Accessing Prototype Method Statically [duplicate] - javascript

I know this will work:
function Foo() {};
Foo.prototype.talk = function () {
alert('hello~\n');
};
var a = new Foo;
a.talk(); // 'hello~\n'
But if I want to call
Foo.talk() // this will not work
Foo.prototype.talk() // this works correctly
I find some methods to make Foo.talk work,
Foo.__proto__ = Foo.prototype
Foo.talk = Foo.prototype.talk
Are there other ways to do this? I don’t know whether it is right to do so. Do you use class methods or static methods in your JavaScript code?

First off, remember that JavaScript is primarily a prototypal language, rather than a class-based language1. Foo isn't a class, it's a function, which is an object. You can instantiate an object from that function using the new keyword which will allow you to create something similar to a class in a standard OOP language.
I'd suggest ignoring __proto__ most of the time because it has poor cross browser support, and instead focus on learning about how prototype works.
If you have an instance of an object created from a function2 and you access one of its members (methods, attributes, properties, constants etc) in any way, the access will flow down the prototype hierarchy until it either (a) finds the member, or (b) doesn't find another prototype.
The hierarchy starts on the object that was called, and then searches its prototype object. If the prototype object has a prototype, it repeats, if no prototype exists, undefined is returned.
For example:
foo = {bar: 'baz'};
console.log(foo.bar); // logs "baz"
foo = {};
console.log(foo.bar); // logs undefined
function Foo(){}
Foo.prototype = {bar: 'baz'};
f = new Foo();
console.log(f.bar);
// logs "baz" because the object f doesn't have an attribute "bar"
// so it checks the prototype
f.bar = 'buzz';
console.log( f.bar ); // logs "buzz" because f has an attribute "bar" set
It looks to me like you've at least somewhat understood these "basic" parts already, but I need to make them explicit just to be sure.
In JavaScript, everything is an object3.
everything is an object.
function Foo(){} doesn't just define a new function, it defines a new function object that can be accessed using Foo.
This is why you can access Foo's prototype with Foo.prototype.
What you can also do is set more functions on Foo:
Foo.talk = function () {
alert('hello world!');
};
This new function can be accessed using:
Foo.talk();
I hope by now you're noticing a similarity between functions on a function object and a static method.
Think of f = new Foo(); as creating a class instance, Foo.prototype.bar = function(){...} as defining a shared method for the class, and Foo.baz = function(){...} as defining a public static method for the class.
ECMAScript 2015 introduced a variety of syntactic sugar for these sorts of declarations to make them simpler to implement while also being easier to read. The previous example can therefore be written as:
class Foo {
bar() {...}
static baz() {...}
}
which allows bar to be called as:
const f = new Foo()
f.bar()
and baz to be called as:
Foo.baz()
1: class was a "Future Reserved Word" in the ECMAScript 5 specification, but ES6 introduces the ability to define classes using the class keyword.
2: essentially a class instance created by a constructor, but there are many nuanced differences that I don't want to mislead you
3: primitive values—which include undefined, null, booleans, numbers, and strings—aren't technically objects because they're low-level language implementations. Booleans, numbers, and strings still interact with the prototype chain as though they were objects, so for the purposes of this answer, it's easier to consider them "objects" even though they're not quite.

You can achieve it as below:
function Foo() {};
Foo.talk = function() { alert('I am talking.'); };
You can now invoke "talk" function as below:
Foo.talk();
You can do this because in JavaScript, functions are objects as well.

Call a static method from an instance:
function Clazz() {};
Clazz.staticMethod = function() {
alert('STATIC!!!');
};
Clazz.prototype.func = function() {
this.constructor.staticMethod();
}
var obj = new Clazz();
obj.func(); // <- Alert's "STATIC!!!"
Simple Javascript Class Project: https://github.com/reduardo7/sjsClass

Here is a good example to demonstrate how Javascript works with static/instance variables and methods.
function Animal(name) {
Animal.count = Animal.count+1||1;// static variables, use function name "Animal"
this.name = name; //instance variable, using "this"
}
Animal.showCount = function () {//static method
alert(Animal.count)
}
Animal.prototype.showName=function(){//instance method
alert(this.name);
}
var mouse = new Animal("Mickey");
var elephant = new Animal("Haddoop");
Animal.showCount(); // static method, count=2
mouse.showName();//instance method, alert "Mickey"
mouse.showCount();//Error!! mouse.showCount is not a function, which is different from Java

In additions, now it is possible to do with class and static
'use strict'
class Foo {
static talk() {
console.log('talk')
};
speak() {
console.log('speak')
};
};
will give
var a = new Foo();
Foo.talk(); // 'talk'
a.talk(); // err 'is not a function'
a.speak(); // 'speak'
Foo.speak(); // err 'is not a function'

I use namespaces:
var Foo = {
element: document.getElementById("id-here"),
Talk: function(message) {
alert("talking..." + message);
},
ChangeElement: function() {
this.element.style.color = "red";
}
};
And to use it:
Foo.Talk("Testing");
Or
Foo.ChangeElement();

ES6 supports now class & static keywords like a charm :
class Foo {
constructor() {}
talk() {
console.log("i am not static");
}
static saying() {
console.log(this.speech);
}
static get speech() {
return "i am static method";
}
}

If you have to write static methods in ES5 I found a great tutorial for that:
//Constructor
var Person = function (name, age){
//private properties
var priv = {};
//Public properties
this.name = name;
this.age = age;
//Public methods
this.sayHi = function(){
alert('hello');
}
}
// A static method; this method only
// exists on the class and doesn't exist
// on child objects
Person.sayName = function() {
alert("I am a Person object ;)");
};
see #https://abdulapopoola.com/2013/03/30/static-and-instance-methods-in-javascript/

Just additional notes. Using class ES6, When we create static methods..the Javacsript engine set the descriptor attribute a lil bit different from the old-school "static" method
function Car() {
}
Car.brand = function() {
console.log('Honda');
}
console.log(
Object.getOwnPropertyDescriptors(Car)
);
it sets internal attribute (descriptor property) for brand() to
..
brand: [object Object] {
configurable: true,
enumerable: true,
value: ..
writable: true
}
..
compared to
class Car2 {
static brand() {
console.log('Honda');
}
}
console.log(
Object.getOwnPropertyDescriptors(Car2)
);
that sets internal attribute for brand() to
..
brand: [object Object] {
configurable: true,
enumerable: false,
value:..
writable: true
}
..
see that enumerable is set to false for static method in ES6.
it means you cant use the for-in loop to check the object
for (let prop in Car) {
console.log(prop); // brand
}
for (let prop in Car2) {
console.log(prop); // nothing here
}
static method in ES6 is treated like other's class private property (name, length, constructor) except that static method is still writable thus the descriptor writable is set to true { writable: true }. it also means that we can override it
Car2.brand = function() {
console.log('Toyota');
};
console.log(
Car2.brand() // is now changed to toyota
);

When you try to call Foo.talk, the JS tries to search a function talk through __proto__ and, of course, it can't be found.
Foo.__proto__ is Function.prototype.

Static method calls are made directly on the class and are not callable on instances of the class. Static methods are often used to
create utility function
Pretty clear description
Taken Directly from mozilla.org
Foo needs to be bound to your class
Then when you create a new instance you can call myNewInstance.foo()
If you import your class you can call a static method

When i faced such a situation, i have done something like this:
Logger = {
info: function (message, tag) {
var fullMessage = '';
fullMessage = this._getFormatedMessage(message, tag);
if (loggerEnabled) {
console.log(fullMessage);
}
},
warning: function (message, tag) {
var fullMessage = '';
fullMessage = this._getFormatedMessage(message, tag);
if (loggerEnabled) {
console.warn(fullMessage);`enter code here`
}
},
_getFormatedMessage: function () {}
};
so now i can call the info method as
Logger.info("my Msg", "Tag");

In your case, if you want to Foo.talk():
function Foo() {};
// But use Foo.talk would be inefficient
Foo.talk = function () {
alert('hello~\n');
};
Foo.talk(); // 'hello~\n'
But it's an inefficient way to implement, using prototype is better.
Another way, My way is defined as static class:
var Foo = new function() {
this.talk = function () {
alert('hello~\n');
};
};
Foo.talk(); // 'hello~\n'
Above static class doesn't need to use prototype because it will be only constructed once as static usage.
https://github.com/yidas/js-design-patterns/tree/master/class

Javascript has no actual classes rather it uses a system of prototypal inheritance in which objects 'inherit' from other objects via their prototype chain. This is best explained via code itself:
function Foo() {};
// creates a new function object
Foo.prototype.talk = function () {
console.log('hello~\n');
};
// put a new function (object) on the prototype (object) of the Foo function object
var a = new Foo;
// When foo is created using the new keyword it automatically has a reference
// to the prototype property of the Foo function
// We can show this with the following code
console.log(Object.getPrototypeOf(a) === Foo.prototype);
a.talk(); // 'hello~\n'
// When the talk method is invoked it will first look on the object a for the talk method,
// when this is not present it will look on the prototype of a (i.e. Foo.prototype)
// When you want to call
// Foo.talk();
// this will not work because you haven't put the talk() property on the Foo
// function object. Rather it is located on the prototype property of Foo.
// We could make it work like this:
Foo.sayhi = function () {
console.log('hello there');
};
Foo.sayhi();
// This works now. However it will not be present on the prototype chain
// of objects we create out of Foo

There are tree ways methods and properties are implemented on function or class objects, and on they instances.
On the class (or function) itself : Foo.method() or Foo.prop. Those are static methods or properties
On its prototype : Foo.prototype.method() or Foo.prototype.prop. When created, the instances will inherit those object via the prototype witch is {method:function(){...}, prop:...}. So the foo object will receive, as prototype, a copy of the Foo.prototype object.
On the instance itself : the method or property is added to the object itself. foo={method:function(){...}, prop:...}
The this keyword will represent and act differently according to the context. In a static method, it will represent the class itself (witch is after all an instance of Function : class Foo {} is quite equivalent to let Foo = new Function({})
With ECMAScript 2015, that seems well implemented today, it is clearer to see the difference between class (static) methods and properties, instance methods and properties and own methods ans properties. You can thus create three method or properties having the same name, but being different because they apply to different objects, the this keyword, in methods, will apply to, respectively, the class object itself and the instance object, by the prototype or by its own.
class Foo {
constructor(){super();}
static prop = "I am static" // see 1.
static method(str) {alert("static method"+str+" :"+this.prop)} // see 1.
prop="I am of an instance"; // see 2.
method(str) {alert("instance method"+str+" : "+this.prop)} // see 2.
}
var foo= new Foo();
foo.prop = "I am of own"; // see 3.
foo.func = function(str){alert("own method" + str + this.prop)} // see 3.

Related

How to compare JavaScript Classes with Java Classes [duplicate]

I understand basic JavaScript pseudo-classes:
function Foo(bar) {
this._bar = bar;
}
Foo.prototype.getBar = function() {
return this._bar;
};
var foo = new Foo('bar');
alert(foo.getBar()); // 'bar'
alert(foo._bar); // 'bar'
I also understand the module pattern, which can emulate encapsulation:
var Foo = (function() {
var _bar;
return {
getBar: function() {
return _bar;
},
setBar: function(bar) {
_bar = bar;
}
};
})();
Foo.setBar('bar');
alert(Foo.getBar()); // 'bar'
alert(Foo._bar); // undefined
But there are un-OOP-like properties to both of these patterns. The former does not provide encapsulation. The latter does not provide instantiation. Both patterns can be modified to support pseudo-inheritance.
What I'd like to know is if there is any pattern that allows:
Inheritance
Encapsulation (support for "private" properties/methods)
Instantiation (can have multiple instances of the "class", each with its own state)
what about this :
var Foo = (function() {
// "private" variables
var _bar;
// constructor
function Foo() {};
// add the methods to the prototype so that all of the
// Foo instances can access the private static
Foo.prototype.getBar = function() {
return _bar;
};
Foo.prototype.setBar = function(bar) {
_bar = bar;
};
return Foo;
})();
And now we have instantiation, encapsulation and inheritance.
But, there still is a problem. The private variable is static because it's shared across all instances of Foo. Quick demo :
var a = new Foo();
var b = new Foo();
a.setBar('a');
b.setBar('b');
alert(a.getBar()); // alerts 'b' :(
A better approach might be using conventions for the private variables : any private variable should start with an underscore. This convention is well known and widely used, so when another programmer uses or alters your code and sees a variable starting with underscore, he'll know that it's private, for internal use only and he won't modify it.
Here's the rewrite using this convention :
var Foo = (function() {
// constructor
function Foo() {
this._bar = "some value";
};
// add the methods to the prototype so that all of the
// Foo instances can access the private static
Foo.prototype.getBar = function() {
return this._bar;
};
Foo.prototype.setBar = function(bar) {
this._bar = bar;
};
return Foo;
})();
Now we have instantiation, inheritance, but we've lost our encapsulation in favor of conventions :
var a = new Foo();
var b = new Foo();
a.setBar('a');
b.setBar('b');
alert(a.getBar()); // alerts 'a' :)
alert(b.getBar()); // alerts 'b' :)
but the private vars are accessible :
delete a._bar;
b._bar = null;
alert(a.getBar()); // alerts undefined :(
alert(b.getBar()); // alerts null :(
I think what you're looking for is the "Revealing Prototype Pattern".
Dan Wahlin has a great blog post: http://weblogs.asp.net/dwahlin/archive/2011/08/03/techniques-strategies-and-patterns-for-structuring-javascript-code-revealing-prototype-pattern.aspx
and even better Pluralsight course on this and other related JavaScript structures: http://pluralsight.com/training/courses/TableOfContents?courseName=structuring-javascript&highlight=dan-wahlin_structuring-javascript-module1!dan-wahlin_structuring-javascript-module2!dan-wahlin_structuring-javascript-module5!dan-wahlin_structuring-javascript-module4!dan-wahlin_structuring-javascript-module3#structuring-javascript-module1
Closures are your friend!
Simply add the following tiny function to your top-level namespace and you're ready to OOP, complete with
encapsulation, with static and instance, private and public variables
and methods
inheritance
class-level injection (eg. for singleton services)
no constraints, no framework, just plain old Javascript
function clazz(_class, _super) {
var _prototype = Object.create((_super || function() {}).prototype);
var _deps = Array.isArray(_class) ? _class : [_class]; _class = _deps.pop();
_deps.push(_super);
_prototype.constructor = _class.apply(_prototype, _deps) || _prototype.constructor;
_prototype.constructor.prototype = _prototype;
return _prototype.constructor;
}
The above function simply wires up the given class' prototype and eventual parent constructor, and returns the resulting constructor, ready for instantiation.
Now you can most naturally declare your base classes (ie. that extend {}) in a few lines of code, complete with static, instance, public and private properties and methods:
MyBaseClass = clazz(function(_super) { // class closure, 'this' is the prototype
// local variables and functions declared here are private static variables and methods
// properties of 'this' declared here are public static variables and methods
return function MyBaseClass(arg1, ...) { // or: this.constructor = function(arg1, ...) {
// local variables and functions declared here are private instance variables and methods
// properties of 'this' declared here are public instance variables and methods
};
});
Extending a class? All the more natural as well:
MySubClass = clazz(function(_super) { // class closure, 'this' is the prototype
// local variables and functions are private static variables and methods
// properties of this are public static variables and methods
return function MySubClass(arg1, ...) // or: this.constructor = function(arg1, ...) {
// local variables and functions are private instance variables and methods
_super.apply(this, arguments); // or _super.call(this, arg1, ...)
// properties of 'this' are public instance variables and methods
};
}, MyBaseClass); // extend MyBaseClass
In other words, pass the parent class constructor to the clazz function, and add _super.call(this, arg1, ...) to the child class' constructor, which calls the parent class' constructor with the required arguments. As with any standard inheritance scheme, the parent constructor call must come first in the child constructor.
Note that you're free to either explicitly name the contructor with this.constructor = function(arg1, ...) {...}, or this.constructor = function MyBaseClass(arg1, ...) {...} if you need simple access to the constructor from the code inside the constructor, or even simply return the constructor with return function MyBaseClass(arg1, ...) {...} as in the above code. Whichever you feel most comfortable with.
Simply instantiate objects from such classes as you normally would from a constructor: myObj = new MyBaseClass();
Notice how closures nicely encapsulate all of a class' functionality, including its prototype and constructor, providing a natural namespace for static and instance, private and public properties and methods. The code within a class closure is completely free of constraints. No framework, no constraints, just plain old Javascript. Closures rule!
Oh, and if you want to inject singleton dependencies (eg. services) into your class (ie. prototype), clazz will do this for you à la AngularJS:
DependentClass = clazz([aService, function(_service, _super) { // class closure, 'this' is the prototype
// the injected _service dependency is available anywhere in this class
return function MySubClass(arg1, ...) // or: this.constructor = function(arg1, ...) {
_super.apply(this, arguments); // or _super.call(this, arg1, ...)
// the injected _service dependency is also available in the constructor
};
}], MyBaseClass); // extend MyBaseClass
As the above code attempts to illustrate, to inject singletons into a class simply place the class closure as the last entry into an array with all its dependencies. Also add the corresponding parameters to the class closure in front of the _super parameter and in the same order as in the array. clazz will inject the dependencies from the array as arguments into the class closure. The dependencies are then available anywhere within the class closure, including the constructor.
In fact, since the dependencies are injected into the prototype, they are available to static methods even before any object is instantiated from the class. This is very powerful for wiring up your apps or unit and end-to-end tests. It also removes the need to inject singletons into constructors, which otherwise unnecessarily clobbers the constructor's code.
Check this fiddle: http://jsfiddle.net/5uzmyvdq/1/
Feedback and suggestions most welcome!
Javascript is certainly OOP. You always have polymorphism, however you have to sacrifice either encapsulation or instantiation which is the problem you ran into.
Try this to just brush up on your options.
http://www.webmonkey.com/2010/02/make_oop_classes_in_javascript/
Also an old question that I had bookmarked:
Is JavaScript object-oriented?
JavaScript classes are introduced in ECMAScript 6 and are syntactical sugar over JavaScript's existing prototype-based inheritance. The class syntax is not introducing a new object-oriented inheritance model to JavaScript. JavaScript classes provide a much simpler and clearer syntax to create objects and deal with inheritance.
You can see more in this link Mozilla Community
Github
I was thinking about this particular subject recently and the limitations of the various approaches. The best solution I've been able to come up with is below.
It seems to solve the problems with inheritance, instantiation and ecapsulation (at least from tests on Google Chrome v.24) although probably at a cost in memory usage.
function ParentClass(instanceProperty) {
// private
var _super = Object.create(null),
privateProperty = "private " + instanceProperty;
// public
var api = Object.create(_super);
api.constructor = this.constructor;
api.publicMethod = function() {
console.log( "publicMethod on ParentClass" );
console.log( privateProperty );
};
api.publicMethod2 = function() {
console.log( "publicMethod2 on ParentClass" );
console.log( privateProperty );
};
return api;
}
function SubClass(instanceProperty) {
// private
var _super = ParentClass.call( this, instanceProperty ),
privateProperty = "private sub " + instanceProperty;
// public
var api = Object.create(_super);
api.constructor = this.constructor;
api.publicMethod = function() {
_super.publicMethod.call(this); // call method on ParentClass
console.log( "publicMethod on SubClass" );
console.log( privateProperty );
}
return api;
}
var par1 = new ParentClass(0),
par2 = new ParentClass(1),
sub1 = new SubClass(2),
sub2 = new SubClass(3);
par1.publicMethod();
par2.publicMethod();
sub1.publicMethod();
sub2.publicMethod();
par1.publicMethod2();
par2.publicMethod2();
sub1.publicMethod2();
sub2.publicMethod2();
One problem with a lot of JS classes out there is that they do not secure their fields and methods which means that anyone using it may accidentally replace a method. For example the code:
function Class(){
var name="Luis";
var lName="Potter";
}
Class.prototype.changeName=function(){
this.name="BOSS";
console.log(this.name);
};
var test= new Class();
console.log(test.name);
test.name="ugly";
console.log(test.name);
test.changeName();
test.changeName=function(){
console.log("replaced");
};
test.changeName();
test.changeName();
will output:
ugly
BOSS
replaced
replaced
As you can see the changeName function gets overriden. The following code would secure the class methods and fields and the getters and setters would be used to access them making this more of a "regular" class found in other languages.
function Class(){
var name="Luis";
var lName="Potter";
function getName(){
console.log("called getter");
return name;
};
function setName(val){
console.log("called setter");
name = val
};
function getLName(){
return lName
};
function setLName(val){
lName = val;
};
Object.defineProperties(this,{
name:{
get:getName,
set:setName,
enumerable:true,
configurable:false
},
lastName:{
get:getLName,
set:setLName,
enumerable:true,
configurable:false
}
});
}
Class.prototype.changeName=function(){
this.name="BOSS";
};
Object.defineProperty(Class.prototype, "changeName", {
writable:false,
configurable:false
});
var test= new Class();
console.log(test.name);
test.name="ugly";
console.log(test.name);
test.changeName();
test.changeName=function(){
console.log("replaced")
};
test.changeName();
test.changeName();
This outputs:
called getter
Luis
called setter
called getter
ugly
called setter
called setter
called setter
Now your class methods cannot be replaced by random values or functions and the code in the getters and setters always run when attempting to read or write to field.
This closure allows instantiation and encapsulation but no inheritance.
function Foo(){
var _bar = "foo";
return {
getBar: function() {
return _bar;
},
setBar: function(bar) {
_bar = bar;
}
};
};
a = Foo();
b = Foo();
a.setBar("bar");
alert(a.getBar()); // "bar"
alert(b.getBar()); // "foo"

JavaScript: how to attribute properties to objects from inside static class [duplicate]

What is the difference between the following two declarations?
Class.method = function () { /* code */ }
Class.prototype.method = function () { /* code using this.values */ }
Is it okay to think of the first statement as a declaration of a static method, and the second statement as a declaration of an instance method?
Yes, the first function has no relationship with an object instance of that constructor function, you can consider it like a 'static method'.
In JavaScript functions are first-class objects, that means you can treat them just like any object, in this case, you are only adding a property to the function object.
The second function, as you are extending the constructor function prototype, it will be available to all the object instances created with the new keyword, and the context within that function (the this keyword) will refer to the actual object instance where you call it.
Consider this example:
// constructor function
function MyClass () {
var privateVariable; // private member only available within the constructor fn
this.privilegedMethod = function () { // it can access private members
//..
};
}
// A 'static method', it's just like a normal function
// it has no relation with any 'MyClass' object instance
MyClass.staticMethod = function () {};
MyClass.prototype.publicMethod = function () {
// the 'this' keyword refers to the object instance
// you can access only 'privileged' and 'public' members
};
var myObj = new MyClass(); // new object instance
myObj.publicMethod();
MyClass.staticMethod();
Yes, the first one is a static method also called class method, while the second one is an instance method.
Consider the following examples, to understand it in more detail.
In ES5
function Person(firstName, lastName) {
this.firstName = firstName;
this.lastName = lastName;
}
Person.isPerson = function(obj) {
return obj.constructor === Person;
}
Person.prototype.sayHi = function() {
return "Hi " + this.firstName;
}
In the above code, isPerson is a static method, while sayHi is an instance method of Person.
Below, is how to create an object from Person constructor.
var aminu = new Person("Aminu", "Abubakar");
Using the static method isPerson.
Person.isPerson(aminu); // will return true
Using the instance method sayHi.
aminu.sayHi(); // will return "Hi Aminu"
In ES6
class Person {
constructor(firstName, lastName) {
this.firstName = firstName;
this.lastName = lastName;
}
static isPerson(obj) {
return obj.constructor === Person;
}
sayHi() {
return `Hi ${this.firstName}`;
}
}
Look at how static keyword was used to declare the static method isPerson.
To create an object of Person class.
const aminu = new Person("Aminu", "Abubakar");
Using the static method isPerson.
Person.isPerson(aminu); // will return true
Using the instance method sayHi.
aminu.sayHi(); // will return "Hi Aminu"
NOTE: Both examples are essentially the same, JavaScript remains a classless language. The class introduced in ES6 is primarily a syntactical sugar over the existing prototype-based inheritance model.
When you create more than one instance of MyClass , you will still only have only one instance of publicMethod in memory but in case of privilegedMethod you will end up creating lots of instances and staticMethod has no relationship with an object instance.
That's why prototypes save memory.
Also, if you change the parent object's properties, is the child's corresponding property hasn't been changed, it'll be updated.
For visual learners, when defining the function without .prototype
ExampleClass = function(){};
ExampleClass.method = function(customString){
console.log((customString !== undefined)?
customString :
"called from func def.");}
ExampleClass.method(); // >> output: `called from func def.`
var someInstance = new ExampleClass();
someInstance.method('Called from instance');
// >> error! `someInstance.method is not a function`
With same code, if .prototype is added,
ExampleClass.prototype.method = function(customString){
console.log((customString !== undefined)?
customString :
"called from func def.");}
ExampleClass.method();
// > error! `ExampleClass.method is not a function.`
var someInstance = new ExampleClass();
someInstance.method('Called from instance');
// > output: `Called from instance`
To make it clearer,
ExampleClass = function(){};
ExampleClass.directM = function(){} //M for method
ExampleClass.prototype.protoM = function(){}
var instanceOfExample = new ExampleClass();
ExampleClass.directM(); ✓ works
instanceOfExample.directM(); x Error!
ExampleClass.protoM(); x Error!
instanceOfExample.protoM(); ✓ works
****Note for the example above, someInstance.method() won't be executed as,
ExampleClass.method() causes error & execution cannot continue.
But for the sake of illustration & easy understanding, I've kept this sequence.****
Results generated from chrome developer console & JS Bin
Click on the jsbin link above to step through the code.
Toggle commented section with ctrl+/
A. Static Method:
Class.method = function () { /* code */ }
method() here is a function property added to an another function (here Class).
You can directly access the method() by the class / function name. Class.method();
No need for creating any object/instance (new Class()) for accessing the method(). So you could call it as a static method.
B. Prototype Method (Shared across all the instances):
Class.prototype.method = function () { /* code using this.values */ }
method() here is a function property added to an another function protype (here Class.prototype).
You can either directly access by class name or by an object/instance (new Class()).
Added advantage - this way of method() definition will create only one copy of method() in the memory and will be shared across all the object's/instance's created from the Class
C. Class Method (Each instance has its own copy):
function Class () {
this.method = function () { /* do something with the private members */};
}
method() here is a method defined inside an another function (here Class).
You can't directly access the method() by the class / function name. Class.method();
You need to create an object/instance (new Class()) for the method() access.
This way of method() definition will create a unique copy of the method() for each and every objects created using the constructor function (new Class()).
Added advantage - Bcos of the method() scope it has the full right to access the local members(also called private members) declared inside the constructor function (here Class)
Example:
function Class() {
var str = "Constructor method"; // private variable
this.method = function () { console.log(str); };
}
Class.prototype.method = function() { console.log("Prototype method"); };
Class.method = function() { console.log("Static method"); };
new Class().method(); // Constructor method
// Bcos Constructor method() has more priority over the Prototype method()
// Bcos of the existence of the Constructor method(), the Prototype method
// will not be looked up. But you call it by explicity, if you want.
// Using instance
new Class().constructor.prototype.method(); // Prototype method
// Using class name
Class.prototype.method(); // Prototype method
// Access the static method by class name
Class.method(); // Static method

How can I extend Array without a class declaration?

I was really struggling to make a custom object that could inherit all the properties of an array, but would also behave the same as a normal instance, that is to say, instanceof and constructor would behave like you want them to. I had read that class declarations were just syntactic sugar, so I never turned to them for a solution (I knew very little about them).
Before I had my big breakthrough, I had created this abomination:
function arrayLike() {
let al = [];
//make obj.constructor work
Object.defineProperty(al, 'constructor', {value: arrayLike});
//add methods
//make (obj instanceof arrayLike) == true
return new Proxy(al, {
getPrototypeOf() {
return arrayLike.prototype;
},
})
}
//make (obj instanceof Array) == true
Reflect.setPrototypeOf(arrayLike.prototype, Array.prototype);
It just so happens that I saw a class example very close to what I wanted to do, and then discovered that it was perfectly made for the job:
class arrayLike extends Array {
//add methods
}
Looking at it in Chrome DevToos, I can see that what I created does not have the same structure as this at all.
If class declarations truly are syntactic sugar, then how the hell do you create this object without it?
Javascript is a language having a form of inheritance which is called prototypal inheritance.
The idea behind it is that given an object, it has an hidden property called prototype which is a reference to another object, which is said to be the prototype object.
This relationship is important when you ask the javascript engine to give you the value of an object property, let's call it foo just to fix the idea. The javascript engine will first check your object to see if it has a property called foo: if the property is defined on your object its value is returned and the search completes. If, otherwise, your object doesn't have a property called foo then its prototype object is searched and the same process is repeated again.
This procedure is repeated recursively until all the so called prototype chain has been explored. The root of the prototype chain is a built-in javascript object that you can reference with the expression Object.prototype and is the object from which all the other javascript objects derive. Notice that, if the foo property is missing in all the objects composing the entire prototype chain, then the value undefined is returned.
This is the real form of inheritance built into javascript and it's the business which really seats behind the ES6 class keywork which is a convenience which hides this mess and gives you the impression that javascript has a form of class inheritance (class inheritance is more widely known and most of programmers find it easier to think of than prototypal inheritance).
The bare minimum that you can do in order to take an object and decide that it should behave like an array is the following:
const myArray = [];
const myObject = { foo: "bar" }
Object.setPrototypeOf(myObject, myArray);
myObject.push("hello");
myObject.push("world");
console.log(myObject.length); // prints 2
This book is the best reference that I know for the javascript language. This is good too, but nowdays is a bit outdated and it's not as easy to follow along as the previous.
An example a bit more involved than the previous one can be implemented by using a function as a constructor. This is actually the ES5 old-school way to implement class-like inheritance, the thing that you did at the time of ES5 in order to mimic classes:
function SpecialArray(name) {
this.name = name;
}
SpecialArray.prototype = [];
// fix the constructor property mess (see the book linked above)
Object.defineProperty(SpecialArray.prototype, "constructor", {
value: SpecialArray,
enumerable: false,
writable: true
});
SpecialArray.prototype.getSalutation = function() {
return "Hello my name is " + this.name;
};
const mySpecialArray = new SpecialArray("enrico");
// you can call the methods and properties defined on Array.prototype
mySpecialArray.push("hello");
mySpecialArray.push("world");
console.log(mySpecialArray.length); // prints 2
// you can use the methods and properties defined on SpecialArray.prototype
console.log(mySpecialArray.name); // prints enrico
console.log(mySpecialArray.getSalutation()); // prints Hello my name is enrico
// important sanity checks to be sure that everything works as expected
console.log(mySpecialArray instanceof Array); // prints true
console.log(mySpecialArray instanceof SpecialArray); // prints true
console.log(mySpecialArray.constructor === SpecialArray); // prints true
// you can iterate over the special array content
for (item of mySpecialArray){
console.log(item);
}
// you can read special array entries
console.log(mySpecialArray[1]); // prints world
Edit: I study the transpiled code of babel and find that one extra touch is needed to correctly extends built-in class like Array, we need to wrap the Array constructor within a normal Wrapper function first, otherwise the prototype chain would be broken at construction.
function _wrapNativeSuper(Class) {
_wrapNativeSuper = function _wrapNativeSuper(Class) {
function Wrapper() {
var instance = Class.apply(this, arguments)
instance.__proto__ = this.__proto__.constructor.prototype;
return instance;
}
Wrapper.prototype = Object.create(Class.prototype, {
constructor: {
value: Wrapper,
enumerable: false,
writable: true,
configurable: true
}
});
Wrapper.__proto__ = Class;
return Wrapper;
};
return _wrapNativeSuper(Class);
}
The class declaration syntax does 3 things.
setup the constructor properly
setup the prototype chain properly
inherit static properties
So in order to replay what class Foo extends Array {} does in old school js, you need to do those 3 things accordingly.
// 0. wrap the native Array constructor
// this step is only required when extending built-in objects like Array
var _Array = _wrapNativeSuper(Array)
// 1. setup the constructor
function Foo() { return _Array.apply(this, arguments) }
// 2. setup prototype chain
function __dummy__() { this.constructor = Foo }
__dummy__.prototype = _Array.prototype
Foo.prototype = new __dummy__()
// 3. inherit static properties
Foo.__proto__ = _Array
Runnable example below:
function _wrapNativeSuper(Class) {
_wrapNativeSuper = function _wrapNativeSuper(Class) {
function Wrapper() {
var instance = Class.apply(this, arguments)
instance.__proto__ = this.__proto__.constructor.prototype;
return instance;
}
Wrapper.prototype = Object.create(Class.prototype, {
constructor: {
value: Wrapper,
enumerable: false,
writable: true,
configurable: true
}
});
Wrapper.__proto__ = Class;
return Wrapper;
};
return _wrapNativeSuper(Class);
}
// 0. wrap the native Array constructor
// this step is only required when extending built-in objects like Array
var _Array = _wrapNativeSuper(Array)
// 1. setup the constructor
function Foo() { return _Array.apply(this, arguments) }
// 2. setup prototype chain
function __dummy__() { this.constructor = Foo }
__dummy__.prototype = _Array.prototype
Foo.prototype = new __dummy__()
// 3. inherit static properties
Foo.__proto__ = _Array
// test
var foo = new Foo;
console.log('instanceof?', foo instanceof Foo);
Foo.prototype.hi = function() { return 'hello' }
console.log('method?', foo.hi());

JS Method Declaration - define method outside class body [duplicate]

What is the difference between the following two declarations?
Class.method = function () { /* code */ }
Class.prototype.method = function () { /* code using this.values */ }
Is it okay to think of the first statement as a declaration of a static method, and the second statement as a declaration of an instance method?
Yes, the first function has no relationship with an object instance of that constructor function, you can consider it like a 'static method'.
In JavaScript functions are first-class objects, that means you can treat them just like any object, in this case, you are only adding a property to the function object.
The second function, as you are extending the constructor function prototype, it will be available to all the object instances created with the new keyword, and the context within that function (the this keyword) will refer to the actual object instance where you call it.
Consider this example:
// constructor function
function MyClass () {
var privateVariable; // private member only available within the constructor fn
this.privilegedMethod = function () { // it can access private members
//..
};
}
// A 'static method', it's just like a normal function
// it has no relation with any 'MyClass' object instance
MyClass.staticMethod = function () {};
MyClass.prototype.publicMethod = function () {
// the 'this' keyword refers to the object instance
// you can access only 'privileged' and 'public' members
};
var myObj = new MyClass(); // new object instance
myObj.publicMethod();
MyClass.staticMethod();
Yes, the first one is a static method also called class method, while the second one is an instance method.
Consider the following examples, to understand it in more detail.
In ES5
function Person(firstName, lastName) {
this.firstName = firstName;
this.lastName = lastName;
}
Person.isPerson = function(obj) {
return obj.constructor === Person;
}
Person.prototype.sayHi = function() {
return "Hi " + this.firstName;
}
In the above code, isPerson is a static method, while sayHi is an instance method of Person.
Below, is how to create an object from Person constructor.
var aminu = new Person("Aminu", "Abubakar");
Using the static method isPerson.
Person.isPerson(aminu); // will return true
Using the instance method sayHi.
aminu.sayHi(); // will return "Hi Aminu"
In ES6
class Person {
constructor(firstName, lastName) {
this.firstName = firstName;
this.lastName = lastName;
}
static isPerson(obj) {
return obj.constructor === Person;
}
sayHi() {
return `Hi ${this.firstName}`;
}
}
Look at how static keyword was used to declare the static method isPerson.
To create an object of Person class.
const aminu = new Person("Aminu", "Abubakar");
Using the static method isPerson.
Person.isPerson(aminu); // will return true
Using the instance method sayHi.
aminu.sayHi(); // will return "Hi Aminu"
NOTE: Both examples are essentially the same, JavaScript remains a classless language. The class introduced in ES6 is primarily a syntactical sugar over the existing prototype-based inheritance model.
When you create more than one instance of MyClass , you will still only have only one instance of publicMethod in memory but in case of privilegedMethod you will end up creating lots of instances and staticMethod has no relationship with an object instance.
That's why prototypes save memory.
Also, if you change the parent object's properties, is the child's corresponding property hasn't been changed, it'll be updated.
For visual learners, when defining the function without .prototype
ExampleClass = function(){};
ExampleClass.method = function(customString){
console.log((customString !== undefined)?
customString :
"called from func def.");}
ExampleClass.method(); // >> output: `called from func def.`
var someInstance = new ExampleClass();
someInstance.method('Called from instance');
// >> error! `someInstance.method is not a function`
With same code, if .prototype is added,
ExampleClass.prototype.method = function(customString){
console.log((customString !== undefined)?
customString :
"called from func def.");}
ExampleClass.method();
// > error! `ExampleClass.method is not a function.`
var someInstance = new ExampleClass();
someInstance.method('Called from instance');
// > output: `Called from instance`
To make it clearer,
ExampleClass = function(){};
ExampleClass.directM = function(){} //M for method
ExampleClass.prototype.protoM = function(){}
var instanceOfExample = new ExampleClass();
ExampleClass.directM(); ✓ works
instanceOfExample.directM(); x Error!
ExampleClass.protoM(); x Error!
instanceOfExample.protoM(); ✓ works
****Note for the example above, someInstance.method() won't be executed as,
ExampleClass.method() causes error & execution cannot continue.
But for the sake of illustration & easy understanding, I've kept this sequence.****
Results generated from chrome developer console & JS Bin
Click on the jsbin link above to step through the code.
Toggle commented section with ctrl+/
A. Static Method:
Class.method = function () { /* code */ }
method() here is a function property added to an another function (here Class).
You can directly access the method() by the class / function name. Class.method();
No need for creating any object/instance (new Class()) for accessing the method(). So you could call it as a static method.
B. Prototype Method (Shared across all the instances):
Class.prototype.method = function () { /* code using this.values */ }
method() here is a function property added to an another function protype (here Class.prototype).
You can either directly access by class name or by an object/instance (new Class()).
Added advantage - this way of method() definition will create only one copy of method() in the memory and will be shared across all the object's/instance's created from the Class
C. Class Method (Each instance has its own copy):
function Class () {
this.method = function () { /* do something with the private members */};
}
method() here is a method defined inside an another function (here Class).
You can't directly access the method() by the class / function name. Class.method();
You need to create an object/instance (new Class()) for the method() access.
This way of method() definition will create a unique copy of the method() for each and every objects created using the constructor function (new Class()).
Added advantage - Bcos of the method() scope it has the full right to access the local members(also called private members) declared inside the constructor function (here Class)
Example:
function Class() {
var str = "Constructor method"; // private variable
this.method = function () { console.log(str); };
}
Class.prototype.method = function() { console.log("Prototype method"); };
Class.method = function() { console.log("Static method"); };
new Class().method(); // Constructor method
// Bcos Constructor method() has more priority over the Prototype method()
// Bcos of the existence of the Constructor method(), the Prototype method
// will not be looked up. But you call it by explicity, if you want.
// Using instance
new Class().constructor.prototype.method(); // Prototype method
// Using class name
Class.prototype.method(); // Prototype method
// Access the static method by class name
Class.method(); // Static method

Class vs. static method in JavaScript

I know this will work:
function Foo() {};
Foo.prototype.talk = function () {
alert('hello~\n');
};
var a = new Foo;
a.talk(); // 'hello~\n'
But if I want to call
Foo.talk() // this will not work
Foo.prototype.talk() // this works correctly
I find some methods to make Foo.talk work,
Foo.__proto__ = Foo.prototype
Foo.talk = Foo.prototype.talk
Are there other ways to do this? I don’t know whether it is right to do so. Do you use class methods or static methods in your JavaScript code?
First off, remember that JavaScript is primarily a prototypal language, rather than a class-based language1. Foo isn't a class, it's a function, which is an object. You can instantiate an object from that function using the new keyword which will allow you to create something similar to a class in a standard OOP language.
I'd suggest ignoring __proto__ most of the time because it has poor cross browser support, and instead focus on learning about how prototype works.
If you have an instance of an object created from a function2 and you access one of its members (methods, attributes, properties, constants etc) in any way, the access will flow down the prototype hierarchy until it either (a) finds the member, or (b) doesn't find another prototype.
The hierarchy starts on the object that was called, and then searches its prototype object. If the prototype object has a prototype, it repeats, if no prototype exists, undefined is returned.
For example:
foo = {bar: 'baz'};
console.log(foo.bar); // logs "baz"
foo = {};
console.log(foo.bar); // logs undefined
function Foo(){}
Foo.prototype = {bar: 'baz'};
f = new Foo();
console.log(f.bar);
// logs "baz" because the object f doesn't have an attribute "bar"
// so it checks the prototype
f.bar = 'buzz';
console.log( f.bar ); // logs "buzz" because f has an attribute "bar" set
It looks to me like you've at least somewhat understood these "basic" parts already, but I need to make them explicit just to be sure.
In JavaScript, everything is an object3.
everything is an object.
function Foo(){} doesn't just define a new function, it defines a new function object that can be accessed using Foo.
This is why you can access Foo's prototype with Foo.prototype.
What you can also do is set more functions on Foo:
Foo.talk = function () {
alert('hello world!');
};
This new function can be accessed using:
Foo.talk();
I hope by now you're noticing a similarity between functions on a function object and a static method.
Think of f = new Foo(); as creating a class instance, Foo.prototype.bar = function(){...} as defining a shared method for the class, and Foo.baz = function(){...} as defining a public static method for the class.
ECMAScript 2015 introduced a variety of syntactic sugar for these sorts of declarations to make them simpler to implement while also being easier to read. The previous example can therefore be written as:
class Foo {
bar() {...}
static baz() {...}
}
which allows bar to be called as:
const f = new Foo()
f.bar()
and baz to be called as:
Foo.baz()
1: class was a "Future Reserved Word" in the ECMAScript 5 specification, but ES6 introduces the ability to define classes using the class keyword.
2: essentially a class instance created by a constructor, but there are many nuanced differences that I don't want to mislead you
3: primitive values—which include undefined, null, booleans, numbers, and strings—aren't technically objects because they're low-level language implementations. Booleans, numbers, and strings still interact with the prototype chain as though they were objects, so for the purposes of this answer, it's easier to consider them "objects" even though they're not quite.
You can achieve it as below:
function Foo() {};
Foo.talk = function() { alert('I am talking.'); };
You can now invoke "talk" function as below:
Foo.talk();
You can do this because in JavaScript, functions are objects as well.
Call a static method from an instance:
function Clazz() {};
Clazz.staticMethod = function() {
alert('STATIC!!!');
};
Clazz.prototype.func = function() {
this.constructor.staticMethod();
}
var obj = new Clazz();
obj.func(); // <- Alert's "STATIC!!!"
Simple Javascript Class Project: https://github.com/reduardo7/sjsClass
Here is a good example to demonstrate how Javascript works with static/instance variables and methods.
function Animal(name) {
Animal.count = Animal.count+1||1;// static variables, use function name "Animal"
this.name = name; //instance variable, using "this"
}
Animal.showCount = function () {//static method
alert(Animal.count)
}
Animal.prototype.showName=function(){//instance method
alert(this.name);
}
var mouse = new Animal("Mickey");
var elephant = new Animal("Haddoop");
Animal.showCount(); // static method, count=2
mouse.showName();//instance method, alert "Mickey"
mouse.showCount();//Error!! mouse.showCount is not a function, which is different from Java
In additions, now it is possible to do with class and static
'use strict'
class Foo {
static talk() {
console.log('talk')
};
speak() {
console.log('speak')
};
};
will give
var a = new Foo();
Foo.talk(); // 'talk'
a.talk(); // err 'is not a function'
a.speak(); // 'speak'
Foo.speak(); // err 'is not a function'
I use namespaces:
var Foo = {
element: document.getElementById("id-here"),
Talk: function(message) {
alert("talking..." + message);
},
ChangeElement: function() {
this.element.style.color = "red";
}
};
And to use it:
Foo.Talk("Testing");
Or
Foo.ChangeElement();
ES6 supports now class & static keywords like a charm :
class Foo {
constructor() {}
talk() {
console.log("i am not static");
}
static saying() {
console.log(this.speech);
}
static get speech() {
return "i am static method";
}
}
If you have to write static methods in ES5 I found a great tutorial for that:
//Constructor
var Person = function (name, age){
//private properties
var priv = {};
//Public properties
this.name = name;
this.age = age;
//Public methods
this.sayHi = function(){
alert('hello');
}
}
// A static method; this method only
// exists on the class and doesn't exist
// on child objects
Person.sayName = function() {
alert("I am a Person object ;)");
};
see #https://abdulapopoola.com/2013/03/30/static-and-instance-methods-in-javascript/
Just additional notes. Using class ES6, When we create static methods..the Javacsript engine set the descriptor attribute a lil bit different from the old-school "static" method
function Car() {
}
Car.brand = function() {
console.log('Honda');
}
console.log(
Object.getOwnPropertyDescriptors(Car)
);
it sets internal attribute (descriptor property) for brand() to
..
brand: [object Object] {
configurable: true,
enumerable: true,
value: ..
writable: true
}
..
compared to
class Car2 {
static brand() {
console.log('Honda');
}
}
console.log(
Object.getOwnPropertyDescriptors(Car2)
);
that sets internal attribute for brand() to
..
brand: [object Object] {
configurable: true,
enumerable: false,
value:..
writable: true
}
..
see that enumerable is set to false for static method in ES6.
it means you cant use the for-in loop to check the object
for (let prop in Car) {
console.log(prop); // brand
}
for (let prop in Car2) {
console.log(prop); // nothing here
}
static method in ES6 is treated like other's class private property (name, length, constructor) except that static method is still writable thus the descriptor writable is set to true { writable: true }. it also means that we can override it
Car2.brand = function() {
console.log('Toyota');
};
console.log(
Car2.brand() // is now changed to toyota
);
When you try to call Foo.talk, the JS tries to search a function talk through __proto__ and, of course, it can't be found.
Foo.__proto__ is Function.prototype.
Static method calls are made directly on the class and are not callable on instances of the class. Static methods are often used to
create utility function
Pretty clear description
Taken Directly from mozilla.org
Foo needs to be bound to your class
Then when you create a new instance you can call myNewInstance.foo()
If you import your class you can call a static method
When i faced such a situation, i have done something like this:
Logger = {
info: function (message, tag) {
var fullMessage = '';
fullMessage = this._getFormatedMessage(message, tag);
if (loggerEnabled) {
console.log(fullMessage);
}
},
warning: function (message, tag) {
var fullMessage = '';
fullMessage = this._getFormatedMessage(message, tag);
if (loggerEnabled) {
console.warn(fullMessage);`enter code here`
}
},
_getFormatedMessage: function () {}
};
so now i can call the info method as
Logger.info("my Msg", "Tag");
In your case, if you want to Foo.talk():
function Foo() {};
// But use Foo.talk would be inefficient
Foo.talk = function () {
alert('hello~\n');
};
Foo.talk(); // 'hello~\n'
But it's an inefficient way to implement, using prototype is better.
Another way, My way is defined as static class:
var Foo = new function() {
this.talk = function () {
alert('hello~\n');
};
};
Foo.talk(); // 'hello~\n'
Above static class doesn't need to use prototype because it will be only constructed once as static usage.
https://github.com/yidas/js-design-patterns/tree/master/class
Javascript has no actual classes rather it uses a system of prototypal inheritance in which objects 'inherit' from other objects via their prototype chain. This is best explained via code itself:
function Foo() {};
// creates a new function object
Foo.prototype.talk = function () {
console.log('hello~\n');
};
// put a new function (object) on the prototype (object) of the Foo function object
var a = new Foo;
// When foo is created using the new keyword it automatically has a reference
// to the prototype property of the Foo function
// We can show this with the following code
console.log(Object.getPrototypeOf(a) === Foo.prototype);
a.talk(); // 'hello~\n'
// When the talk method is invoked it will first look on the object a for the talk method,
// when this is not present it will look on the prototype of a (i.e. Foo.prototype)
// When you want to call
// Foo.talk();
// this will not work because you haven't put the talk() property on the Foo
// function object. Rather it is located on the prototype property of Foo.
// We could make it work like this:
Foo.sayhi = function () {
console.log('hello there');
};
Foo.sayhi();
// This works now. However it will not be present on the prototype chain
// of objects we create out of Foo
There are tree ways methods and properties are implemented on function or class objects, and on they instances.
On the class (or function) itself : Foo.method() or Foo.prop. Those are static methods or properties
On its prototype : Foo.prototype.method() or Foo.prototype.prop. When created, the instances will inherit those object via the prototype witch is {method:function(){...}, prop:...}. So the foo object will receive, as prototype, a copy of the Foo.prototype object.
On the instance itself : the method or property is added to the object itself. foo={method:function(){...}, prop:...}
The this keyword will represent and act differently according to the context. In a static method, it will represent the class itself (witch is after all an instance of Function : class Foo {} is quite equivalent to let Foo = new Function({})
With ECMAScript 2015, that seems well implemented today, it is clearer to see the difference between class (static) methods and properties, instance methods and properties and own methods ans properties. You can thus create three method or properties having the same name, but being different because they apply to different objects, the this keyword, in methods, will apply to, respectively, the class object itself and the instance object, by the prototype or by its own.
class Foo {
constructor(){super();}
static prop = "I am static" // see 1.
static method(str) {alert("static method"+str+" :"+this.prop)} // see 1.
prop="I am of an instance"; // see 2.
method(str) {alert("instance method"+str+" : "+this.prop)} // see 2.
}
var foo= new Foo();
foo.prop = "I am of own"; // see 3.
foo.func = function(str){alert("own method" + str + this.prop)} // see 3.

Categories