I started to build a widget that uses svg asset that is a soccer court. I was working with regular 2d rectangle so far and it went well. However i wanted to replace that asset with this one:
I started to prototype on how to calculate the ball position in this kind of svg and its not going well. I guess that what i need is some kind of conversion from regular 2d rectangle model to something else that would account trapeze figure.
Maybe someone could help with understanding how its done. Lets say i have following coords {x: 0.2, y: 0.2} which means i have to put the ball in 20% of width of court and 20% of its height. How do i do in this example?
EDIT #1
I read an answer posted by MBo and i made effort to rewrite delphi code to JavaScript.I dont know delphi at all but i think it went well, however after trying code out i bumped onto couple of problems:
trapeze is reversed (shorter horizotal line on the bottom), i attempted to fix it but without success, after couple of tries i had this as i wanted but then 0.2, 0.2 coord showed up on the bottom instead of closer to the top.
i am not sure if the calculation works correctly in general, center coord seems odly gravitating towards bottom (at least it is my visual impresion)
I attempted to fix reversed trapeze problem by playing with YShift = Hg / 4; but it causes variety of issues. Would like to know how this works exactly
From what i understand, this script works in a way that you specify longer horizontal line Wd and height Hg and this produces a trapeze for you, is that correct?
EDIT #2
I updated demo snippet, it seems to work in some way, the only problem currently i have is that if i specify
Wd = 600; // width of source
Hg = 200; // height of source
the actuall trapeze is smaller (has less width and height),
also in some weird way manipulating this line:
YShift = Hg / 4;
changes the actuall height of trapeze.
its just then difficult to implement, as if i have been given svg court with certain size i need to be able to provide the actuall size to the function so then coords calculations will be accurate.
Lets say that i will be given court where i know 4 corners and based on that i need to be able to calculate coords. This implementation from my demo snippet, doesnt o it unfortunately.
Anyone could help alter the code or provide better implementation?
EDIT #3 - Resolution
this is final implementation:
var math = {
inv: function (M){
if(M.length !== M[0].length){return;}
var i=0, ii=0, j=0, dim=M.length, e=0, t=0;
var I = [], C = [];
for(i=0; i<dim; i+=1){
I[I.length]=[];
C[C.length]=[];
for(j=0; j<dim; j+=1){
if(i==j){ I[i][j] = 1; }
else{ I[i][j] = 0; }
C[i][j] = M[i][j];
}
}
for(i=0; i<dim; i+=1){
e = C[i][i];
if(e==0){
for(ii=i+1; ii<dim; ii+=1){
if(C[ii][i] != 0){
for(j=0; j<dim; j++){
e = C[i][j];
C[i][j] = C[ii][j];
C[ii][j] = e;
e = I[i][j];
I[i][j] = I[ii][j];
I[ii][j] = e;
}
break;
}
}
e = C[i][i];
if(e==0){return}
}
for(j=0; j<dim; j++){
C[i][j] = C[i][j]/e;
I[i][j] = I[i][j]/e;
}
for(ii=0; ii<dim; ii++){
if(ii==i){continue;}
e = C[ii][i];
for(j=0; j<dim; j++){
C[ii][j] -= e*C[i][j];
I[ii][j] -= e*I[i][j];
}
}
}
return I;
},
multiply: function(m1, m2) {
var temp = [];
for(var p = 0; p < m2.length; p++) {
temp[p] = [m2[p]];
}
m2 = temp;
var result = [];
for (var i = 0; i < m1.length; i++) {
result[i] = [];
for (var j = 0; j < m2[0].length; j++) {
var sum = 0;
for (var k = 0; k < m1[0].length; k++) {
sum += m1[i][k] * m2[k][j];
}
result[i][j] = sum;
}
}
return result;
}
};
// standard soccer court dimensions
var soccerCourtLength = 105; // [m]
var soccerCourtWidth = 68; // [m]
// soccer court corners in clockwise order with center = (0,0)
var courtCorners = [
[-soccerCourtLength/2., soccerCourtWidth/2.],
[ soccerCourtLength/2., soccerCourtWidth/2.],
[ soccerCourtLength/2.,-soccerCourtWidth/2.],
[-soccerCourtLength/2.,-soccerCourtWidth/2.]];
// screen corners in clockwise order (unit: pixel)
var screenCorners = [
[50., 150.],
[450., 150.],
[350., 50.],
[ 150., 50.]
];
// compute projective mapping M from court to screen
// / a b c \
// M = ( d e f )
// \ g h 1 /
// set up system of linear equations A X = B for X = [a,b,c,d,e,f,g,h]
var A = [];
var B = [];
var i;
for (i=0; i<4; ++i)
{
var cc = courtCorners[i];
var sc = screenCorners[i];
A.push([cc[0], cc[1], 1., 0., 0., 0., -sc[0]*cc[0], -sc[0]*cc[1]]);
A.push([0., 0., 0., cc[0], cc[1], 1., -sc[1]*cc[0], -sc[1]*cc[1]]);
B.push(sc[0]);
B.push(sc[1]);
}
var AInv = math.inv(A);
var X = math.multiply(AInv, B); // [a,b,c,d,e,f,g,h]
// generate matrix M of projective mapping from computed values
X.push(1);
M = [];
for (i=0; i<3; ++i)
M.push([X[3*i], X[3*i+1], X[3*i+2]]);
// given court point (array [x,y] of court coordinates): compute corresponding screen point
function calcScreenCoords(pSoccer) {
var ch = [pSoccer[0],pSoccer[1],1]; // homogenous coordinates
var sh = math.multiply(M, ch); // projective mapping to screen
return [sh[0]/sh[2], sh[1]/sh[2]]; // dehomogenize
}
function courtPercToCoords(xPerc, yPerc) {
return [(xPerc-0.5)*soccerCourtLength, (yPerc-0.5)*soccerCourtWidth];
}
var pScreen = calcScreenCoords(courtPercToCoords(0.2,0.2));
var hScreen = calcScreenCoords(courtPercToCoords(0.5,0.5));
// Custom code
document.querySelector('.trapezoid').setAttribute('d', `
M ${screenCorners[0][0]} ${screenCorners[0][1]}
L ${screenCorners[1][0]} ${screenCorners[1][1]}
L ${screenCorners[2][0]} ${screenCorners[2][1]}
L ${screenCorners[3][0]} ${screenCorners[3][1]}
Z
`);
document.querySelector('.point').setAttribute('cx', pScreen[0]);
document.querySelector('.point').setAttribute('cy', pScreen[1]);
document.querySelector('.half').setAttribute('cx', hScreen[0]);
document.querySelector('.half').setAttribute('cy', hScreen[1]);
document.querySelector('.map-pointer').setAttribute('style', 'left:' + (pScreen[0] - 15) + 'px;top:' + (pScreen[1] - 25) + 'px;');
document.querySelector('.helper.NW-SE').setAttribute('d', `M ${screenCorners[3][0]} ${screenCorners[3][1]} L ${screenCorners[1][0]} ${screenCorners[1][1]}`);
document.querySelector('.helper.SW-NE').setAttribute('d', `M ${screenCorners[0][0]} ${screenCorners[0][1]} L ${screenCorners[2][0]} ${screenCorners[2][1]}`);
body {
margin:0;
}
.container {
width:500px;
height:200px;
position:relative;
border:solid 1px #000;
}
.view {
background:#ccc;
width:100%;
height:100%;
}
.trapezoid {
fill:none;
stroke:#000;
}
.point {
stroke:none;
fill:red;
}
.half {
stroke:none;
fill:blue;
}
.helper {
fill:none;
stroke:#000;
}
.map-pointer {
background-image:url('');
display:block;
width:32px;
height:32px;
background-repeat:no-repeat;
background-size:32px 32px;
position:absolute;
opacity:.3;
}
<div class="container">
<svg class="view">
<path class="trapezoid"></path>
<circle class="point" r="3"></circle>
<circle class="half" r="3"></circle>
<path class="helper NW-SE"></path>
<path class="helper SW-NE"></path>
</svg>
<span class="map-pointer"></span>
</div>
You are looking for a projective mapping from (x,y) in the court plane to (u,v) in the screen plane. A projective mapping works like this:
Append 1 to the court coordinates to get homogenous coordinates (x,y,1)
Multiply these homogenous coordinates with an appropriate 3x3 matrix M from the left to get homogenous coordinates (u',v',l) of the screen pixel
Dehomogenize the coordinates to get the actual screen coordinates (u,v) = (u'/l, v'/l)
The appropriate matrix M can be computed from solving the cooresponding equations for e.g. the corners. Choosing the court center to coincide with origin and the the x-axis pointing along the longer side and measuring the corner coordinates from your image, we get the following corresponding coordinates for a standard 105x68 court:
(-52.5, 34) -> (174, 57)
( 52.5, 34) -> (566, 57)
( 52.5,-34) -> (690,214)
(-52.5,-34) -> ( 50,214)
Setting up the equations for a projective mapping with matrix
/ a b c \
M = ( d e f )
\ g h 1 /
leads to a linear system with 8 equations and 8 unknowns, since each point correspondence (x,y) -> (u,v) contributes two equations:
x*a + y*b + 1*c + 0*d + 0*e + 0*f - (u*x)*g - (u*y)*h = u
0*a + 0*b + 0*c + x*d + y*e + 1*f - (v*x)*g - (v*y)*h = v
(You get these two equations by expanding M (x y 1)^T = (l*u l*v l*1)^T into three equations and substituting the value for l from the third equation into the first two equations.)
The solution for the 8 unknowns a,b,c,...,h put into the matrix gives:
/ 4.63 2.61 370 \
M = ( 0 -1.35 -116.64 )
\ 0 0.00707 1 /
So given e.g. the court center as {x: 0.5, y: 0.5} you must first transform it into the above described coordinate system to get (x,y) = (0,0). Then you must compute
/ x \ / 4.63 2.61 370 \ / 0 \ / 370 \
M ( y ) = ( 0 -1.35 -116.64 ) ( 0 ) = ( 116.64 )
\ 1 / \ 0 0.00707 1 / \ 1 / \ 1 /
By dehomogenizing you get the screen coordinates of the center as
(u,v) = (370/1, 116.64/1) ~= (370,117)
A JavaScript implementation could look like this:
// using library https://cdnjs.cloudflare.com/ajax/libs/mathjs/3.2.1/math.js
// standard soccer court dimensions
var soccerCourtLength = 105; // [m]
var soccerCourtWidth = 68; // [m]
// soccer court corners in clockwise order with center = (0,0)
var courtCorners = [
[-soccerCourtLength/2., soccerCourtWidth/2.],
[ soccerCourtLength/2., soccerCourtWidth/2.],
[ soccerCourtLength/2.,-soccerCourtWidth/2.],
[-soccerCourtLength/2.,-soccerCourtWidth/2.]];
// screen corners in clockwise order (unit: pixel)
var screenCorners = [
[174., 57.],
[566., 57.],
[690.,214.],
[ 50.,214.]];
// compute projective mapping M from court to screen
// / a b c \
// M = ( d e f )
// \ g h 1 /
// set up system of linear equations A X = B for X = [a,b,c,d,e,f,g,h]
var A = [];
var B = [];
var i;
for (i=0; i<4; ++i)
{
var cc = courtCorners[i];
var sc = screenCorners[i];
A.push([cc[0], cc[1], 1., 0., 0., 0., -sc[0]*cc[0], -sc[0]*cc[1]]);
A.push([0., 0., 0., cc[0], cc[1], 1., -sc[1]*cc[0], -sc[1]*cc[1]]);
B.push(sc[0]);
B.push(sc[1]);
}
var AInv = math.inv(A);
var X = math.multiply(AInv, B); // [a,b,c,d,e,f,g,h]
// generate matrix M of projective mapping from computed values
X.push(1);
M = [];
for (i=0; i<3; ++i)
M.push([X[3*i], X[3*i+1], X[3*i+2]]);
// given court point (array [x,y] of court coordinates): compute corresponding screen point
function calcScreenCoords(pSoccer) {
var ch = [pSoccer[0],pSoccer[1],1]; // homogenous coordinates
var sh = math.multiply(M, ch); // projective mapping to screen
return [sh[0]/sh[2], sh[1]/sh[2]]; // dehomogenize
}
function courtPercToCoords(xPerc, yPerc) {
return [(xPerc-0.5)*soccerCourtLength, (yPerc-0.5)*soccerCourtWidth];
}
var pScreen = calcScreenCoords(courtPercToCoords(0.2,0.2))
To make specific pespective projection that has axial symmetry and maps rectangle to isosceles trapezoid, we can build simpler model as I described here.
Let we want to map rectangle with coordinates (0,0)-(SrcWdt, SrcHgt) with axial line at SrcWdt/2
into region with axial line at DstWdt/2 and coordinates of right corners RBX, RBY, RTX, RTY
Here we need (partial) perspective transformation:
X' = DstXCenter + A * (X - XCenter) / (H * Y + 1)
Y' = (RBY + E * Y) / (H * Y + 1)
and we can calculate coefficients A, E, H without solving of eight linear equation system using coordinates of two corners of trapezoid.
Here is demonstration with Delphi code which finds coefficients and calculates mapping of some points into new region (Y-axis down, so perspective sight is from upper edge):
procedure CalcAxialSymPersp(SrcWdt, SrcHgt, DstWdt, RBX, RBY, RTX, RTY: Integer;
var A, H, E: Double);
begin
A := (2 * RBX - DstWdt) / SrcWdt;
H := (A * SrcWdt/ (2 * RTX - DstWdt) - 1) / SrcHgt;
E := (RTY * (H * SrcHgt + 1) - RBY) / SrcHgt;
end;
procedure PerspMap(SrcWdt, DstWdt, RBY: Integer; A, H, E: Double;
PSrc: TPoint; var PPersp: TPoint);
begin
PPersp.X := Round(DstWdt / 2 + A * (PSrc.X - SrcWdt/2) / (H * PSrc.Y + 1));
PPersp.Y := Round((RBY + E * PSrc.Y) / (H * PSrc.Y + 1));
end;
var
Wd, Hg, YShift: Integer;
A, H, E: Double;
Pts: array[0..3] of TPoint;
begin
//XPersp = XPCenter + A * (X - XCenter) / (H * Y + 1)
//YPersp = (YShift + E * Y) / (H * Y + 1)
Wd := Image1.Width;
Hg := Image1.Height;
YShift := Hg div 4;
CalcAxialSymPersp(Wd, Hg, Wd,
Wd * 9 div 10, YShift, Wd * 8 div 10, Hg * 3 div 4,
A, H, E);
//map 4 corners
PerspMap(Wd, Wd, YShift, A, H, E, Point(Wd, 0), Pts[0]);
PerspMap(Wd, Wd, YShift, A, H, E, Point(Wd, Hg), Pts[1]);
PerspMap(Wd, Wd, YShift, A, H, E, Point(0, Hg), Pts[2]);
PerspMap(Wd, Wd, YShift, A, H, E, Point(0, 0), Pts[3]);
//draw trapezoid
Image1.Canvas.Brush.Style := bsClear;
Image1.Canvas.Polygon(Pts);
//draw trapezoid diagonals
Image1.Canvas.Polygon(Slice(Pts, 3));
Image1.Canvas.Polygon([Pts[1], Pts[2], Pts[3]]);
//map and draw central point
PerspMap(Wd, Wd, YShift, A, H, E, Point(Wd div 2, Hg div 2), Pts[0]);
Image1.Canvas.Ellipse(Pts[0].X - 3, Pts[0].Y - 3, Pts[0].X + 4, Pts[0].Y + 4);
//map and draw point at (0.2,0.2)
PerspMap(Wd, Wd, YShift, A, H, E, Point(Wd * 2 div 10, Hg * 2 div 10), Pts[0]);
Image1.Canvas.Ellipse(Pts[0].X - 3, Pts[0].Y - 3, Pts[0].X + 4, Pts[0].Y + 4);
I have implemented it in plain HTML and JavaScript. You have to adjust the variables to your need. A and B are the lengths of small and large parallel sides and H is the height of trapeze. x0, y0 are the co-ordinates of left-bottom corner of the field. If it works out for you I will explain the math.
jQuery(function($){
var $field2d = $('.field2d'), $ball = $('.ball');
$field2d.on('mousemove', function(e){
var pos = translateBallPosition(e.offsetX, e.offsetY);
$ball.css({left: pos.x, top: pos.y});
});
var FB = {x0: 50, y0: 215, B: 640, A: 391, H: 158, P: 0};
FB.Wd = $field2d.width();
FB.Ht = $field2d.height();
FB.P = FB.B * FB.H / (FB.B - FB.A);
function translateBallPosition(X, Y){
var x = X / FB.Wd * FB.B, y = (FB.Ht - Y) / FB.Ht * FB.H;
y = y * FB.B * FB.H / (FB.A * FB.H + y * (FB.B - FB.A));
x = x / FB.P * (FB.P - y) + y * FB.B / FB.P / 2;
return {x: FB.x0 + x, y: FB.y0 - y};
}
});
.field2d {
position: relative;
border: 1px dashed gray;
background: #b0fdb5;
width: 400px;
height: 200px;
margin: 5px auto;
cursor: crosshair;
text-align: center;
}
.field3d {
position: relative;
width: 743px;
margin: auto;
}
.field3d>img {
width: 100%;
height: auto;
}
.ball {
position: absolute;
top: 0;
left: 0;
height: 20px;
width: 20px;
background: red;
border-radius: 10px;
margin: -20px 0 0 -10px;
}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<div class="field3d">
<img src="https://i.stack.imgur.com/ciekU.png" />
<div class="ball"></div>
</div>
<div class="field2d">
Hover over this div to see corresponding ball position
</div>
I have a JavaScript function which allows me to generate DOM elements and plot them on a circle with (good enough) even distribution around the circle. The code is as follows (I'm using jQuery):
function createFields(numberOfItems, className, radius) {
var container = $('#container');
for(var i = 0; i < +numberOfItems; i++) {
$('<div/>', {
'class': 'field ' + className,
'text': i + 1
}).appendTo(container);
}
var fields = $('.' + className),
container = $('#container'),
width = container.width(),
height = container.height(),
angle = 0,
step = (2*Math.PI) / fields.length;
fields.each(function() {
var x = Math.round(width/2 + radius * Math.cos(angle) - $(this).width()/2);
var y = Math.round(height/2 + radius * Math.sin(angle) - $(this).height()/2);
if(window.console) {
console.log($(this).text(), x, y);
}
$(this).css({
left: x + 'px',
top: y + 'px'
});
angle += step;
});
}
createFields(5, 'outer', 200);
createFields(4, 'inner', 120);
Fiddle: http://jsfiddle.net/z79gj8a7/
You'll notice that the generated elements begin at 90 degrees to the vertical. I'd like to plot them so that they begin at 0 degrees. Essentially, if you imagine this as a clock, I want to plot all of the items 3hrs earlier. I've tried modifying the angle in the script to -90 and also subtracting 90 from the angle += step line but it's not having the desired effect.
Could anyone who's better at maths than I suggest a way to get the elements to be plotted -90 degrees from where they are now? (I'm aware I could just rotate the #container but that seems like a hack as I'd have to rotate the elements to compensate to keep their content in the correct orientation).
Many thanks.
The script is working in radians not degrees :) here's what you want (I think) http://jsfiddle.net/z79gj8a7/1/
You need to shift the angle by pi/2
var x = Math.round(width/2 + radius * Math.cos(angle - (Math.PI/2)) - $(this).width()/2);
var y = Math.round(height/2 + radius * Math.sin(angle - (Math.PI/2)) - $(this).height()/2);
Or even better (having read the script properly) don't change the calculation of x and y but change the angle to start at -pi/2: http://jsfiddle.net/z79gj8a7/2/
angle = -Math.PI/2,
jsFiddle demo
function createFields(numberOfItems, className, radius) {
var container = $('#container'),
centerX = container.width()/2,
centerY = container.height()/2,
angle = 0;
for(var i = 0; i < +numberOfItems; i++) {
$('<div/>', {
'class': 'field ' + className,
'text': i + 1
}).appendTo(container);
}
var fields = $('.' + className),
tot = fields.length;
fields.each(function(i, e) {
var w2 = $(e).outerWidth(true)/2,
h2 = $(e).outerHeight(true)/2,
angle = 360/tot*i,
x = Math.round(centerX+radius * Math.sin(angle*Math.PI/180)),
y = Math.round(centerY+radius * -Math.cos(angle*Math.PI/180));
$(e).css({left:x-w2, top:y-h2}).text( i+1 );
});
}
createFields(5, 'outer', 200);
createFields(4, 'inner', 120);
I have a project with a circle that, when clicked, rotates to a predefined position. It is almost there, but the last requirement is that it always rotates clockwise to the marker. I just can't seem to figure out how to get the right value so that when i set css transform:rotate(Xdeg), it will always go clockwise. Keeping the angle between 0 and 360 would also be a plus for another piece of this, but not necessary.
See this fiddle, javascript below as well Rotation
$(function () {
$('body').on('click', '#graph1', function (e) {
console.log('********************');
//get mouse position relative to div and center of div for polar origin
var pos = getMousePosAndCenter(e, 'graph1');
//get the current degrees of rotation from the css
var currentRotationDegrees = getCSSRotation('#graph1');
console.log('CSS Rotation Value: ' + currentRotationDegrees);
//current rotation in radians
var currentRotationRadians = radians(currentRotationDegrees);
//radians where clicked
var clickRadiansFromZero = Math.atan2(pos.y - pos.originY, pos.x - pos.originX);
//degrees the click is offset from 0 origin
var offsetDegrees = degrees(clickRadiansFromZero);
//how many degrees to rotate in css to put the mouse click at 0
var degreesToZero;
if (offsetDegrees >= 0)
degreesToZero = currentRotationDegrees - Math.abs(offsetDegrees);
else
degreesToZero = currentRotationDegrees + Math.abs(offsetDegrees);
console.log("Degrees to Zero: " + degreesToZero);
//distance in pixels from origin
var distance = calculateDistance(pos.originX, pos.originY, pos.x, pos.y);
console.log("Distance From Origin(px): " + distance);
$('#graph1').css('transform','rotate(' + degreesToZero + 'deg)')
});
});
function getMousePosAndCenter(e, id) {
var rect = document.getElementById(id).getBoundingClientRect();
return {
x: (((e.clientX - rect.left) / rect.width) * rect.width) + 0.5 << 0,
y: (((e.clientY - rect.top) / rect.height) * rect.height) + 0.5 << 0,
originY: (rect.height / 2),
originX: (rect.width / 2)
};
}
function radians(degrees) {
return degrees * Math.PI / 180;
};
function degrees(radians) {
return radians * 180 / Math.PI;
};
function calculateDistance(originX, originY, mouseX, mouseY) {
return Math.floor(Math.sqrt(Math.pow(mouseX - originX, 2) + Math.pow(mouseY - originY, 2)));
}
function getCSSRotation(id) {
var matrix = $(id).css('transform');
var values = matrix.split('(')[1],
values = values.split(')')[0],
values = values.split(',');
var a = values[0];
var b = values[1];
var c = values[2];
var d = values[3];
var cssRotation = degrees(Math.atan2(b, a));
return cssRotation;
}
Think out of the box:
We can CSS3 rotate an element with transform to i.e: 720° ...
it will make 2 clockwise turns. (OK, in our UI it can only do max a 359 turn but let's follow the math)
If we than animate it to 810°... it just means that it'll do a 90° clockwise move!
So all we need to do is always increase a degree variable to insanity!
HEY! If at some point you want to keep track of the current normalized 0-360 degree...
you can always retrieve that value doing ourCurrentInsanelyHighDegree % 360 = UIdegrees
Here's a jsBin demo
and this is all the JS you need.
function getCSSRotation( $el ) {
var matrix = $el.css('transform'),
v = matrix.split('(')[1].split(')')[0].split(','),
rds = Math.atan2(v[1], v[0]);
return rds*180/Math.PI <<0; // Degrees
}
var $EL = $("#graph1"),
w = $EL.width(),
r = w/2, // Radius
x = parseInt($EL.css("left"), 10),
y = parseInt($EL.css("top"), 10),
d = getCSSRotation( $EL ); // Initial degree (ONLY ONCE!)
$EL.on("click", function(e){
var mx = e.clientX-x-r, // Click coord X
my = e.clientY-y-r, // Click coord Y
rds = Math.atan2(-my, -mx), // Radians
md = (rds*180/Math.PI<<0) + 180; // Mouse Degrees
d += (360-md); // always increment to insanity!!
$(this).css({transform:"rotate("+ d +"deg)"});
});
#graph1 {
position:absolute;
top:10px; left:30px;
width:200px; height:200px;
background:url(//placehold.it/200x200&text=IMAGE);
transition:transform 2s ease;
transform:rotate(30deg);
transform-origin:50% 50%;
border-radius:50%;
}
#marker {
position: absolute;
top:110px;
left:230px;
border-top:1px solid black;
}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<div id="graph1"></div>
<div id="marker">Wherever you click, it rotates to here</div>
UPDATE:
Figuring it would be easy to do, I found it a little harder than I thought. The other answer with jQuery.animate works, but animate doesn't have the fluid framerate that css animation does (it runs on the GPU).
Here's a modified fiddle with a CSS solution: http://jsfiddle.net/2g17cjuL/2/
Keeping the angle between 0 and 360 would also be a plus
You cannot keep going forward (ie rotating by a positive number) and keep the rotation positive, however, in my fiddle offsetDegrees (the number of degrees additional rotated), or the remainder of totalDegreesdivided by 360 should give you what you need to use elsewhere.
Requrement: That it always rotates clockwise.
One thing: If you use CSS transitions, it'll calculate the shortest route for you. You want a bit more control over rotational direction, so I commented out the transition:transform 1s ease; in your CSS because we'll control this manually.
JAVASCRIPT
I borrowed this JQuery function and modified it so we can feed it a starting angle, and ending angle and it'll animate #graph1 for us. (Read the link to change duration, easing, and to use the complete callback)
$.fn.animateRotate = function(angle, start, duration, easing, complete) {
var args = $.speed(duration, easing, complete);
var step = args.step;
return this.each(function(i, e) {
args.complete = $.proxy(args.complete, e);
args.step = function(now) {
$.style(e, 'transform', 'rotate(' + now + 'deg)');
if (step) return step.apply(e, arguments);
};
$({deg: start}).animate({deg: angle}, args);
});
};
I also modified your JQuery so it won't rotate counter-clockwise: when currentRotationDegrees is greater than degreesToZero, it'll subtract 360, and then use this new value as the starting position for `animateRotate().
if(currentRotationDegrees > degreesToZero){
currentRotationDegrees -= 360;
}
$('#graph1').animateRotate(degreesToZero, currentRotationDegrees);
Here it is in action.
http://jsfiddle.net/q4nad31t/1/