filling
const targetColor = getPixel(imageData, x, y);
// check we are actually filling a different color
if (!colorsMatch(targetColor, fillColor)) {
fillPixel(imageData, x, y, targetColor, fillColor);
// put the data back
ctx.putImageData(imageData, 0, 0);
}
}
function fillPixel(imageData, x, y, targetColor, fillColor) {
const currentColor = getPixel(imageData, x, y);
if (colorsMatch(currentColor, targetColor)) {
setPixel(imageData, x, y, fillColor);
fillPixel(imageData, x + 1, y, targetColor, fillColor);
fillPixel(imageData, x - 1, y, targetColor, fillColor);
fillPixel(imageData, x, y + 1, targetColor, fillColor);
fillPixel(imageData, x, y - 1, targetColor, fillColor);
}
}
<canvas></canvas>
There's at least 2 problems with this code though.
It's deeply recursive.
So you might run out of stack space
It's slow.
No idea if it's too slow but JavaScript in the browser is mostly single threaded so while this code is running the browser is frozen. For a large canvas that frozen time might make the page really slow and if it's frozen too long the browser will ask if the user wants to kill the page.
The solution to running out of stack space is to implement our own stack. For example instead of recursively calling fillPixel we could keep an array of positions we want to look at. We'd add the 4 positions to that array and then pop things off the array until it's empty
const ctx = document.querySelector("canvas").getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20);
ctx.lineTo(250, 70);
ctx.lineTo(270, 120);
ctx.lineTo(170, 140);
ctx.lineTo(190, 80);
ctx.lineTo(100, 60);
ctx.lineTo(50, 130);
ctx.lineTo(20, 20);
ctx.stroke();
floodFill(ctx, 40, 50, [255, 0, 0, 255]);
function getPixel(imageData, x, y) {
if (x < 0 || y < 0 || x >= imageData.width || y >= imageData.height) {
return [-1, -1, -1, -1]; // impossible color
} else {
const offset = (y * imageData.width + x) * 4;
return imageData.data.slice(offset, offset + 4);
}
}
function setPixel(imageData, x, y, color) {
const offset = (y * imageData.width + x) * 4;
imageData.data[offset + 0] = color[0];
imageData.data[offset + 1] = color[1];
imageData.data[offset + 2] = color[2];
imageData.data[offset + 3] = color[0];
}
function colorsMatch(a, b) {
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
}
function floodFill(ctx, x, y, fillColor) {
// read the pixels in the canvas
const imageData = ctx.getImageData(0, 0, ctx.canvas.width, ctx.canvas.height);
// get the color we're filling
const targetColor = getPixel(imageData, x, y);
// check we are actually filling a different color
if (!colorsMatch(targetColor, fillColor)) {
const pixelsToCheck = [x, y];
while (pixelsToCheck.length > 0) {
const y = pixelsToCheck.pop();
const x = pixelsToCheck.pop();
const currentColor = getPixel(imageData, x, y);
if (colorsMatch(currentColor, targetColor)) {
setPixel(imageData, x, y, fillColor);
pixelsToCheck.push(x + 1, y);
pixelsToCheck.push(x - 1, y);
pixelsToCheck.push(x, y + 1);
pixelsToCheck.push(x, y - 1);
}
}
// put the data back
ctx.putImageData(imageData, 0, 0);
}
}
<canvas></canvas>
The solution to it being too slow is either to make it run a little at a time OR to move it to a worker. I think that's a little too much to show in the same answer though here's an example.
I tested the code above on a 4096x4096 canvas and it took 16 seconds to fill a blank canvas on my machine so yes it's arguably too slow but putting it in a worker brings new problems which is that the result will be asynchronous so even though the browser wouldn't freeze you'd probably want to prevent the user from doing something until it finishes.
Another issue is you'll see the lines are antialiased and so filling with a solid color fills close the the line but not all the way up to it. To fix that you can change colorsMatch to check for close enough but then you have a new problem that if targetColor and fillColor are also close enough it will keep trying to fill itself. You could solve that by making another array, one byte or one bit per pixel to track places you've ready checked.
const ctx = document.querySelector("canvas").getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20);
ctx.lineTo(250, 70);
ctx.lineTo(270, 120);
ctx.lineTo(170, 140);
ctx.lineTo(190, 80);
ctx.lineTo(100, 60);
ctx.lineTo(50, 130);
ctx.lineTo(20, 20);
ctx.stroke();
floodFill(ctx, 40, 50, [255, 0, 0, 255], 128);
function getPixel(imageData, x, y) {
if (x < 0 || y < 0 || x >= imageData.width || y >= imageData.height) {
return [-1, -1, -1, -1]; // impossible color
} else {
const offset = (y * imageData.width + x) * 4;
return imageData.data.slice(offset, offset + 4);
}
}
function setPixel(imageData, x, y, color) {
const offset = (y * imageData.width + x) * 4;
imageData.data[offset + 0] = color[0];
imageData.data[offset + 1] = color[1];
imageData.data[offset + 2] = color[2];
imageData.data[offset + 3] = color[0];
}
function colorsMatch(a, b, rangeSq) {
const dr = a[0] - b[0];
const dg = a[1] - b[1];
const db = a[2] - b[2];
const da = a[3] - b[3];
return dr * dr + dg * dg + db * db + da * da < rangeSq;
}
function floodFill(ctx, x, y, fillColor, range = 1) {
// read the pixels in the canvas
const imageData = ctx.getImageData(0, 0, ctx.canvas.width, ctx.canvas.height);
// flags for if we visited a pixel already
const visited = new Uint8Array(imageData.width, imageData.height);
// get the color we're filling
const targetColor = getPixel(imageData, x, y);
// check we are actually filling a different color
if (!colorsMatch(targetColor, fillColor)) {
const rangeSq = range * range;
const pixelsToCheck = [x, y];
while (pixelsToCheck.length > 0) {
const y = pixelsToCheck.pop();
const x = pixelsToCheck.pop();
const currentColor = getPixel(imageData, x, y);
if (!visited[y * imageData.width + x] &&
colorsMatch(currentColor, targetColor, rangeSq)) {
setPixel(imageData, x, y, fillColor);
visited[y * imageData.width + x] = 1; // mark we were here already
pixelsToCheck.push(x + 1, y);
pixelsToCheck.push(x - 1, y);
pixelsToCheck.push(x, y + 1);
pixelsToCheck.push(x, y - 1);
}
}
// put the data back
ctx.putImageData(imageData, 0, 0);
}
}
<canvas></canvas>
Note that this version of colorsMatch is kind of naive. It might be better to convert to HSV or something or maybe you want to weight by alpha. I don't know what a good metric is for matching colors.
Update
Another way to speed things up is of course to just optimize the code. Kaiido pointed out an obvious speedup which is to use a Uint32Array view on the pixels. That way looking up a pixel and setting a pixel there's just one 32bit value to read or write. Just that change makes it about 4x faster. It still takes 4 seconds to fill a 4096x4096 canvas though. There might be other optimizations like instead of calling getPixels make that inline but don't push a new pixel on our list of pixels to check if they are out of range. It might be 10% speed up (no idea) but won't make it fast enough to be an interactive speed.
There are other speedups like checking across a row at a time since rows are cache friendly and you can compute the offset to a row once and use that while checking the entire row whereas now for every pixel we have to compute the offset multiple times.
Those will complicate the algorithm so they are best left for you to figure out.
Let me also add, given the answer above freezes the browser while the fill is happening and that on a larger canvas that freeze could be too long, you can easily make the algorithm span over time using ES6 async/await. You need to choose how much work to give each segment of time. Choose too small and it will take a long time to fill. Choose too large and you'll get jank as the browser freezes.
Here's an example. Set ticksPerUpdate to speed up or slow down the fill rate
const ctx = document.querySelector("canvas").getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20);
ctx.lineTo(250, 70);
ctx.lineTo(270, 120);
ctx.lineTo(170, 140);
ctx.lineTo(100, 145);
ctx.lineTo(110, 105);
ctx.lineTo(130, 125);
ctx.lineTo(190, 80);
ctx.lineTo(100, 60);
ctx.lineTo(50, 130);
ctx.lineTo(20, 20);
ctx.stroke();
floodFill(ctx, 40, 50, 0xFF0000FF);
function getPixel(pixelData, x, y) {
if (x < 0 || y < 0 || x >= pixelData.width || y >= pixelData.height) {
return -1; // impossible color
} else {
return pixelData.data[y * pixelData.width + x];
}
}
async function floodFill(ctx, x, y, fillColor) {
// read the pixels in the canvas
const imageData = ctx.getImageData(0, 0, ctx.canvas.width, ctx.canvas.height);
// make a Uint32Array view on the pixels so we can manipulate pixels
// one 32bit value at a time instead of as 4 bytes per pixel
const pixelData = {
width: imageData.width,
height: imageData.height,
data: new Uint32Array(imageData.data.buffer),
};
// get the color we're filling
const targetColor = getPixel(pixelData, x, y);
// check we are actually filling a different color
if (targetColor !== fillColor) {
const ticksPerUpdate = 50;
let tickCount = 0;
const pixelsToCheck = [x, y];
while (pixelsToCheck.length > 0) {
const y = pixelsToCheck.pop();
const x = pixelsToCheck.pop();
const currentColor = getPixel(pixelData, x, y);
if (currentColor === targetColor) {
pixelData.data[y * pixelData.width + x] = fillColor;
// put the data back
ctx.putImageData(imageData, 0, 0);
++tickCount;
if (tickCount % ticksPerUpdate === 0) {
await wait();
}
pixelsToCheck.push(x + 1, y);
pixelsToCheck.push(x - 1, y);
pixelsToCheck.push(x, y + 1);
pixelsToCheck.push(x, y - 1);
}
}
}
}
function wait(delay = 0) {
return new Promise((resolve) => {
setTimeout(resolve, delay);
});
}
<canvas></canvas>
update update
Instead of setTimeout which is throttled by the browser, you can abuse postMessage which is not
function makeExposedPromise() {
let resolve;
let reject;
const promise = new Promise((_resolve, _reject) => {
resolve = _resolve;
reject = _reject;
});
return { promise, resolve, reject };
}
const resolveFns = [];
window.addEventListener('message', (e) => {
const resolve = resolveFns.shift();
resolve();
});
function wait() {
const {resolve, promise} = makeExposedPromise();
resolveFns.push(resolve);
window.postMessage('');
return promise;
}
If you use that it there's less need to choose a number of operations. Also note: the slowest part is calling putImageData. The reason it's inside the loop above is only so we can see the progress. Move that to the end and it will run much faster
function makeExposedPromise() {
let resolve;
let reject;
const promise = new Promise((_resolve, _reject) => {
resolve = _resolve;
reject = _reject;
});
return { promise, resolve, reject };
}
const resolveFns = [];
window.addEventListener('message', (e) => {
const resolve = resolveFns.shift();
resolve();
});
function wait() {
const {resolve, promise} = makeExposedPromise();
resolveFns.push(resolve);
window.postMessage('');
return promise;
}
const ctx = document.querySelector("canvas").getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20);
ctx.lineTo(250, 70);
ctx.lineTo(270, 120);
ctx.lineTo(170, 140);
ctx.lineTo(100, 145);
ctx.lineTo(110, 105);
ctx.lineTo(130, 125);
ctx.lineTo(190, 80);
ctx.lineTo(100, 60);
ctx.lineTo(50, 130);
ctx.lineTo(20, 20);
ctx.stroke();
floodFill(ctx, 40, 50, 0xFF0000FF);
function getPixel(pixelData, x, y) {
if (x < 0 || y < 0 || x >= pixelData.width || y >= pixelData.height) {
return -1; // impossible color
} else {
return pixelData.data[y * pixelData.width + x];
}
}
async function floodFill(ctx, x, y, fillColor) {
// read the pixels in the canvas
const imageData = ctx.getImageData(0, 0, ctx.canvas.width, ctx.canvas.height);
// make a Uint32Array view on the pixels so we can manipulate pixels
// one 32bit value at a time instead of as 4 bytes per pixel
const pixelData = {
width: imageData.width,
height: imageData.height,
data: new Uint32Array(imageData.data.buffer),
};
// get the color we're filling
const targetColor = getPixel(pixelData, x, y);
// check we are actually filling a different color
if (targetColor !== fillColor) {
const pixelsToCheck = [x, y];
while (pixelsToCheck.length > 0) {
const y = pixelsToCheck.pop();
const x = pixelsToCheck.pop();
const currentColor = getPixel(pixelData, x, y);
if (currentColor === targetColor) {
pixelData.data[y * pixelData.width + x] = fillColor;
await wait();
pixelsToCheck.push(x + 1, y);
pixelsToCheck.push(x - 1, y);
pixelsToCheck.push(x, y + 1);
pixelsToCheck.push(x, y - 1);
}
}
// put the data back
ctx.putImageData(imageData, 0, 0);
}
}
<canvas></canvas>
It's still better to choose a number of operations per call to wait
There are also faster algorithms. The issue with the one above is there is for every pixel that matches, 4 are added to the stack of things to pixels to check. That's lots of allocations and multiple checking. A faster way is to it by span.
For a given span, check as far left as you can, then as far right as you can, now fill that span. Then, check the pixels above and/or below the span you just found and add the spans you find to your stack. Pop the top span off, and try to expand it left and right. There's no need to check the pixels in the middle since you already checked them. Further, if this span was generated from one below then you don't need to check the pixels below the starting sub-span of this span since you know that area was already filled. Similarly if this pan was generated from one above then you don't need to check the pixels above the starting sub-span of this span for the same reason.
function main() {
const ctx = document.querySelector("canvas").getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20);
ctx.lineTo(250, 70);
ctx.lineTo(270, 120);
ctx.lineTo(170, 140);
ctx.lineTo(100, 145);
ctx.lineTo(110, 105);
ctx.lineTo(130, 125);
ctx.lineTo(190, 80);
ctx.lineTo(100, 60);
ctx.lineTo(50, 130);
ctx.lineTo(20, 20);
ctx.stroke();
floodFill(ctx, 40, 50, 0xFF0000FF);
}
main();
function getPixel(pixelData, x, y) {
if (x < 0 || y < 0 || x >= pixelData.width || y >= pixelData.height) {
return -1; // impossible color
} else {
return pixelData.data[y * pixelData.width + x];
}
}
function floodFill(ctx, x, y, fillColor) {
// read the pixels in the canvas
const imageData = ctx.getImageData(0, 0, ctx.canvas.width, ctx.canvas.height);
// make a Uint32Array view on the pixels so we can manipulate pixels
// one 32bit value at a time instead of as 4 bytes per pixel
const pixelData = {
width: imageData.width,
height: imageData.height,
data: new Uint32Array(imageData.data.buffer),
};
// get the color we're filling
const targetColor = getPixel(pixelData, x, y);
// check we are actually filling a different color
if (targetColor !== fillColor) {
const spansToCheck = [];
function addSpan(left, right, y, direction) {
spansToCheck.push({left, right, y, direction});
}
function checkSpan(left, right, y, direction) {
let inSpan = false;
let start;
let x;
for (x = left; x < right; ++x) {
const color = getPixel(pixelData, x, y);
if (color === targetColor) {
if (!inSpan) {
inSpan = true;
start = x;
}
} else {
if (inSpan) {
inSpan = false;
addSpan(start, x - 1, y, direction);
}
}
}
if (inSpan) {
inSpan = false;
addSpan(start, x - 1, y, direction);
}
}
addSpan(x, x, y, 0);
while (spansToCheck.length > 0) {
const {left, right, y, direction} = spansToCheck.pop();
// do left until we hit something, while we do this check above and below and add
let l = left;
for (;;) {
--l;
const color = getPixel(pixelData, l, y);
if (color !== targetColor) {
break;
}
}
++l
let r = right;
for (;;) {
++r;
const color = getPixel(pixelData, r, y);
if (color !== targetColor) {
break;
}
}
const lineOffset = y * pixelData.width;
pixelData.data.fill(fillColor, lineOffset + l, lineOffset + r);
if (direction <= 0) {
checkSpan(l, r, y - 1, -1);
} else {
checkSpan(l, left, y - 1, -1);
checkSpan(right, r, y - 1, -1);
}
if (direction >= 0) {
checkSpan(l, r, y + 1, +1);
} else {
checkSpan(l, left, y + 1, +1);
checkSpan(right, r, y + 1, +1);
}
}
// put the data back
ctx.putImageData(imageData, 0, 0);
}
}
<canvas></canvas>
Note: I didn't test this well, there might be an off by 1 error or other issue. I'm 99% sure I wrote the span method in 1993 for My Paint but don't remember if I have the source. But in any case, it's fast enough there's no need for wait
Here's an implementation that I've been working on. It can get really slow if the replacement color is too close to the original color. It's quite a bit faster in Chrome than Firefox (I haven't tested it in any other browsers).
I also haven't done exhaustive testing yet, so there may be edge cases where it doesn't work.
function getPixel(pixelData, x, y) {
if (x < 0 || y < 0 || x >= pixelData.width || y >= pixelData.height) {
return NaN;
}
var pixels = pixelData.data;
var i = (y * pixelData.width + x) * 4;
return ((pixels[i + 0] & 0xFF) << 24) |
((pixels[i + 1] & 0xFF) << 16) |
((pixels[i + 2] & 0xFF) << 8) |
((pixels[i + 3] & 0xFF) << 0);
}
function setPixel(pixelData, x, y, color) {
var i = (y * pixelData.width + x) * 4;
var pixels = pixelData.data;
pixels[i + 0] = (color >>> 24) & 0xFF;
pixels[i + 1] = (color >>> 16) & 0xFF;
pixels[i + 2] = (color >>> 8) & 0xFF;
pixels[i + 3] = (color >>> 0) & 0xFF;
}
function diff(c1, c2) {
if (isNaN(c1) || isNaN(c2)) {
return Infinity;
}
var dr = ((c1 >>> 24) & 0xFF) - ((c2 >>> 24) & 0xFF);
var dg = ((c1 >>> 16) & 0xFF) - ((c2 >>> 16) & 0xFF);
var db = ((c1 >>> 8) & 0xFF) - ((c2 >>> 8) & 0xFF);
var da = ((c1 >>> 0) & 0xFF) - ((c2 >>> 0) & 0xFF);
return dr*dr + dg*dg + db*db + da*da;
}
function floodFill(canvas, x, y, replacementColor, delta) {
var current, w, e, stack, color, cx, cy;
var context = canvas.getContext("2d");
var pixelData = context.getImageData(0, 0, canvas.width, canvas.height);
var done = [];
for (var i = 0; i < canvas.width; i++) {
done[i] = [];
}
var targetColor = getPixel(pixelData, x, y);
delta *= delta;
stack = [ [x, y] ];
done[x][y] = true;
while ((current = stack.pop())) {
cx = current[0];
cy = current[1];
if (diff(getPixel(pixelData, cx, cy), targetColor) <= delta) {
setPixel(pixelData, cx, cy, replacementColor);
w = e = cx;
while (w > 0 && diff(getPixel(pixelData, w - 1, cy), targetColor) <= delta) {
--w;
if (done[w][cy]) break;
setPixel(pixelData, w, cy, replacementColor);
}
while (e < pixelData.width - 1 && diff(getPixel(pixelData, e + 1, cy), targetColor) <= delta) {
++e;
if (done[e][cy]) break;
setPixel(pixelData, e, cy, replacementColor);
}
for (cx = w; cx <= e; cx++) {
if (cy > 0) {
color = getPixel(pixelData, cx, cy - 1);
if (diff(color, targetColor) <= delta) {
if (!done[cx][cy - 1]) {
stack.push([cx, cy - 1]);
done[cx][cy - 1] = true;
}
}
}
if (cy < canvas.height - 1) {
color = getPixel(pixelData, cx, cy + 1);
if (diff(color, targetColor) <= delta) {
if (!done[cx][cy + 1]) {
stack.push([cx, cy + 1]);
done[cx][cy + 1] = true;
}
}
}
}
}
}
context.putImageData(pixelData, 0, 0, 0, 0, canvas.width, canvas.height);
}
I would not treat the canvas as a bitmap image.
Instead I would keep a collection of painting-objects and modify that collection.
Then for example you can fill a path or shape or add a new shape that has the boundaries of the objects you are trying to fill.
I can't see how "normal" floodFill makes sense in vector drawing..
What are the options available for plotting graphs upon selecting different columns from a Data Table. I have worked with ag-grid and I want some thing like that which will come directly out of the box without using any other graph library(like plotly or highcharts) and manually writing code.
As I said in my comment, I recommend looking into Canvas (mdn).
Here's a minimal exmaple that allows panning (mouse 1) and zooming (mouse 2) in addition to callbacks for clicks and mouse moves.
class Chart {
constructor(canvas, hoverCallback, clickCallback) {
this.width = canvas.width;
this.height = canvas.height;
this.ctx = canvas.getContext('2d');
this.ctx.font = '14px serif';
canvas.addEventListener('mousedown', e => {
this.dragged = false;
this.mouseDown = {x: e.offsetX, y: e.offsetY};
});
canvas.addEventListener('mousemove', e => {
hoverCallback?.(this.pixelToCoord(e.offsetX, e.offsetY));
if (!this.mouseDown)
return;
this.dragged = true;
if (e.buttons & 1 && !e.shiftKey)
this.panRange(e.offsetX - this.mouseDown.x, e.offsetY - this.mouseDown.y);
else if (e.buttons & 2 || e.shiftKey)
this.zoomRange(e.offsetX - this.mouseDown.x, e.offsetY - this.mouseDown.y);
this.mouseDown = {x: e.offsetX, y: e.offsetY};
});
canvas.addEventListener('mouseleave', () => hoverCallback?.());
document.addEventListener('mouseup', () => this.mouseDown = null);
canvas.addEventListener('click', e => {
if (this.dragged)
return;
clickCallback?.(this.pixelToCoord(e.offsetX, e.offsetY));
});
canvas.addEventListener('dblclick', e => {
if (this.dragged)
return;
this.resetRange(e.shiftKey);
});
this.pointSets = [];
this.resetRange();
}
set pointSets(value) {
this.pointSets_ = value;
this.draw();
}
resetRange(zeroMins = false) {
let allPoints = this.pointSets_
.flatMap(({points}) => points);
[this.minX, this.deltaX] = Chart.getRange(allPoints.map(({x}) => x), zeroMins);
[this.minY, this.deltaY] = Chart.getRange(allPoints.map(({y}) => y), zeroMins);
this.verifyRange();
this.draw();
}
panRange(x, y) {
this.minX -= x * this.deltaX / this.width;
this.minY += y * this.deltaY / this.height;
this.verifyRange();
this.draw();
}
zoomRange(x, y) {
let dx = x * this.deltaX / this.width;
let dy = -y * this.deltaY / this.height;
this.minX += dx;
this.minY += dy;
this.deltaX -= dx * 2;
this.deltaY -= dy * 2;
this.verifyRange();
this.draw();
}
verifyRange() {
this.minX = Math.max(this.minX, -this.deltaX / 10);
this.minY = Math.max(this.minY, -this.deltaY / 10);
}
draw() {
if (!this.pointSets_ || this.minX === undefined)
return;
this.ctx.fillStyle = 'white';
this.ctx.fillRect(0, 0, this.width, this.height);
this.drawPoints();
this.drawAxis();
}
drawPoints() {
this.pointSets_.forEach(({color, fill, size, points, isPath}) => {
this.ctx.strokeStyle = color;
this.ctx.fillStyle = color;
if (isPath) {
this.ctx.lineWidth = size;
this.ctx.beginPath();
points.forEach((p, i) => {
let {x, y} = this.coordToPixel(p.x, p.y);
if (!i)
this.ctx.moveTo(x, y);
else
this.ctx.lineTo(x, y);
});
if (fill)
this.ctx.fill();
else
this.ctx.stroke();
} else {
points.forEach(p => {
let {x, y} = this.coordToPixel(p.x, p.y);
this.ctx[fill ? 'fillRect' : 'strokeRect'](x - size / 2, y - size / 2, size, size);
});
}
});
}
drawAxis() {
let n = 20;
let step = this.width / n;
let size = 10;
let sizeSmall = 1;
this.ctx.lineWidth = 1;
this.ctx.strokeStyle = `rgb(0, 0, 0)`;
this.ctx.fillStyle = `rgb(0, 0, 0)`;
this.ctx.strokeRect(this.width / n, this.height * (n - 1) / n, this.width * (n - 2) / n, 0); // x axis line
this.ctx.strokeRect(this.width / n, this.height / n, 0, this.width * (n - 2) / n); // y axis line
for (let i = 2; i < n; i += 2) {
let x = i * step;
let y = (n - i) * step;
let xText = Chart.numToPrint(this.minX + i / n * this.deltaX);
let yText = Chart.numToPrint(this.minY + i / n * this.deltaY);
this.ctx.fillText(xText, x - 9, step * (n - 1) + 17); // x axis text
this.ctx.fillText(yText, step - 28, y + 4, 30); // y axis text
this.ctx.fillRect(x - sizeSmall / 2, step * (n - 1) - size / 2, sizeSmall, size); // x axis dots
this.ctx.fillRect(step - size / 2, x - sizeSmall / 2, size, sizeSmall); // y axis dots
}
}
pixelToCoord(x, y) {
return {
x: x / this.width * this.deltaX + this.minX,
y: (1 - y / this.height) * this.deltaY + this.minY,
width: 20 / this.width * this.deltaX,
height: 20 / this.height * this.deltaY
};
}
coordToPixel(x, y) {
return {
x: x === Infinity ? this.width : (x - this.minX) / this.deltaX * this.width,
y: y === Infinity ? 0 : (1 - (y - this.minY) / this.deltaY) * this.height,
};
}
static getRange(values, zeroMin = false, buffer = .1) {
let min = values.length && !zeroMin ? Math.min(...values) : 0;
let max = values.length ? Math.max(...values) : 10;
let delta = max - min + .001;
return [min - delta * buffer, delta + delta * buffer * 2]
}
static numToPrint(n) {
return Math.round(n * 10) / 10;
}
}
let canvas = document.querySelector('canvas');
let chart = new Chart(canvas);
chart.pointSets = [
// e.g. {color: 'rgb(255,0,0)', fill: true, size: 5, points: [{x: 0, y: 1}, ...], isPath: true}
{
color: 'rgb(255,0,0)',
fill: false,
size: 3,
points: [
{x: 0, y: 1},
{x: 1, y: 1},
{x: 1, y: 0},
{x: 0, y: 0},
{x: 0, y: .5},
],
isPath: true,
}, {
color: 'rgb(0,0,255)',
fill: true,
size: 10,
points: [
{x: 0, y: 1},
{x: 0, y: .5},
{x: 3, y: 1},
{x: 6, y: 2},
{x: 7, y: 4},
{x: 6, y: 5},
],
isPath: false,
},
];
chart.resetRange();
canvas {
border: 1px solid;
}
<canvas width="500" height="500"></canvas>
You're in a javascript loop:
The loop spits out random numbers increasing or decreasing by 1. It starts at 10 and begins to loop:
10, 9, 8, 7, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 4, 5, 6, 7, 6
I want to log the peak numbers. So in the list above that would be 10, 9, 7
So I assume I would need to log the last 3 numbers as the script loops. 2 numbers ago(a), 1 number ago(b), current number(c) and check if c<b && a<b then log b if that turned out to be true.
I'm unsure of how to actually store those 3 numbers without them being overwritten. So say I did let current = [current number]; because it's a loop that would always be the current number, but how would I store the previous 2 numbers without having them constant be overwritten while remaining in the loop?
UPDATE:
I'm trying to grab the y value for when the ball bounces highest. So if it bounces 3 times I would have 3 y values (when the ball reached its peak 3 times).
The numbers are being logged in the console.
*** Run the code in full page view
'use strict';
// Todo
// - Make the ball spin
// - Make the ball squish
// - Add speed lines
// - Clear only the ball not the whole canvas
(function () {
const canvas = document.getElementsByClassName('canvas')[0],
c = canvas.getContext('2d');
// -----------------------------------
// Resize the canvas to be full screen
// -----------------------------------
window.addEventListener('resize', resizeCanvas, false);
function resizeCanvas() {
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
// ---------
// Variables
// ---------
var circleRadius = 40,
circleHeight = circleRadius * 2,
x = (canvas.width/2) - circleRadius, // inital x position of the ball
y = (canvas.height/2) - circleRadius, // inital y position of the ball
fallHeight = y,
vx = 0, // velocity
vy = 0, // velocity
groundHeight = circleHeight,
bouncePoints = [],
gravity = 0.8,
dampening = 0.5,
pullStrength = 0.04,
segments = 4,
bezieCircleFormula = (4/3)*Math.tan(Math.PI/(2*segments)), // http://stackoverflow.com/a/27863181/2040509
pointOffset = {
positive: bezieCircleFormula*circleRadius,
negative: circleRadius-(bezieCircleFormula*circleRadius)
},
// Each side has 3 points, bezier 1, circle point, bezier 2
// These are listed below in clockwise order.
// So top has: left bezier, circle point, right bezier
// Right has: top bezier, circle point, bottom bezier
circlePoints = {
top: [
[x+pointOffset.negative, y],
[x+circleRadius, y],
[x+pointOffset.positive+circleRadius, y]
],
right: [
[x+circleHeight, y+pointOffset.negative],
[x+circleHeight, y+circleRadius],
[x+circleHeight, y+pointOffset.positive+circleRadius]
],
bottom: [
[x+pointOffset.positive+circleRadius, y+circleHeight],
[x+circleRadius, y+circleHeight],
[x+pointOffset.negative, y+circleHeight]
],
left: [
[x, y+pointOffset.positive+circleRadius],
[x, y+circleRadius],
[x, y+pointOffset.negative]
]
};
// --------------------
// Ball squish function
// --------------------
// For `side` you can pass `top`, `right`, `bottom`, `left`
// For `amount` use an interger
function squish (side, squishAmount) {
for (let i = 0; i < circlePoints[side].length; i++) {
if (side === 'top') {
circlePoints[side][i][1] += squishAmount;
} else if (side === 'right') {
circlePoints[side][i][0] -= squishAmount;
} else if (side === 'bottom') {
circlePoints[side][i][1] -= squishAmount;
} else if (side === 'left') {
circlePoints[side][i][0] += squishAmount;
}
}
}
// ------------------
// Animation Function
// ------------------
function render () {
// Clear the canvas
c.clearRect(0, 0, canvas.width, canvas.height);
// -----------------
// Draw the elements
// -----------------
// Ground
c.beginPath();
c.fillStyle = '#9cccc8';
c.fillRect(0, canvas.height - groundHeight, canvas.width, groundHeight);
c.closePath();
// Shadow
let distanceFromGround = parseFloat(((y - canvas.height/2) + circleHeight) / (canvas.height/2 - groundHeight/2)).toFixed(4),
shadowWidth = circleRadius * (1-distanceFromGround+1),
shadowHeight = circleRadius/6 * (1-distanceFromGround+1),
shadowX = (x + circleRadius) - shadowWidth/2,
shadowY = canvas.height - groundHeight/2,
shadowOpacity = 0.15 * distanceFromGround; // The first value here represents the opacity that will be used when the ball is touching the ground
c.beginPath();
c.fillStyle = 'rgba(0,0,0, ' + shadowOpacity + ')';
c.moveTo(shadowX, shadowY);
c.bezierCurveTo(shadowX, shadowY - shadowHeight, shadowX + shadowWidth, shadowY - shadowHeight, shadowX + shadowWidth, shadowY);
c.bezierCurveTo(shadowX + shadowWidth, shadowY + shadowHeight, shadowX, shadowY + shadowHeight, shadowX, shadowY);
c.fill();
c.closePath();
// Bezier circle
c.beginPath();
c.fillStyle = '#cf2264';
c.moveTo(circlePoints.left[1][0], circlePoints.left[1][1]);
c.bezierCurveTo(circlePoints.left[2][0], circlePoints.left[2][1], circlePoints.top[0][0], circlePoints.top[0][1], circlePoints.top[1][0], circlePoints.top[1][1]);
c.bezierCurveTo(circlePoints.top[2][0], circlePoints.top[2][1], circlePoints.right[0][0], circlePoints.right[0][1], circlePoints.right[1][0], circlePoints.right[1][1]);
c.bezierCurveTo(circlePoints.right[2][0], circlePoints.right[2][1], circlePoints.bottom[0][0], circlePoints.bottom[0][1], circlePoints.bottom[1][0], circlePoints.bottom[1][1]);
c.bezierCurveTo(circlePoints.bottom[2][0], circlePoints.bottom[2][1], circlePoints.left[0][0], circlePoints.left[0][1], circlePoints.left[1][0], circlePoints.left[1][1]);
c.stroke();
c.closePath();
// -------------------------------
// Recalculate circle co-ordinates
// -------------------------------
circlePoints = {
top: [
[x+pointOffset.negative, y],
[x+circleRadius, y],
[x+pointOffset.positive+circleRadius, y]
],
right: [
[x+circleHeight, y+pointOffset.negative],
[x+circleHeight, y+circleRadius],
[x+circleHeight, y+pointOffset.positive+circleRadius]
],
bottom: [
[x+pointOffset.positive+circleRadius, y+circleHeight],
[x+circleRadius, y+circleHeight],
[x+pointOffset.negative, y+circleHeight]
],
left: [
[x, y+pointOffset.positive+circleRadius],
[x, y+circleRadius],
[x, y+pointOffset.negative]
]
};
// -----------------
// Animation Gravity
// -----------------
// Increment gravity
vy += gravity;
// Increment velocity
y += vy;
x += vx;
// ----------
// Boundaries
// ----------
// Bottom boundary
if (y + circleHeight > canvas.height - groundHeight/2) {
y = canvas.height - groundHeight/2 - circleHeight;
vy *= -1;
// Dampening
vy *= dampening;
vx *= dampening;
// If the Y velocity is less than the value below, stop the ball
if (vy > -2.4) {
dampening = 0;
}
fallHeight = fallHeight*dampening;
}
// Right boundary
if (x + circleHeight > canvas.width) {
x = canvas.width - circleHeight;
vx *= -1;
// Dampening
vy *= dampening;
vx *= dampening;
}
// Left boundary
if (x + circleHeight < 0 + circleHeight) {
x = 0;
vx *= -1;
// Dampening
vy *= dampening;
vx *= dampening;
}
// Top boundary
if (y < 0) {
y = 0;
vy *= -1;
// Dampening
vy *= dampening;
vx *= dampening;
}
console.log(y);
requestAnimationFrame(render);
}
// -----------
// Click event
// -----------
canvas.addEventListener('mousedown', function (e) {
let dx = e.pageX - x,
dy = e.pageY - y;
if (dampening === 0) {
dampening = 0.5;
}
vx += dx * pullStrength;
vy += dy * pullStrength;
});
render();
}
resizeCanvas();
})();
body{
margin: 0;
}
canvas {
background: #ddf6f5;
display: block;
}
<canvas class="canvas"></canvas>
for(var a=0,b=1,c=2; c < input.length;)
{
if(input[b] > input[a] && input[b] > input[c])
{
console.log(input[b]);
}
a++;b++;c++;
}
As I explained, push them into the array.
var nums = [10, 9, 8, 7, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 4, 5, 6, 7, 6];
var peaks = [];
nums.forEach(function(val, index, arr){
var isPrevLess = index==0 || arr[index-1]<val, //is the last number less
isNextLess = index==arr.length-1 || arr[index+1]<val; //is the next number less
if (isPrevLess && isNextLess) { //if both are less it is a peak
peaks.push(val);
}
});
console.log(peaks);
If I understand correctly, array arr of length l has a peak at position i if any of these is fulfilled:
0 = i < l-1 and arr[i] > arr[i+1]
0 < i < l-1 and arr[i-1] < arr[i] > l-1
0 < i = l-1 and arr[i] > arr[i-1]
0 = i = l-1
Then, you can use
var peaks = arr.filter(function(n, i, a) {
return (i===0 || n > a[i-1]) && (i===a.length-1 || n > arr[i+1]);
});
You really should post a function that does what you say, then your attempt at a solution. Since that's missing…
function foo(startNum, count) {
var prev = -Infinity;
var sense = 'up';
var curr = startNum;
for (var i=0; i<count; i++) {
// Randomly add or subtract one from current
curr += Math.random() < 0.5? -1 : 1;
// If it's a peak, do something. If it's not a peak, do something else
if (sense == 'up' && curr < prev) { // Hit peak
document.write('<br>peak: ' + prev + ' going ' + sense);
} else {
document.write('<br>Not peak: ' + prev + ' going ' + sense);
}
// Prepare for next loop
sense = prev > curr? 'down' : prev < curr? 'up' : sense;
prev = curr;
}
}
foo(10,20);
Has anyone implemented a flood fill algorithm in javascript for use with HTML Canvas?
My requirements are simple: flood with a single color starting from a single point, where the boundary color is any color greater than a certain delta of the color at the specified point.
var r1, r2; // red values
var g1, g2; // green values
var b1, b2; // blue values
var actualColorDelta = Math.sqrt((r1 - r2)*(r1 - r2) + (g1 - g2)*(g1 - g2) + (b1 - b2)*(b1 - b2))
function floodFill(canvas, x, y, fillColor, borderColorDelta) {
...
}
Update:
I wrote my own implementation of flood fill, which follows. It is slow, but accurate. About 37% of the time is taken up in two low-level array functions that are part of the prototype framework. They are called by push and pop, I presume. Most of the rest of the time is spent in the main loop.
var ImageProcessing;
ImageProcessing = {
/* Convert HTML color (e.g. "#rrggbb" or "#rrggbbaa") to object with properties r, g, b, a.
* If no alpha value is given, 255 (0xff) will be assumed.
*/
toRGB: function (color) {
var r, g, b, a, html;
html = color;
// Parse out the RGBA values from the HTML Code
if (html.substring(0, 1) === "#")
{
html = html.substring(1);
}
if (html.length === 3 || html.length === 4)
{
r = html.substring(0, 1);
r = r + r;
g = html.substring(1, 2);
g = g + g;
b = html.substring(2, 3);
b = b + b;
if (html.length === 4) {
a = html.substring(3, 4);
a = a + a;
}
else {
a = "ff";
}
}
else if (html.length === 6 || html.length === 8)
{
r = html.substring(0, 2);
g = html.substring(2, 4);
b = html.substring(4, 6);
a = html.length === 6 ? "ff" : html.substring(6, 8);
}
// Convert from Hex (Hexidecimal) to Decimal
r = parseInt(r, 16);
g = parseInt(g, 16);
b = parseInt(b, 16);
a = parseInt(a, 16);
return {r: r, g: g, b: b, a: a};
},
/* Get the color at the given x,y location from the pixels array, assuming the array has a width and height as given.
* This interprets the 1-D array as a 2-D array.
*
* If useColor is defined, its values will be set. This saves on object creation.
*/
getColor: function (pixels, x, y, width, height, useColor) {
var redIndex = y * width * 4 + x * 4;
if (useColor === undefined) {
useColor = { r: pixels[redIndex], g: pixels[redIndex + 1], b: pixels[redIndex + 2], a: pixels[redIndex + 3] };
}
else {
useColor.r = pixels[redIndex];
useColor.g = pixels[redIndex + 1]
useColor.b = pixels[redIndex + 2];
useColor.a = pixels[redIndex + 3];
}
return useColor;
},
setColor: function (pixels, x, y, width, height, color) {
var redIndex = y * width * 4 + x * 4;
pixels[redIndex] = color.r;
pixels[redIndex + 1] = color.g,
pixels[redIndex + 2] = color.b;
pixels[redIndex + 3] = color.a;
},
/*
* fill: Flood a canvas with the given fill color.
*
* Returns a rectangle { x, y, width, height } that defines the maximum extent of the pixels that were changed.
*
* canvas .................... Canvas to modify.
* fillColor ................. RGBA Color to fill with.
* This may be a string ("#rrggbbaa") or an object of the form { r: red, g: green, b: blue, a: alpha }.
* x, y ...................... Coordinates of seed point to start flooding.
* bounds .................... Restrict flooding to this rectangular region of canvas.
* This object has these attributes: { x, y, width, height }.
* If undefined or null, use the whole of the canvas.
* stopFunction .............. Function that decides if a pixel is a boundary that should cause
* flooding to stop. If omitted, any pixel that differs from seedColor
* will cause flooding to stop. seedColor is the color under the seed point (x,y).
* Parameters: stopFunction(fillColor, seedColor, pixelColor).
* Returns true if flooding shoud stop.
* The colors are objects of the form { r: red, g: green, b: blue, a: alpha }
*/
fill: function (canvas, fillColor, x, y, bounds, stopFunction) {
// Supply default values if necessary.
var ctx, minChangedX, minChangedY, maxChangedX, maxChangedY, wasTested, shouldTest, imageData, pixels, currentX, currentY, currentColor, currentIndex, seedColor, tryX, tryY, tryIndex, boundsWidth, boundsHeight, pixelStart, fillRed, fillGreen, fillBlue, fillAlpha;
if (Object.isString(fillColor)) {
fillColor = ImageProcessing.toRGB(fillColor);
}
x = Math.round(x);
y = Math.round(y);
if (bounds === null || bounds === undefined) {
bounds = { x: 0, y: 0, width: canvas.width, height: canvas.height };
}
else {
bounds = { x: Math.round(bounds.x), y: Math.round(bounds.y), width: Math.round(bounds.y), height: Math.round(bounds.height) };
}
if (stopFunction === null || stopFunction === undefined) {
stopFunction = new function (fillColor, seedColor, pixelColor) {
return pixelColor.r != seedColor.r || pixelColor.g != seedColor.g || pixelColor.b != seedColor.b || pixelColor.a != seedColor.a;
}
}
minChangedX = maxChangedX = x - bounds.x;
minChangedY = maxChangedY = y - bounds.y;
boundsWidth = bounds.width;
boundsHeight = bounds.height;
// Initialize wasTested to false. As we check each pixel to decide if it should be painted with the new color,
// we will mark it with a true value at wasTested[row = y][column = x];
wasTested = new Array(boundsHeight * boundsWidth);
/*
$R(0, bounds.height - 1).each(function (row) {
var subArray = new Array(bounds.width);
wasTested[row] = subArray;
});
*/
// Start with a single point that we know we should test: (x, y).
// Convert (x,y) to image data coordinates by subtracting the bounds' origin.
currentX = x - bounds.x;
currentY = y - bounds.y;
currentIndex = currentY * boundsWidth + currentX;
shouldTest = [ currentIndex ];
ctx = canvas.getContext("2d");
//imageData = ctx.getImageData(bounds.x, bounds.y, bounds.width, bounds.height);
imageData = ImageProcessing.getImageData(ctx, bounds.x, bounds.y, bounds.width, bounds.height);
pixels = imageData.data;
seedColor = ImageProcessing.getColor(pixels, currentX, currentY, boundsWidth, boundsHeight);
currentColor = { r: 0, g: 0, b: 0, a: 1 };
fillRed = fillColor.r;
fillGreen = fillColor.g;
fillBlue = fillColor.b;
fillAlpha = fillColor.a;
while (shouldTest.length > 0) {
currentIndex = shouldTest.pop();
currentX = currentIndex % boundsWidth;
currentY = (currentIndex - currentX) / boundsWidth;
if (! wasTested[currentIndex]) {
wasTested[currentIndex] = true;
//currentColor = ImageProcessing.getColor(pixels, currentX, currentY, boundsWidth, boundsHeight, currentColor);
// Inline getColor for performance.
pixelStart = currentIndex * 4;
currentColor.r = pixels[pixelStart];
currentColor.g = pixels[pixelStart + 1]
currentColor.b = pixels[pixelStart + 2];
currentColor.a = pixels[pixelStart + 3];
if (! stopFunction(fillColor, seedColor, currentColor)) {
// Color the pixel with the fill color.
//ImageProcessing.setColor(pixels, currentX, currentY, boundsWidth, boundsHeight, fillColor);
// Inline setColor for performance
pixels[pixelStart] = fillRed;
pixels[pixelStart + 1] = fillGreen;
pixels[pixelStart + 2] = fillBlue;
pixels[pixelStart + 3] = fillAlpha;
if (minChangedX < currentX) { minChangedX = currentX; }
else if (maxChangedX > currentX) { maxChangedX = currentX; }
if (minChangedY < currentY) { minChangedY = currentY; }
else if (maxChangedY > currentY) { maxChangedY = currentY; }
// Add the adjacent four pixels to the list to be tested, unless they have already been tested.
tryX = currentX - 1;
tryY = currentY;
tryIndex = tryY * boundsWidth + tryX;
if (tryX >= 0 && ! wasTested[tryIndex]) {
shouldTest.push(tryIndex);
}
tryX = currentX;
tryY = currentY + 1;
tryIndex = tryY * boundsWidth + tryX;
if (tryY < boundsHeight && ! wasTested[tryIndex]) {
shouldTest.push(tryIndex);
}
tryX = currentX + 1;
tryY = currentY;
tryIndex = tryY * boundsWidth + tryX;
if (tryX < boundsWidth && ! wasTested[tryIndex]) {
shouldTest.push(tryIndex);
}
tryX = currentX;
tryY = currentY - 1;
tryIndex = tryY * boundsWidth + tryX;
if (tryY >= 0 && ! wasTested[tryIndex]) {
shouldTest.push(tryIndex);
}
}
}
}
//ctx.putImageData(imageData, bounds.x, bounds.y);
ImageProcessing.putImageData(ctx, imageData, bounds.x, bounds.y);
return { x: minChangedX + bounds.x, y: minChangedY + bounds.y, width: maxChangedX - minChangedX + 1, height: maxChangedY - minChangedY + 1 };
},
getImageData: function (ctx, x, y, w, h) {
return ctx.getImageData(x, y, w, h);
},
putImageData: function (ctx, data, x, y) {
ctx.putImageData(data, x, y);
}
};
BTW, when I call this, I use a custom stopFunction:
stopFill : function (fillColor, seedColor, pixelColor) {
// Ignore alpha difference for now.
return Math.abs(pixelColor.r - seedColor.r) > this.colorTolerance || Math.abs(pixelColor.g - seedColor.g) > this.colorTolerance || Math.abs(pixelColor.b - seedColor.b) > this.colorTolerance;
},
If anyone can see a way to improve performance of this code, I would appreciate it. The basic idea is:
1) Seed color is the initial color at the point to start flooding.
2) Try four adjacent points: up, right, down and left one pixel.
3) If point is out of range or has been visited already, skip it.
4) Otherwise push point onto to the stack of interesting points.
5) Pop the next interesting point off the stack.
6) If the color at that point is a stop color (as defined in the stopFunction) then stop processing that point and skip to step 5.
7) Otherwise, skip to step 2.
8) When there are no more interesting points to visit, stop looping.
Remembering that a point has been visited requires an array with the same number of elements as there are pixels.
To create a flood fill you need to be able to look at the pixels that are there already and check they aren't the color you started with so something like this.
const ctx = document.querySelector("canvas").getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20);
ctx.lineTo(250, 70);
ctx.lineTo(270, 120);
ctx.lineTo(170, 140);
ctx.lineTo(190, 80);
ctx.lineTo(100, 60);
ctx.lineTo(50, 130);
ctx.lineTo(20, 20);
ctx.stroke();
floodFill(ctx, 40, 50, [255, 0, 0, 255]);
function getPixel(imageData, x, y) {
if (x < 0 || y < 0 || x >= imageData.width || y >= imageData.height) {
return [-1, -1, -1, -1]; // impossible color
} else {
const offset = (y * imageData.width + x) * 4;
return imageData.data.slice(offset, offset + 4);
}
}
function setPixel(imageData, x, y, color) {
const offset = (y * imageData.width + x) * 4;
imageData.data[offset + 0] = color[0];
imageData.data[offset + 1] = color[1];
imageData.data[offset + 2] = color[2];
imageData.data[offset + 3] = color[0];
}
function colorsMatch(a, b) {
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
}
function floodFill(ctx, x, y, fillColor) {
// read the pixels in the canvas
const imageData = ctx.getImageData(0, 0, ctx.canvas.width, ctx.canvas.height);
// get the color we're filling
const targetColor = getPixel(imageData, x, y);
// check we are actually filling a different color
if (!colorsMatch(targetColor, fillColor)) {
fillPixel(imageData, x, y, targetColor, fillColor);
// put the data back
ctx.putImageData(imageData, 0, 0);
}
}
function fillPixel(imageData, x, y, targetColor, fillColor) {
const currentColor = getPixel(imageData, x, y);
if (colorsMatch(currentColor, targetColor)) {
setPixel(imageData, x, y, fillColor);
fillPixel(imageData, x + 1, y, targetColor, fillColor);
fillPixel(imageData, x - 1, y, targetColor, fillColor);
fillPixel(imageData, x, y + 1, targetColor, fillColor);
fillPixel(imageData, x, y - 1, targetColor, fillColor);
}
}
<canvas></canvas>
There's at least 2 problems with this code though.
It's deeply recursive.
So you might run out of stack space
It's slow.
No idea if it's too slow but JavaScript in the browser is mostly single threaded so while this code is running the browser is frozen. For a large canvas that frozen time might make the page really slow and if it's frozen too long the browser will ask if the user wants to kill the page.
The solution to running out of stack space is to implement our own stack. For example instead of recursively calling fillPixel we could keep an array of positions we want to look at. We'd add the 4 positions to that array and then pop things off the array until it's empty
const ctx = document.querySelector("canvas").getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20);
ctx.lineTo(250, 70);
ctx.lineTo(270, 120);
ctx.lineTo(170, 140);
ctx.lineTo(190, 80);
ctx.lineTo(100, 60);
ctx.lineTo(50, 130);
ctx.lineTo(20, 20);
ctx.stroke();
floodFill(ctx, 40, 50, [255, 0, 0, 255]);
function getPixel(imageData, x, y) {
if (x < 0 || y < 0 || x >= imageData.width || y >= imageData.height) {
return [-1, -1, -1, -1]; // impossible color
} else {
const offset = (y * imageData.width + x) * 4;
return imageData.data.slice(offset, offset + 4);
}
}
function setPixel(imageData, x, y, color) {
const offset = (y * imageData.width + x) * 4;
imageData.data[offset + 0] = color[0];
imageData.data[offset + 1] = color[1];
imageData.data[offset + 2] = color[2];
imageData.data[offset + 3] = color[0];
}
function colorsMatch(a, b) {
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
}
function floodFill(ctx, x, y, fillColor) {
// read the pixels in the canvas
const imageData = ctx.getImageData(0, 0, ctx.canvas.width, ctx.canvas.height);
// get the color we're filling
const targetColor = getPixel(imageData, x, y);
// check we are actually filling a different color
if (!colorsMatch(targetColor, fillColor)) {
const pixelsToCheck = [x, y];
while (pixelsToCheck.length > 0) {
const y = pixelsToCheck.pop();
const x = pixelsToCheck.pop();
const currentColor = getPixel(imageData, x, y);
if (colorsMatch(currentColor, targetColor)) {
setPixel(imageData, x, y, fillColor);
pixelsToCheck.push(x + 1, y);
pixelsToCheck.push(x - 1, y);
pixelsToCheck.push(x, y + 1);
pixelsToCheck.push(x, y - 1);
}
}
// put the data back
ctx.putImageData(imageData, 0, 0);
}
}
<canvas></canvas>
The solution to it being too slow is either to make it run a little at a time OR to move it to a worker. I think that's a little too much to show in the same answer though here's an example.
I tested the code above on a 4096x4096 canvas and it took 16 seconds to fill a blank canvas on my machine so yes it's arguably too slow but putting it in a worker brings new problems which is that the result will be asynchronous so even though the browser wouldn't freeze you'd probably want to prevent the user from doing something until it finishes.
Another issue is you'll see the lines are antialiased and so filling with a solid color fills close the the line but not all the way up to it. To fix that you can change colorsMatch to check for close enough but then you have a new problem that if targetColor and fillColor are also close enough it will keep trying to fill itself. You could solve that by making another array, one byte or one bit per pixel to track places you've ready checked.
const ctx = document.querySelector("canvas").getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20);
ctx.lineTo(250, 70);
ctx.lineTo(270, 120);
ctx.lineTo(170, 140);
ctx.lineTo(190, 80);
ctx.lineTo(100, 60);
ctx.lineTo(50, 130);
ctx.lineTo(20, 20);
ctx.stroke();
floodFill(ctx, 40, 50, [255, 0, 0, 255], 128);
function getPixel(imageData, x, y) {
if (x < 0 || y < 0 || x >= imageData.width || y >= imageData.height) {
return [-1, -1, -1, -1]; // impossible color
} else {
const offset = (y * imageData.width + x) * 4;
return imageData.data.slice(offset, offset + 4);
}
}
function setPixel(imageData, x, y, color) {
const offset = (y * imageData.width + x) * 4;
imageData.data[offset + 0] = color[0];
imageData.data[offset + 1] = color[1];
imageData.data[offset + 2] = color[2];
imageData.data[offset + 3] = color[0];
}
function colorsMatch(a, b, rangeSq) {
const dr = a[0] - b[0];
const dg = a[1] - b[1];
const db = a[2] - b[2];
const da = a[3] - b[3];
return dr * dr + dg * dg + db * db + da * da < rangeSq;
}
function floodFill(ctx, x, y, fillColor, range = 1) {
// read the pixels in the canvas
const imageData = ctx.getImageData(0, 0, ctx.canvas.width, ctx.canvas.height);
// flags for if we visited a pixel already
const visited = new Uint8Array(imageData.width, imageData.height);
// get the color we're filling
const targetColor = getPixel(imageData, x, y);
// check we are actually filling a different color
if (!colorsMatch(targetColor, fillColor)) {
const rangeSq = range * range;
const pixelsToCheck = [x, y];
while (pixelsToCheck.length > 0) {
const y = pixelsToCheck.pop();
const x = pixelsToCheck.pop();
const currentColor = getPixel(imageData, x, y);
if (!visited[y * imageData.width + x] &&
colorsMatch(currentColor, targetColor, rangeSq)) {
setPixel(imageData, x, y, fillColor);
visited[y * imageData.width + x] = 1; // mark we were here already
pixelsToCheck.push(x + 1, y);
pixelsToCheck.push(x - 1, y);
pixelsToCheck.push(x, y + 1);
pixelsToCheck.push(x, y - 1);
}
}
// put the data back
ctx.putImageData(imageData, 0, 0);
}
}
<canvas></canvas>
Note that this version of colorsMatch is kind of naive. It might be better to convert to HSV or something or maybe you want to weight by alpha. I don't know what a good metric is for matching colors.
Update
Another way to speed things up is of course to just optimize the code. Kaiido pointed out an obvious speedup which is to use a Uint32Array view on the pixels. That way looking up a pixel and setting a pixel there's just one 32bit value to read or write. Just that change makes it about 4x faster. It still takes 4 seconds to fill a 4096x4096 canvas though. There might be other optimizations like instead of calling getPixels make that inline but don't push a new pixel on our list of pixels to check if they are out of range. It might be 10% speed up (no idea) but won't make it fast enough to be an interactive speed.
There are other speedups like checking across a row at a time since rows are cache friendly and you can compute the offset to a row once and use that while checking the entire row whereas now for every pixel we have to compute the offset multiple times.
Those will complicate the algorithm so they are best left for you to figure out.
Let me also add, given the answer above freezes the browser while the fill is happening and that on a larger canvas that freeze could be too long, you can easily make the algorithm span over time using ES6 async/await. You need to choose how much work to give each segment of time. Choose too small and it will take a long time to fill. Choose too large and you'll get jank as the browser freezes.
Here's an example. Set ticksPerUpdate to speed up or slow down the fill rate
const ctx = document.querySelector("canvas").getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20);
ctx.lineTo(250, 70);
ctx.lineTo(270, 120);
ctx.lineTo(170, 140);
ctx.lineTo(100, 145);
ctx.lineTo(110, 105);
ctx.lineTo(130, 125);
ctx.lineTo(190, 80);
ctx.lineTo(100, 60);
ctx.lineTo(50, 130);
ctx.lineTo(20, 20);
ctx.stroke();
floodFill(ctx, 40, 50, 0xFF0000FF);
function getPixel(pixelData, x, y) {
if (x < 0 || y < 0 || x >= pixelData.width || y >= pixelData.height) {
return -1; // impossible color
} else {
return pixelData.data[y * pixelData.width + x];
}
}
async function floodFill(ctx, x, y, fillColor) {
// read the pixels in the canvas
const imageData = ctx.getImageData(0, 0, ctx.canvas.width, ctx.canvas.height);
// make a Uint32Array view on the pixels so we can manipulate pixels
// one 32bit value at a time instead of as 4 bytes per pixel
const pixelData = {
width: imageData.width,
height: imageData.height,
data: new Uint32Array(imageData.data.buffer),
};
// get the color we're filling
const targetColor = getPixel(pixelData, x, y);
// check we are actually filling a different color
if (targetColor !== fillColor) {
const ticksPerUpdate = 50;
let tickCount = 0;
const pixelsToCheck = [x, y];
while (pixelsToCheck.length > 0) {
const y = pixelsToCheck.pop();
const x = pixelsToCheck.pop();
const currentColor = getPixel(pixelData, x, y);
if (currentColor === targetColor) {
pixelData.data[y * pixelData.width + x] = fillColor;
// put the data back
ctx.putImageData(imageData, 0, 0);
++tickCount;
if (tickCount % ticksPerUpdate === 0) {
await wait();
}
pixelsToCheck.push(x + 1, y);
pixelsToCheck.push(x - 1, y);
pixelsToCheck.push(x, y + 1);
pixelsToCheck.push(x, y - 1);
}
}
}
}
function wait(delay = 0) {
return new Promise((resolve) => {
setTimeout(resolve, delay);
});
}
<canvas></canvas>
update update
Instead of setTimeout which is throttled by the browser, you can abuse postMessage which is not
function makeExposedPromise() {
let resolve;
let reject;
const promise = new Promise((_resolve, _reject) => {
resolve = _resolve;
reject = _reject;
});
return { promise, resolve, reject };
}
const resolveFns = [];
window.addEventListener('message', (e) => {
const resolve = resolveFns.shift();
resolve();
});
function wait() {
const {resolve, promise} = makeExposedPromise();
resolveFns.push(resolve);
window.postMessage('');
return promise;
}
If you use that it there's less need to choose a number of operations. Also note: the slowest part is calling putImageData. The reason it's inside the loop above is only so we can see the progress. Move that to the end and it will run much faster
function makeExposedPromise() {
let resolve;
let reject;
const promise = new Promise((_resolve, _reject) => {
resolve = _resolve;
reject = _reject;
});
return { promise, resolve, reject };
}
const resolveFns = [];
window.addEventListener('message', (e) => {
const resolve = resolveFns.shift();
resolve();
});
function wait() {
const {resolve, promise} = makeExposedPromise();
resolveFns.push(resolve);
window.postMessage('');
return promise;
}
const ctx = document.querySelector("canvas").getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20);
ctx.lineTo(250, 70);
ctx.lineTo(270, 120);
ctx.lineTo(170, 140);
ctx.lineTo(100, 145);
ctx.lineTo(110, 105);
ctx.lineTo(130, 125);
ctx.lineTo(190, 80);
ctx.lineTo(100, 60);
ctx.lineTo(50, 130);
ctx.lineTo(20, 20);
ctx.stroke();
floodFill(ctx, 40, 50, 0xFF0000FF);
function getPixel(pixelData, x, y) {
if (x < 0 || y < 0 || x >= pixelData.width || y >= pixelData.height) {
return -1; // impossible color
} else {
return pixelData.data[y * pixelData.width + x];
}
}
async function floodFill(ctx, x, y, fillColor) {
// read the pixels in the canvas
const imageData = ctx.getImageData(0, 0, ctx.canvas.width, ctx.canvas.height);
// make a Uint32Array view on the pixels so we can manipulate pixels
// one 32bit value at a time instead of as 4 bytes per pixel
const pixelData = {
width: imageData.width,
height: imageData.height,
data: new Uint32Array(imageData.data.buffer),
};
// get the color we're filling
const targetColor = getPixel(pixelData, x, y);
// check we are actually filling a different color
if (targetColor !== fillColor) {
const pixelsToCheck = [x, y];
while (pixelsToCheck.length > 0) {
const y = pixelsToCheck.pop();
const x = pixelsToCheck.pop();
const currentColor = getPixel(pixelData, x, y);
if (currentColor === targetColor) {
pixelData.data[y * pixelData.width + x] = fillColor;
await wait();
pixelsToCheck.push(x + 1, y);
pixelsToCheck.push(x - 1, y);
pixelsToCheck.push(x, y + 1);
pixelsToCheck.push(x, y - 1);
}
}
// put the data back
ctx.putImageData(imageData, 0, 0);
}
}
<canvas></canvas>
It's still better to choose a number of operations per call to wait
There are also faster algorithms. The issue with the one above is there is for every pixel that matches, 4 are added to the stack of things to pixels to check. That's lots of allocations and multiple checking. A faster way is to it by span.
For a given span, check as far left as you can, then as far right as you can, now fill that span. Then, check the pixels above and/or below the span you just found and add the spans you find to your stack. Pop the top span off, and try to expand it left and right. There's no need to check the pixels in the middle since you already checked them. Further, if this span was generated from one below then you don't need to check the pixels below the starting sub-span of this span since you know that area was already filled. Similarly if this pan was generated from one above then you don't need to check the pixels above the starting sub-span of this span for the same reason.
function main() {
const ctx = document.querySelector("canvas").getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20);
ctx.lineTo(250, 70);
ctx.lineTo(270, 120);
ctx.lineTo(170, 140);
ctx.lineTo(100, 145);
ctx.lineTo(110, 105);
ctx.lineTo(130, 125);
ctx.lineTo(190, 80);
ctx.lineTo(100, 60);
ctx.lineTo(50, 130);
ctx.lineTo(20, 20);
ctx.stroke();
floodFill(ctx, 40, 50, 0xFF0000FF);
}
main();
function getPixel(pixelData, x, y) {
if (x < 0 || y < 0 || x >= pixelData.width || y >= pixelData.height) {
return -1; // impossible color
} else {
return pixelData.data[y * pixelData.width + x];
}
}
function floodFill(ctx, x, y, fillColor) {
// read the pixels in the canvas
const imageData = ctx.getImageData(0, 0, ctx.canvas.width, ctx.canvas.height);
// make a Uint32Array view on the pixels so we can manipulate pixels
// one 32bit value at a time instead of as 4 bytes per pixel
const pixelData = {
width: imageData.width,
height: imageData.height,
data: new Uint32Array(imageData.data.buffer),
};
// get the color we're filling
const targetColor = getPixel(pixelData, x, y);
// check we are actually filling a different color
if (targetColor !== fillColor) {
const spansToCheck = [];
function addSpan(left, right, y, direction) {
spansToCheck.push({left, right, y, direction});
}
function checkSpan(left, right, y, direction) {
let inSpan = false;
let start;
let x;
for (x = left; x < right; ++x) {
const color = getPixel(pixelData, x, y);
if (color === targetColor) {
if (!inSpan) {
inSpan = true;
start = x;
}
} else {
if (inSpan) {
inSpan = false;
addSpan(start, x - 1, y, direction);
}
}
}
if (inSpan) {
inSpan = false;
addSpan(start, x - 1, y, direction);
}
}
addSpan(x, x, y, 0);
while (spansToCheck.length > 0) {
const {left, right, y, direction} = spansToCheck.pop();
// do left until we hit something, while we do this check above and below and add
let l = left;
for (;;) {
--l;
const color = getPixel(pixelData, l, y);
if (color !== targetColor) {
break;
}
}
++l
let r = right;
for (;;) {
++r;
const color = getPixel(pixelData, r, y);
if (color !== targetColor) {
break;
}
}
const lineOffset = y * pixelData.width;
pixelData.data.fill(fillColor, lineOffset + l, lineOffset + r);
if (direction <= 0) {
checkSpan(l, r, y - 1, -1);
} else {
checkSpan(l, left, y - 1, -1);
checkSpan(right, r, y - 1, -1);
}
if (direction >= 0) {
checkSpan(l, r, y + 1, +1);
} else {
checkSpan(l, left, y + 1, +1);
checkSpan(right, r, y + 1, +1);
}
}
// put the data back
ctx.putImageData(imageData, 0, 0);
}
}
<canvas></canvas>
Note: I didn't test this well, there might be an off by 1 error or other issue. I'm 99% sure I wrote the span method in 1993 for My Paint but don't remember if I have the source. But in any case, it's fast enough there's no need for wait
Here's an implementation that I've been working on. It can get really slow if the replacement color is too close to the original color. It's quite a bit faster in Chrome than Firefox (I haven't tested it in any other browsers).
I also haven't done exhaustive testing yet, so there may be edge cases where it doesn't work.
function getPixel(pixelData, x, y) {
if (x < 0 || y < 0 || x >= pixelData.width || y >= pixelData.height) {
return NaN;
}
var pixels = pixelData.data;
var i = (y * pixelData.width + x) * 4;
return ((pixels[i + 0] & 0xFF) << 24) |
((pixels[i + 1] & 0xFF) << 16) |
((pixels[i + 2] & 0xFF) << 8) |
((pixels[i + 3] & 0xFF) << 0);
}
function setPixel(pixelData, x, y, color) {
var i = (y * pixelData.width + x) * 4;
var pixels = pixelData.data;
pixels[i + 0] = (color >>> 24) & 0xFF;
pixels[i + 1] = (color >>> 16) & 0xFF;
pixels[i + 2] = (color >>> 8) & 0xFF;
pixels[i + 3] = (color >>> 0) & 0xFF;
}
function diff(c1, c2) {
if (isNaN(c1) || isNaN(c2)) {
return Infinity;
}
var dr = ((c1 >>> 24) & 0xFF) - ((c2 >>> 24) & 0xFF);
var dg = ((c1 >>> 16) & 0xFF) - ((c2 >>> 16) & 0xFF);
var db = ((c1 >>> 8) & 0xFF) - ((c2 >>> 8) & 0xFF);
var da = ((c1 >>> 0) & 0xFF) - ((c2 >>> 0) & 0xFF);
return dr*dr + dg*dg + db*db + da*da;
}
function floodFill(canvas, x, y, replacementColor, delta) {
var current, w, e, stack, color, cx, cy;
var context = canvas.getContext("2d");
var pixelData = context.getImageData(0, 0, canvas.width, canvas.height);
var done = [];
for (var i = 0; i < canvas.width; i++) {
done[i] = [];
}
var targetColor = getPixel(pixelData, x, y);
delta *= delta;
stack = [ [x, y] ];
done[x][y] = true;
while ((current = stack.pop())) {
cx = current[0];
cy = current[1];
if (diff(getPixel(pixelData, cx, cy), targetColor) <= delta) {
setPixel(pixelData, cx, cy, replacementColor);
w = e = cx;
while (w > 0 && diff(getPixel(pixelData, w - 1, cy), targetColor) <= delta) {
--w;
if (done[w][cy]) break;
setPixel(pixelData, w, cy, replacementColor);
}
while (e < pixelData.width - 1 && diff(getPixel(pixelData, e + 1, cy), targetColor) <= delta) {
++e;
if (done[e][cy]) break;
setPixel(pixelData, e, cy, replacementColor);
}
for (cx = w; cx <= e; cx++) {
if (cy > 0) {
color = getPixel(pixelData, cx, cy - 1);
if (diff(color, targetColor) <= delta) {
if (!done[cx][cy - 1]) {
stack.push([cx, cy - 1]);
done[cx][cy - 1] = true;
}
}
}
if (cy < canvas.height - 1) {
color = getPixel(pixelData, cx, cy + 1);
if (diff(color, targetColor) <= delta) {
if (!done[cx][cy + 1]) {
stack.push([cx, cy + 1]);
done[cx][cy + 1] = true;
}
}
}
}
}
}
context.putImageData(pixelData, 0, 0, 0, 0, canvas.width, canvas.height);
}
I would not treat the canvas as a bitmap image.
Instead I would keep a collection of painting-objects and modify that collection.
Then for example you can fill a path or shape or add a new shape that has the boundaries of the objects you are trying to fill.
I can't see how "normal" floodFill makes sense in vector drawing..