Regex: Negative Lookbehind + Lookahead in Javascript - javascript

I'll try to wrap my head around this regex which works on server side.
new RegExp(/(?<!:\s*\w*)\w+(?=\s*[,}])/g)
it walkes through a string which look like this:
{Product{id{$lt:10,$gt:20},title,other,categories{id,name}}}
It matches all keys which have no subkeys or values. But this do not work in Javascript because Javascript do not allow Lookbehind Parts of a RegExp. I wonder if there is a workaround in Javascript for this. All what I have read is for Lookbehind only but not for Lookbehind+Lookahead.
You can play around with it here. regex101.com
Edit: Some more info: This regexp ist part of an parser which parses a minimalistic query language - a chimera of GraphQL and MondoDB-Queries.
There is function where a string goes in like
{Product{id{$lt:10,$gt:20},title,other,categories{id,name}}}
and outputs an object. all keys which have no subkeys or values in fact which ends with an ',' or an '}' are replaced with :true. At the end the Output look like this:
{
Product: {
id: { $lt: 10 },
title: true,
categories: {
name: true
}
}
}
I am trying to make it client-side.

I think this solves you problem
const regex = /[{,]\s*\w+(?=[,}])/g
const str = `{Product{id{$lt:10,$gt:20},title,other,categories{id,name}}}`
const result = str.replace(regex, (...a) => `${a[0]}:true`)
console.log(result)

Not sure the results you're trying to get, but this is your regex
without using the lookbehind assertion.
The whole idea, incase you're interested, is to move the match position
beyond the stuff you don't want to match.
This does that.
(?: # -------------
( : \s* \w+ ) # (1), Move past this
| # or,
( \w+ ) # (2), To get to this
) # -------------
(?= \s* [,}] ) # Common lookahead assertion
Generally, you just use the JS callback capability to find out what matched.
var regex = /(?:(:\s*\w+)|(\w+))(?=\s*[,}])/g;
var str = '{Product{id{$lt:10,$gt:20},title,other,categories/{id,name}}}';
var newString = str.replace(
regex,
function(match, p1, p2) { // Callback function
if (p1) return p1; // Group 1, return it unchanged
return p2 + ':true'; // Group 2, modifiy it
});
console.log(newString);
Output
{Product{id{$lt:10,$gt:20},title:true,other:true,categories/{id:true,name:true}}}

Related

Is there a javascript method to recognize a string even if the words are out of order? [duplicate]

I would like to find all the matches of given strings (divided by spaces) in a string.
(The way for example, iTunes search box works).
That, for example, both "ab de" and "de ab" will return true on "abcde" (also "bc e a" or any order should return true)
If I replace the white space with a wild card, "ab*de" would return true on "abcde", but not "de*ab".
[I use * and not Regex syntax just for this explanation]
I could not find any pure Regex solution for that.
The only solution I could think of is spliting the search term and run multiple Regex.
Is it possible to find a pure Regex expression that will cover all these options ?
Returns true when all parts (divided by , or ' ') of a searchString occur in text. Otherwise false is returned.
filter(text, searchString) {
const regexStr = '(?=.*' + searchString.split(/\,|\s/).join(')(?=.*') + ')';
const searchRegEx = new RegExp(regexStr, 'gi');
return text.match(searchRegEx) !== null;
}
I'm pretty sure you could come up with a regex to do what you want, but it may not be the most efficient approach.
For example, the regex pattern (?=.*bc)(?=.*e)(?=.*a) will match any string that contains bc, e, and a.
var isMatch = 'abcde'.match(/(?=.*bc)(?=.*e)(?=.*a)/) != null; // equals true
var isMatch = 'bcde'.match(/(?=.*bc)(?=.*e)(?=.*a)/) != null; // equals false
You could write a function to dynamically create an expression based on your search terms, but whether it's the best way to accomplish what you are doing is another question.
Alternations are order insensitive:
"abcde".match(/(ab|de)/g); // => ['ab', 'de']
"abcde".match(/(de|ab)/g); // => ['ab', 'de']
So if you have a list of words to match you can build a regex with an alternation on the fly like so:
function regexForWordList(words) {
return new RegExp('(' + words.join('|') + ')', 'g');
}
'abcde'.match(['a', 'e']); // => ['a', 'e']
Try this:
var str = "your string";
str = str.split( " " );
for( var i = 0 ; i < str.length ; i++ ){
// your regexp match
}
This is script which I use - it works also with single word searchStrings
var what="test string with search cool word";
var searchString="search word";
var search = new RegExp(searchString, "gi"); // one-word searching
// multiple search words
if(searchString.indexOf(' ') != -1) {
search="";
var words=searchString.split(" ");
for(var i = 0; i < words.length; i++) {
search+="(?=.*" + words[i] + ")";
}
search = new RegExp(search + ".+", "gi");
}
if(search.test(what)) {
// found
} else {
// notfound
}
I assume you are matching words, or parts of words. You want space-separated search terms to limit search results, and it seems you intend to return only those entries which have all the words that the user supplies. And you intend a wildcard character * to stand for 0 or more characters in a matching word.
For example, if the user searches for the words term1 term2, you intend to return only those items which have both words term1 and term2. If the user searches for the word term*, it would match any word beginning with term.
There are suitable regular expressions which are equivalent to this search language and can be generated from it.
A simple example, the word term, can be asserted in regex by converting to \bterm\b. But two or more words which must match in any order require lookahead assertions. Using extended syntax, the equivalent regex is:
(?= .* \b term1 \b )
(?= .* \b term2 \b )
The asterisk wildcard can be asserted in regex with a character class followed by asterisk. The character class identifies which letters you consider to be part of word. For example, you might find that [A-Za-z0-9]* fits the bill.
In short, you might be satisfied if you convert an expression such as:
foo ba* quux
to:
(?= .* \b foo \b )
(?= .* \b ba[A-Za-z0-9]* \b )
(?= .* \b quux \b )
That is a simple matter of search and replace. But do be careful to sanitize the input string to avoid injection attacks by removing punctuation, etc.
I think you may be barking up the wrong tree with RegEx. What you might want to look at is the Levenshtein distance of two input strings.
There's a Javascript implementation here and a usage example here.

Use Regex to split string at array keeping all words of array [duplicate]

I need a regular expression to select all the text between two outer brackets.
Example:
START_TEXT(text here(possible text)text(possible text(more text)))END_TXT
^ ^
Result:
(text here(possible text)text(possible text(more text)))
I want to add this answer for quickreference. Feel free to update.
.NET Regex using balancing groups:
\((?>\((?<c>)|[^()]+|\)(?<-c>))*(?(c)(?!))\)
Where c is used as the depth counter.
Demo at Regexstorm.com
Stack Overflow: Using RegEx to balance match parenthesis
Wes' Puzzling Blog: Matching Balanced Constructs with .NET Regular Expressions
Greg Reinacker's Weblog: Nested Constructs in Regular Expressions
PCRE using a recursive pattern:
\((?:[^)(]+|(?R))*+\)
Demo at regex101; Or without alternation:
\((?:[^)(]*(?R)?)*+\)
Demo at regex101; Or unrolled for performance:
\([^)(]*+(?:(?R)[^)(]*)*+\)
Demo at regex101; The pattern is pasted at (?R) which represents (?0).
Perl, PHP, Notepad++, R: perl=TRUE, Python: PyPI regex module with (?V1) for Perl behaviour.
(the new version of PyPI regex package already defaults to this → DEFAULT_VERSION = VERSION1)
Ruby using subexpression calls:
With Ruby 2.0 \g<0> can be used to call full pattern.
\((?>[^)(]+|\g<0>)*\)
Demo at Rubular; Ruby 1.9 only supports capturing group recursion:
(\((?>[^)(]+|\g<1>)*\))
Demo at Rubular  (atomic grouping since Ruby 1.9.3)
JavaScript  API :: XRegExp.matchRecursive
XRegExp.matchRecursive(str, '\\(', '\\)', 'g');
Java: An interesting idea using forward references by #jaytea.
Without recursion up to 3 levels of nesting:
(JS, Java and other regex flavors)
To prevent runaway if unbalanced, with * on innermost [)(] only.
\((?:[^)(]|\((?:[^)(]|\((?:[^)(]|\([^)(]*\))*\))*\))*\)
Demo at regex101; Or unrolled for better performance (preferred).
\([^)(]*(?:\([^)(]*(?:\([^)(]*(?:\([^)(]*\)[^)(]*)*\)[^)(]*)*\)[^)(]*)*\)
Demo at regex101; Deeper nesting needs to be added as required.
Reference - What does this regex mean?
RexEgg.com - Recursive Regular Expressions
Regular-Expressions.info - Regular Expression Recursion
Mastering Regular Expressions - Jeffrey E.F. Friedl 1 2 3 4
Regular expressions are the wrong tool for the job because you are dealing with nested structures, i.e. recursion.
But there is a simple algorithm to do this, which I described in more detail in this answer to a previous question. The gist is to write code which scans through the string keeping a counter of the open parentheses which have not yet been matched by a closing parenthesis. When that counter returns to zero, then you know you've reached the final closing parenthesis.
You can use regex recursion:
\(([^()]|(?R))*\)
[^\(]*(\(.*\))[^\)]*
[^\(]* matches everything that isn't an opening bracket at the beginning of the string, (\(.*\)) captures the required substring enclosed in brackets, and [^\)]* matches everything that isn't a closing bracket at the end of the string. Note that this expression does not attempt to match brackets; a simple parser (see dehmann's answer) would be more suitable for that.
This answer explains the theoretical limitation of why regular expressions are not the right tool for this task.
Regular expressions can not do this.
Regular expressions are based on a computing model known as Finite State Automata (FSA). As the name indicates, a FSA can remember only the current state, it has no information about the previous states.
In the above diagram, S1 and S2 are two states where S1 is the starting and final step. So if we try with the string 0110 , the transition goes as follows:
0 1 1 0
-> S1 -> S2 -> S2 -> S2 ->S1
In the above steps, when we are at second S2 i.e. after parsing 01 of 0110, the FSA has no information about the previous 0 in 01 as it can only remember the current state and the next input symbol.
In the above problem, we need to know the no of opening parenthesis; this means it has to be stored at some place. But since FSAs can not do that, a regular expression can not be written.
However, an algorithm can be written to do this task. Algorithms are generally falls under Pushdown Automata (PDA). PDA is one level above of FSA. PDA has an additional stack to store some additional information. PDAs can be used to solve the above problem, because we can 'push' the opening parenthesis in the stack and 'pop' them once we encounter a closing parenthesis. If at the end, stack is empty, then opening parenthesis and closing parenthesis matches. Otherwise not.
(?<=\().*(?=\))
If you want to select text between two matching parentheses, you are out of luck with regular expressions. This is impossible(*).
This regex just returns the text between the first opening and the last closing parentheses in your string.
(*) Unless your regex engine has features like balancing groups or recursion. The number of engines that support such features is slowly growing, but they are still not a commonly available.
It is actually possible to do it using .NET regular expressions, but it is not trivial, so read carefully.
You can read a nice article here. You also may need to read up on .NET regular expressions. You can start reading here.
Angle brackets <> were used because they do not require escaping.
The regular expression looks like this:
<
[^<>]*
(
(
(?<Open><)
[^<>]*
)+
(
(?<Close-Open>>)
[^<>]*
)+
)*
(?(Open)(?!))
>
I was also stuck in this situation when dealing with nested patterns and regular-expressions is the right tool to solve such problems.
/(\((?>[^()]+|(?1))*\))/
This is the definitive regex:
\(
(?<arguments>
(
([^\(\)']*) |
(\([^\(\)']*\)) |
'(.*?)'
)*
)
\)
Example:
input: ( arg1, arg2, arg3, (arg4), '(pip' )
output: arg1, arg2, arg3, (arg4), '(pip'
note that the '(pip' is correctly managed as string.
(tried in regulator: http://sourceforge.net/projects/regulator/)
I have written a little JavaScript library called balanced to help with this task. You can accomplish this by doing
balanced.matches({
source: source,
open: '(',
close: ')'
});
You can even do replacements:
balanced.replacements({
source: source,
open: '(',
close: ')',
replace: function (source, head, tail) {
return head + source + tail;
}
});
Here's a more complex and interactive example JSFiddle.
Adding to bobble bubble's answer, there are other regex flavors where recursive constructs are supported.
Lua
Use %b() (%b{} / %b[] for curly braces / square brackets):
for s in string.gmatch("Extract (a(b)c) and ((d)f(g))", "%b()") do print(s) end (see demo)
Raku (former Perl6):
Non-overlapping multiple balanced parentheses matches:
my regex paren_any { '(' ~ ')' [ <-[()]>+ || <&paren_any> ]* }
say "Extract (a(b)c) and ((d)f(g))" ~~ m:g/<&paren_any>/;
# => (「(a(b)c)」 「((d)f(g))」)
Overlapping multiple balanced parentheses matches:
say "Extract (a(b)c) and ((d)f(g))" ~~ m:ov:g/<&paren_any>/;
# => (「(a(b)c)」 「(b)」 「((d)f(g))」 「(d)」 「(g)」)
See demo.
Python re non-regex solution
See poke's answer for How to get an expression between balanced parentheses.
Java customizable non-regex solution
Here is a customizable solution allowing single character literal delimiters in Java:
public static List<String> getBalancedSubstrings(String s, Character markStart,
Character markEnd, Boolean includeMarkers)
{
List<String> subTreeList = new ArrayList<String>();
int level = 0;
int lastOpenDelimiter = -1;
for (int i = 0; i < s.length(); i++) {
char c = s.charAt(i);
if (c == markStart) {
level++;
if (level == 1) {
lastOpenDelimiter = (includeMarkers ? i : i + 1);
}
}
else if (c == markEnd) {
if (level == 1) {
subTreeList.add(s.substring(lastOpenDelimiter, (includeMarkers ? i + 1 : i)));
}
if (level > 0) level--;
}
}
return subTreeList;
}
}
Sample usage:
String s = "some text(text here(possible text)text(possible text(more text)))end text";
List<String> balanced = getBalancedSubstrings(s, '(', ')', true);
System.out.println("Balanced substrings:\n" + balanced);
// => [(text here(possible text)text(possible text(more text)))]
The regular expression using Ruby (version 1.9.3 or above):
/(?<match>\((?:\g<match>|[^()]++)*\))/
Demo on rubular
The answer depends on whether you need to match matching sets of brackets, or merely the first open to the last close in the input text.
If you need to match matching nested brackets, then you need something more than regular expressions. - see #dehmann
If it's just first open to last close see #Zach
Decide what you want to happen with:
abc ( 123 ( foobar ) def ) xyz ) ghij
You need to decide what your code needs to match in this case.
"""
Here is a simple python program showing how to use regular
expressions to write a paren-matching recursive parser.
This parser recognises items enclosed by parens, brackets,
braces and <> symbols, but is adaptable to any set of
open/close patterns. This is where the re package greatly
assists in parsing.
"""
import re
# The pattern below recognises a sequence consisting of:
# 1. Any characters not in the set of open/close strings.
# 2. One of the open/close strings.
# 3. The remainder of the string.
#
# There is no reason the opening pattern can't be the
# same as the closing pattern, so quoted strings can
# be included. However quotes are not ignored inside
# quotes. More logic is needed for that....
pat = re.compile("""
( .*? )
( \( | \) | \[ | \] | \{ | \} | \< | \> |
\' | \" | BEGIN | END | $ )
( .* )
""", re.X)
# The keys to the dictionary below are the opening strings,
# and the values are the corresponding closing strings.
# For example "(" is an opening string and ")" is its
# closing string.
matching = { "(" : ")",
"[" : "]",
"{" : "}",
"<" : ">",
'"' : '"',
"'" : "'",
"BEGIN" : "END" }
# The procedure below matches string s and returns a
# recursive list matching the nesting of the open/close
# patterns in s.
def matchnested(s, term=""):
lst = []
while True:
m = pat.match(s)
if m.group(1) != "":
lst.append(m.group(1))
if m.group(2) == term:
return lst, m.group(3)
if m.group(2) in matching:
item, s = matchnested(m.group(3), matching[m.group(2)])
lst.append(m.group(2))
lst.append(item)
lst.append(matching[m.group(2)])
else:
raise ValueError("After <<%s %s>> expected %s not %s" %
(lst, s, term, m.group(2)))
# Unit test.
if __name__ == "__main__":
for s in ("simple string",
""" "double quote" """,
""" 'single quote' """,
"one'two'three'four'five'six'seven",
"one(two(three(four)five)six)seven",
"one(two(three)four)five(six(seven)eight)nine",
"one(two)three[four]five{six}seven<eight>nine",
"one(two[three{four<five>six}seven]eight)nine",
"oneBEGINtwo(threeBEGINfourENDfive)sixENDseven",
"ERROR testing ((( mismatched ))] parens"):
print "\ninput", s
try:
lst, s = matchnested(s)
print "output", lst
except ValueError as e:
print str(e)
print "done"
You need the first and last parentheses. Use something like this:
str.indexOf('('); - it will give you first occurrence
str.lastIndexOf(')'); - last one
So you need a string between,
String searchedString = str.substring(str1.indexOf('('),str1.lastIndexOf(')');
because js regex doesn't support recursive match, i can't make balanced parentheses matching work.
so this is a simple javascript for loop version that make "method(arg)" string into array
push(number) map(test(a(a()))) bass(wow, abc)
$$(groups) filter({ type: 'ORGANIZATION', isDisabled: { $ne: true } }) pickBy(_id, type) map(test()) as(groups)
const parser = str => {
let ops = []
let method, arg
let isMethod = true
let open = []
for (const char of str) {
// skip whitespace
if (char === ' ') continue
// append method or arg string
if (char !== '(' && char !== ')') {
if (isMethod) {
(method ? (method += char) : (method = char))
} else {
(arg ? (arg += char) : (arg = char))
}
}
if (char === '(') {
// nested parenthesis should be a part of arg
if (!isMethod) arg += char
isMethod = false
open.push(char)
} else if (char === ')') {
open.pop()
// check end of arg
if (open.length < 1) {
isMethod = true
ops.push({ method, arg })
method = arg = undefined
} else {
arg += char
}
}
}
return ops
}
// const test = parser(`$$(groups) filter({ type: 'ORGANIZATION', isDisabled: { $ne: true } }) pickBy(_id, type) map(test()) as(groups)`)
const test = parser(`push(number) map(test(a(a()))) bass(wow, abc)`)
console.log(test)
the result is like
[ { method: 'push', arg: 'number' },
{ method: 'map', arg: 'test(a(a()))' },
{ method: 'bass', arg: 'wow,abc' } ]
[ { method: '$$', arg: 'groups' },
{ method: 'filter',
arg: '{type:\'ORGANIZATION\',isDisabled:{$ne:true}}' },
{ method: 'pickBy', arg: '_id,type' },
{ method: 'map', arg: 'test()' },
{ method: 'as', arg: 'groups' } ]
While so many answers mention this in some form by saying that regex does not support recursive matching and so on, the primary reason for this lies in the roots of the Theory of Computation.
Language of the form {a^nb^n | n>=0} is not regular. Regex can only match things that form part of the regular set of languages.
Read more # here
I didn't use regex since it is difficult to deal with nested code. So this snippet should be able to allow you to grab sections of code with balanced brackets:
def extract_code(data):
""" returns an array of code snippets from a string (data)"""
start_pos = None
end_pos = None
count_open = 0
count_close = 0
code_snippets = []
for i,v in enumerate(data):
if v =='{':
count_open+=1
if not start_pos:
start_pos= i
if v=='}':
count_close +=1
if count_open == count_close and not end_pos:
end_pos = i+1
if start_pos and end_pos:
code_snippets.append((start_pos,end_pos))
start_pos = None
end_pos = None
return code_snippets
I used this to extract code snippets from a text file.
This do not fully address the OP question but I though it may be useful to some coming here to search for nested structure regexp:
Parse parmeters from function string (with nested structures) in javascript
Match structures like:
matches brackets, square brackets, parentheses, single and double quotes
Here you can see generated regexp in action
/**
* get param content of function string.
* only params string should be provided without parentheses
* WORK even if some/all params are not set
* #return [param1, param2, param3]
*/
exports.getParamsSAFE = (str, nbParams = 3) => {
const nextParamReg = /^\s*((?:(?:['"([{](?:[^'"()[\]{}]*?|['"([{](?:[^'"()[\]{}]*?|['"([{][^'"()[\]{}]*?['")}\]])*?['")}\]])*?['")}\]])|[^,])*?)\s*(?:,|$)/;
const params = [];
while (str.length) { // this is to avoid a BIG performance issue in javascript regexp engine
str = str.replace(nextParamReg, (full, p1) => {
params.push(p1);
return '';
});
}
return params;
};
This might help to match balanced parenthesis.
\s*\w+[(][^+]*[)]\s*
This one also worked
re.findall(r'\(.+\)', s)

Matching an exact word from a string

I need a way to match a word against a string and not get false positives. Let me give an example of what I mean:
"/thing" should match the string "/a/thing"
"/thing" should match the string "/a/thing/that/is/here"
"/thing" should NOT match the string "/a/thing_foo"
Basically, it should match if the exact characters are there in the first string and the second, but not if there are run-ons in the second (such as an underscore like in thing_foo).
Right now, I'm doing this, which is not working.
let found = b.includes(a); // true
Hopefully my question is clear enough. Thanks for the help!
Boy did this turn in to a classic XY Problem.
If I had to guess, you want to know if a path contains a particular segment.
In that case, split the string on a positive lookahead for '/' and use Array.prototype.includes()
const paths = ["/a/thing", "/a/thing/that/is/here", "/a/thing_foo"]
const search = '/thing'
paths.forEach(path => {
const segments = path.split(/(?=\/)/)
console.log('segments', segments)
console.info(path, ':', segments.includes(search))
})
Using the positive lookahead expression /(?=\/)/ allows us to split the string on / whilst maintaining the / prefix in each segment.
Alternatively, if you're still super keen in using a straight regex solution, you'll want something like this
const paths = ["/a/thing", "/a/thing/that/is/here", "/a/thing_foo", "/a/thing-that/is/here"]
const search = '/thing'
const rx = new RegExp(search + '\\b') // note the escaped backslash
paths.forEach(path => {
console.info(path, ':', rx.test(path))
})
Note that this will return false positives if the search string is followed by a hyphen or tilde as those are considered to be word boundaries. You would need a more complex pattern and I think the first solution handles these cases better.
I'd recommend using regular expressions...
e.g. The following regular expression /\/thing$/ - matches anything that ends with /thing.
console.log(/\/thing$/.test('/a/thing')) // true
console.log(/\/thing$/.test('/a/thing_foo')) // false
Update: To use a variable...
var search = '/thing'
console.log(new RegExp(search + '$').test('/a/thing')) // true
console.log(new RegExp(search + '$').test('/a/thing_foo')) // false
Simply with following regex you can do it
var a = "/a/thing";
var b = "/a/thing/that/is/here";
var c = "/a/thing_foo";
var pattern = new RegExp(/(:?(thing)(([^_])|$))/);
pattern.test(a) // true
pattern.test(b) // true
pattern.test(c) // false

Javascript dynamic regex, match string between brackets that have prefix [duplicate]

I need a regular expression to select all the text between two outer brackets.
Example:
START_TEXT(text here(possible text)text(possible text(more text)))END_TXT
^ ^
Result:
(text here(possible text)text(possible text(more text)))
I want to add this answer for quickreference. Feel free to update.
.NET Regex using balancing groups:
\((?>\((?<c>)|[^()]+|\)(?<-c>))*(?(c)(?!))\)
Where c is used as the depth counter.
Demo at Regexstorm.com
Stack Overflow: Using RegEx to balance match parenthesis
Wes' Puzzling Blog: Matching Balanced Constructs with .NET Regular Expressions
Greg Reinacker's Weblog: Nested Constructs in Regular Expressions
PCRE using a recursive pattern:
\((?:[^)(]+|(?R))*+\)
Demo at regex101; Or without alternation:
\((?:[^)(]*(?R)?)*+\)
Demo at regex101; Or unrolled for performance:
\([^)(]*+(?:(?R)[^)(]*)*+\)
Demo at regex101; The pattern is pasted at (?R) which represents (?0).
Perl, PHP, Notepad++, R: perl=TRUE, Python: PyPI regex module with (?V1) for Perl behaviour.
(the new version of PyPI regex package already defaults to this → DEFAULT_VERSION = VERSION1)
Ruby using subexpression calls:
With Ruby 2.0 \g<0> can be used to call full pattern.
\((?>[^)(]+|\g<0>)*\)
Demo at Rubular; Ruby 1.9 only supports capturing group recursion:
(\((?>[^)(]+|\g<1>)*\))
Demo at Rubular  (atomic grouping since Ruby 1.9.3)
JavaScript  API :: XRegExp.matchRecursive
XRegExp.matchRecursive(str, '\\(', '\\)', 'g');
Java: An interesting idea using forward references by #jaytea.
Without recursion up to 3 levels of nesting:
(JS, Java and other regex flavors)
To prevent runaway if unbalanced, with * on innermost [)(] only.
\((?:[^)(]|\((?:[^)(]|\((?:[^)(]|\([^)(]*\))*\))*\))*\)
Demo at regex101; Or unrolled for better performance (preferred).
\([^)(]*(?:\([^)(]*(?:\([^)(]*(?:\([^)(]*\)[^)(]*)*\)[^)(]*)*\)[^)(]*)*\)
Demo at regex101; Deeper nesting needs to be added as required.
Reference - What does this regex mean?
RexEgg.com - Recursive Regular Expressions
Regular-Expressions.info - Regular Expression Recursion
Mastering Regular Expressions - Jeffrey E.F. Friedl 1 2 3 4
Regular expressions are the wrong tool for the job because you are dealing with nested structures, i.e. recursion.
But there is a simple algorithm to do this, which I described in more detail in this answer to a previous question. The gist is to write code which scans through the string keeping a counter of the open parentheses which have not yet been matched by a closing parenthesis. When that counter returns to zero, then you know you've reached the final closing parenthesis.
You can use regex recursion:
\(([^()]|(?R))*\)
[^\(]*(\(.*\))[^\)]*
[^\(]* matches everything that isn't an opening bracket at the beginning of the string, (\(.*\)) captures the required substring enclosed in brackets, and [^\)]* matches everything that isn't a closing bracket at the end of the string. Note that this expression does not attempt to match brackets; a simple parser (see dehmann's answer) would be more suitable for that.
This answer explains the theoretical limitation of why regular expressions are not the right tool for this task.
Regular expressions can not do this.
Regular expressions are based on a computing model known as Finite State Automata (FSA). As the name indicates, a FSA can remember only the current state, it has no information about the previous states.
In the above diagram, S1 and S2 are two states where S1 is the starting and final step. So if we try with the string 0110 , the transition goes as follows:
0 1 1 0
-> S1 -> S2 -> S2 -> S2 ->S1
In the above steps, when we are at second S2 i.e. after parsing 01 of 0110, the FSA has no information about the previous 0 in 01 as it can only remember the current state and the next input symbol.
In the above problem, we need to know the no of opening parenthesis; this means it has to be stored at some place. But since FSAs can not do that, a regular expression can not be written.
However, an algorithm can be written to do this task. Algorithms are generally falls under Pushdown Automata (PDA). PDA is one level above of FSA. PDA has an additional stack to store some additional information. PDAs can be used to solve the above problem, because we can 'push' the opening parenthesis in the stack and 'pop' them once we encounter a closing parenthesis. If at the end, stack is empty, then opening parenthesis and closing parenthesis matches. Otherwise not.
(?<=\().*(?=\))
If you want to select text between two matching parentheses, you are out of luck with regular expressions. This is impossible(*).
This regex just returns the text between the first opening and the last closing parentheses in your string.
(*) Unless your regex engine has features like balancing groups or recursion. The number of engines that support such features is slowly growing, but they are still not a commonly available.
It is actually possible to do it using .NET regular expressions, but it is not trivial, so read carefully.
You can read a nice article here. You also may need to read up on .NET regular expressions. You can start reading here.
Angle brackets <> were used because they do not require escaping.
The regular expression looks like this:
<
[^<>]*
(
(
(?<Open><)
[^<>]*
)+
(
(?<Close-Open>>)
[^<>]*
)+
)*
(?(Open)(?!))
>
I was also stuck in this situation when dealing with nested patterns and regular-expressions is the right tool to solve such problems.
/(\((?>[^()]+|(?1))*\))/
This is the definitive regex:
\(
(?<arguments>
(
([^\(\)']*) |
(\([^\(\)']*\)) |
'(.*?)'
)*
)
\)
Example:
input: ( arg1, arg2, arg3, (arg4), '(pip' )
output: arg1, arg2, arg3, (arg4), '(pip'
note that the '(pip' is correctly managed as string.
(tried in regulator: http://sourceforge.net/projects/regulator/)
I have written a little JavaScript library called balanced to help with this task. You can accomplish this by doing
balanced.matches({
source: source,
open: '(',
close: ')'
});
You can even do replacements:
balanced.replacements({
source: source,
open: '(',
close: ')',
replace: function (source, head, tail) {
return head + source + tail;
}
});
Here's a more complex and interactive example JSFiddle.
Adding to bobble bubble's answer, there are other regex flavors where recursive constructs are supported.
Lua
Use %b() (%b{} / %b[] for curly braces / square brackets):
for s in string.gmatch("Extract (a(b)c) and ((d)f(g))", "%b()") do print(s) end (see demo)
Raku (former Perl6):
Non-overlapping multiple balanced parentheses matches:
my regex paren_any { '(' ~ ')' [ <-[()]>+ || <&paren_any> ]* }
say "Extract (a(b)c) and ((d)f(g))" ~~ m:g/<&paren_any>/;
# => (「(a(b)c)」 「((d)f(g))」)
Overlapping multiple balanced parentheses matches:
say "Extract (a(b)c) and ((d)f(g))" ~~ m:ov:g/<&paren_any>/;
# => (「(a(b)c)」 「(b)」 「((d)f(g))」 「(d)」 「(g)」)
See demo.
Python re non-regex solution
See poke's answer for How to get an expression between balanced parentheses.
Java customizable non-regex solution
Here is a customizable solution allowing single character literal delimiters in Java:
public static List<String> getBalancedSubstrings(String s, Character markStart,
Character markEnd, Boolean includeMarkers)
{
List<String> subTreeList = new ArrayList<String>();
int level = 0;
int lastOpenDelimiter = -1;
for (int i = 0; i < s.length(); i++) {
char c = s.charAt(i);
if (c == markStart) {
level++;
if (level == 1) {
lastOpenDelimiter = (includeMarkers ? i : i + 1);
}
}
else if (c == markEnd) {
if (level == 1) {
subTreeList.add(s.substring(lastOpenDelimiter, (includeMarkers ? i + 1 : i)));
}
if (level > 0) level--;
}
}
return subTreeList;
}
}
Sample usage:
String s = "some text(text here(possible text)text(possible text(more text)))end text";
List<String> balanced = getBalancedSubstrings(s, '(', ')', true);
System.out.println("Balanced substrings:\n" + balanced);
// => [(text here(possible text)text(possible text(more text)))]
The regular expression using Ruby (version 1.9.3 or above):
/(?<match>\((?:\g<match>|[^()]++)*\))/
Demo on rubular
The answer depends on whether you need to match matching sets of brackets, or merely the first open to the last close in the input text.
If you need to match matching nested brackets, then you need something more than regular expressions. - see #dehmann
If it's just first open to last close see #Zach
Decide what you want to happen with:
abc ( 123 ( foobar ) def ) xyz ) ghij
You need to decide what your code needs to match in this case.
"""
Here is a simple python program showing how to use regular
expressions to write a paren-matching recursive parser.
This parser recognises items enclosed by parens, brackets,
braces and <> symbols, but is adaptable to any set of
open/close patterns. This is where the re package greatly
assists in parsing.
"""
import re
# The pattern below recognises a sequence consisting of:
# 1. Any characters not in the set of open/close strings.
# 2. One of the open/close strings.
# 3. The remainder of the string.
#
# There is no reason the opening pattern can't be the
# same as the closing pattern, so quoted strings can
# be included. However quotes are not ignored inside
# quotes. More logic is needed for that....
pat = re.compile("""
( .*? )
( \( | \) | \[ | \] | \{ | \} | \< | \> |
\' | \" | BEGIN | END | $ )
( .* )
""", re.X)
# The keys to the dictionary below are the opening strings,
# and the values are the corresponding closing strings.
# For example "(" is an opening string and ")" is its
# closing string.
matching = { "(" : ")",
"[" : "]",
"{" : "}",
"<" : ">",
'"' : '"',
"'" : "'",
"BEGIN" : "END" }
# The procedure below matches string s and returns a
# recursive list matching the nesting of the open/close
# patterns in s.
def matchnested(s, term=""):
lst = []
while True:
m = pat.match(s)
if m.group(1) != "":
lst.append(m.group(1))
if m.group(2) == term:
return lst, m.group(3)
if m.group(2) in matching:
item, s = matchnested(m.group(3), matching[m.group(2)])
lst.append(m.group(2))
lst.append(item)
lst.append(matching[m.group(2)])
else:
raise ValueError("After <<%s %s>> expected %s not %s" %
(lst, s, term, m.group(2)))
# Unit test.
if __name__ == "__main__":
for s in ("simple string",
""" "double quote" """,
""" 'single quote' """,
"one'two'three'four'five'six'seven",
"one(two(three(four)five)six)seven",
"one(two(three)four)five(six(seven)eight)nine",
"one(two)three[four]five{six}seven<eight>nine",
"one(two[three{four<five>six}seven]eight)nine",
"oneBEGINtwo(threeBEGINfourENDfive)sixENDseven",
"ERROR testing ((( mismatched ))] parens"):
print "\ninput", s
try:
lst, s = matchnested(s)
print "output", lst
except ValueError as e:
print str(e)
print "done"
You need the first and last parentheses. Use something like this:
str.indexOf('('); - it will give you first occurrence
str.lastIndexOf(')'); - last one
So you need a string between,
String searchedString = str.substring(str1.indexOf('('),str1.lastIndexOf(')');
because js regex doesn't support recursive match, i can't make balanced parentheses matching work.
so this is a simple javascript for loop version that make "method(arg)" string into array
push(number) map(test(a(a()))) bass(wow, abc)
$$(groups) filter({ type: 'ORGANIZATION', isDisabled: { $ne: true } }) pickBy(_id, type) map(test()) as(groups)
const parser = str => {
let ops = []
let method, arg
let isMethod = true
let open = []
for (const char of str) {
// skip whitespace
if (char === ' ') continue
// append method or arg string
if (char !== '(' && char !== ')') {
if (isMethod) {
(method ? (method += char) : (method = char))
} else {
(arg ? (arg += char) : (arg = char))
}
}
if (char === '(') {
// nested parenthesis should be a part of arg
if (!isMethod) arg += char
isMethod = false
open.push(char)
} else if (char === ')') {
open.pop()
// check end of arg
if (open.length < 1) {
isMethod = true
ops.push({ method, arg })
method = arg = undefined
} else {
arg += char
}
}
}
return ops
}
// const test = parser(`$$(groups) filter({ type: 'ORGANIZATION', isDisabled: { $ne: true } }) pickBy(_id, type) map(test()) as(groups)`)
const test = parser(`push(number) map(test(a(a()))) bass(wow, abc)`)
console.log(test)
the result is like
[ { method: 'push', arg: 'number' },
{ method: 'map', arg: 'test(a(a()))' },
{ method: 'bass', arg: 'wow,abc' } ]
[ { method: '$$', arg: 'groups' },
{ method: 'filter',
arg: '{type:\'ORGANIZATION\',isDisabled:{$ne:true}}' },
{ method: 'pickBy', arg: '_id,type' },
{ method: 'map', arg: 'test()' },
{ method: 'as', arg: 'groups' } ]
While so many answers mention this in some form by saying that regex does not support recursive matching and so on, the primary reason for this lies in the roots of the Theory of Computation.
Language of the form {a^nb^n | n>=0} is not regular. Regex can only match things that form part of the regular set of languages.
Read more # here
I didn't use regex since it is difficult to deal with nested code. So this snippet should be able to allow you to grab sections of code with balanced brackets:
def extract_code(data):
""" returns an array of code snippets from a string (data)"""
start_pos = None
end_pos = None
count_open = 0
count_close = 0
code_snippets = []
for i,v in enumerate(data):
if v =='{':
count_open+=1
if not start_pos:
start_pos= i
if v=='}':
count_close +=1
if count_open == count_close and not end_pos:
end_pos = i+1
if start_pos and end_pos:
code_snippets.append((start_pos,end_pos))
start_pos = None
end_pos = None
return code_snippets
I used this to extract code snippets from a text file.
This do not fully address the OP question but I though it may be useful to some coming here to search for nested structure regexp:
Parse parmeters from function string (with nested structures) in javascript
Match structures like:
matches brackets, square brackets, parentheses, single and double quotes
Here you can see generated regexp in action
/**
* get param content of function string.
* only params string should be provided without parentheses
* WORK even if some/all params are not set
* #return [param1, param2, param3]
*/
exports.getParamsSAFE = (str, nbParams = 3) => {
const nextParamReg = /^\s*((?:(?:['"([{](?:[^'"()[\]{}]*?|['"([{](?:[^'"()[\]{}]*?|['"([{][^'"()[\]{}]*?['")}\]])*?['")}\]])*?['")}\]])|[^,])*?)\s*(?:,|$)/;
const params = [];
while (str.length) { // this is to avoid a BIG performance issue in javascript regexp engine
str = str.replace(nextParamReg, (full, p1) => {
params.push(p1);
return '';
});
}
return params;
};
This might help to match balanced parenthesis.
\s*\w+[(][^+]*[)]\s*
This one also worked
re.findall(r'\(.+\)', s)

Regex - match the better part of a word in a search string

I am using Javascript and currently looking for a way to match as many of my pattern's letters as possible, maintaining the original order..
For example a search pattern queued should return the march Queue/queue against the any of the following search strings:
queueTable
scheduledQueueTable
qScheduledQueueTable
As of now I've reached as far as this:
var myregex = new RegExp("([queued])", "i");
var result = myregex.exec('queueTable');
but it doesn't seem to work correctly as it highlights the single characters q,u,e,u,e and e at the end of the word Table.
Any ideas?
Generate the regex with optional non-capturing group part where regex pattern can be generate using Array#reduceRight method.
var myregex = new RegExp("queued"
.split('')
.reduceRight(function(str, s) {
return '(?:' + s + str + ')?';
}, ''), "i");
var result = myregex.exec('queueTable');
console.log(result)
The method generates regex : /(?:q(?:u(?:e(?:u(?:e(?:d?)?)?)?)?)?)?/
UPDATE : If you want to get the first longest match then use g modifier in regex and find out the largest using Array#reduce method.
var myregex = new RegExp(
"queued".split('')
.reduceRight(function(str, s) {
return '(?:' + s + str + ')?';
}, ''), "ig");
var result = 'qscheduledQueueTable'
.match(myregex)
.reduce(function(a, b) {
return a.length > b.length ? a : b;
});
console.log(result);
I think the logic would have to be something like:
Match as many of these letters as possible, in this order.
The only real answer that comes to mind is to get the match to continue if possible, but allow it to bail out. In this case...
myregex = /q(?:u(?:e(?:u(?:e(?:d|)|)|)|)|)/;
You can generate this, of course:
function matchAsMuchAsPossible(word) { // name me something sensible please!
return new RegExp(
word.split("").join("(?:")
+ (new Array(word.length).join("|)"))
);
}
You are using square brackets - which mean that it will match a single instance of any character listed inside.
There are a few ways of interpreting your intentions:
You want to match the word queue with an optional 'd' at the end:
var myregex = new RegExp("queued?", "i");
var result = myregex.exec('queueTable');
Note this can be shorter try this:
'queueTable'.match(/queued?/i);
I also removed the brackets as these were not adding anything here.
This link provides some good examples that may help you further: https://www.w3schools.com/js/js_regexp.asp
When you use [] in a regular expression, it means you want to match any of the characters inside the brackets.
Example: if I use [abc] it means "match a single character, and this character can be 'a', 'b' or 'c'"
So in your code [queued] means "match a single character, and this character can be 'q', 'u', 'e' or 'd'" - note that 'u' and 'e' appear twice so they are redundant in this case. That's why this expression matches just one single character.
If you want to match the whole string "queued", just remove the brackets. But in this case it won't match, because queueTable doesn't have 'd'. If you want 'd' to be optional, you can use queued? as already explained in previous answers.
Try something like the following :
var myregex = /queued?\B/g;
var result = myregex.exec('queueTable');
console.log(result);

Categories