I am getting what looks like a precision problem at 16 bit for texture uv. This might be common knowledge, and texture casting to normalized integer, but I could not find much¹ about that, nor would it make much sense to me (why degrade the coordinates at the last step?).
In real code (which is too long to show), this results in a texture bleed when zooming in too far, way before the expected issues for float32. The following demo has a lot of boilerplate, so here are the parts I think are important:
The test texture is a 512x512 checkerboard of 8x8 tiles, green and blue.
A square is rendered, with uv set to an 8x8 blue tile above the middle, sitting so it covers half the canvas.
const offset = -1 / (1 << bitsRequired); slightly shifts these uv on the y-axis.
const zoom = 2 ** (bitsRequired - 14); zooms in on the edge.
By construction, the uv offset is then set to a step that requires more than 16 bit. The zoom is chosen so exactly one green pixel should be rendered, without precision problems. However, at exactly 17 bit required precision, the pixel vanishes (at least for me, but it could be dependent on hardware/driver/whatever - if someone cannot reproduce, and it hasn't been mentioned already, please do).
At first, I thought I made a mistake. However, adding the rounding manually before the texture call, uncommenting the following, makes the green pixel line reappear:
vec2 texCoordRounded = vec2(
(floor(vTextureCoord.x * 512.) + 0.5) / 512.,
(floor(vTextureCoord.y * 512.) + 0.5) / 512.
);
Now I am confused. Did I miss something, or make a mistake? Does texture cast to some normalized integer? Why does this look like my precision runs out at 16 bit?
The following is copy&paste of the same code, with changed parameters (too cumbersome to parameterize this demo code):
With an offset requiring less than 16 bit, the green pixel line appears:
const assert = (condition, message) => {
if (!condition) throw new Error(message);
};
const canvas = document.getElementById('canvas');
const gl = canvas.getContext('webgl2');
assert(gl !== null, `WebGL2 was unexpectedly not supported.`);
const testImage = new Uint8Array(Array.from(
{ length: 512 * 512 },
(_, i) => (i % 16 > 7) !== (Math.floor(i / 512) % 16 > 7)
? [0, 0xff, 0, 0xff]
: [0, 0, 0xff, 0xff],
).flat());
const bitsRequired = 16;
const offset = -1 / (1 << bitsRequired);
const vData = new Float32Array([
-1, 0, 0, 0.5 + offset, 1, 0, 0.015625, 0.5 + offset,
1, 2, 0.015625, 0.515625 + offset, -1, 2, 0, 0.515625 + offset,
]);
const zoom = 2 ** (bitsRequired - 14);
const projection = new Float32Array([
zoom, 0, 0, 0,
0, zoom, 0, 0,
0, 0, -zoom, 0,
0, 0, 0, 1,
]);
const indices = new Uint16Array([0, 1, 2, 0, 2, 3]);
const texture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, 512, 512, 0, gl.RGBA, gl.UNSIGNED_BYTE, testImage);
const vao = gl.createVertexArray();
gl.bindVertexArray(vao);
gl.enableVertexAttribArray(0);
gl.enableVertexAttribArray(1);
const vBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, vBuffer);
gl.vertexAttribPointer(0, 2, gl.FLOAT, false, 16, 0);
gl.vertexAttribPointer(1, 2, gl.FLOAT, false, 16, 8);
gl.bufferData(gl.ARRAY_BUFFER, vData, gl.STATIC_DRAW);
const iBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, iBuffer);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indices, gl.STATIC_DRAW);
const vertexShaderSrc = `#version 300 es
precision highp float;
uniform mat4 projection;
layout(location = 0) in vec2 aPosition;
layout(location = 1) in vec2 aTextureCoord;
out vec2 vTextureCoord;
void main(void) {
gl_Position = projection * vec4(aPosition, 0.0, 1.0);
vTextureCoord = aTextureCoord;
}`;
const fragmentShaderSrc = `#version 300 es
precision highp float;
uniform sampler2D sampler;
in vec2 vTextureCoord;
out vec4 fColor;
void main(void){
// vec2 texCoordRounded = vec2(
// (floor(vTextureCoord.x * 512.) + 0.5) / 512.,
// (floor(vTextureCoord.y * 512.) + 0.5) / 512.
// );
// vec4 color = texture(sampler, texCoordRounded);
vec4 color = texture(sampler, vTextureCoord);
fColor = color;
}`;
const program = gl.createProgram();
assert(program !== null, `Program was unexpectedly \`null\`.`);
const vertexShader = gl.createShader(gl.VERTEX_SHADER);
assert(vertexShader !== null, `Vertex-shader was unexpectedly \`null\`.`);
gl.shaderSource(vertexShader, vertexShaderSrc);
gl.compileShader(vertexShader);
assert(gl.getShaderParameter(vertexShader, gl.COMPILE_STATUS), `Vertex-shader failed to compile:\n${gl.getShaderInfoLog(vertexShader)}`);
const fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);
assert(fragmentShader !== null, `Vertex-shader was unexpectedly \`null\`.`);
gl.shaderSource(fragmentShader, fragmentShaderSrc);
gl.compileShader(fragmentShader);
assert(gl.getShaderParameter(fragmentShader, gl.COMPILE_STATUS), `Fragment-shader failed to compile:\n${gl.getShaderInfoLog(fragmentShader)}`);
gl.attachShader(program, vertexShader);
gl.attachShader(program, fragmentShader);
gl.linkProgram(program);
assert(gl.getProgramParameter(program, gl.LINK_STATUS), `Program linking failed:\n${gl.getProgramInfoLog(program)}`);
gl.useProgram(program);
const uniformLocationSampler = gl.getUniformLocation(program, 'sampler');
gl.uniform1i(uniformLocationSampler, 0);
const uniformLocationProjection = gl.getUniformLocation(program, 'projection');
gl.uniformMatrix4fv(uniformLocationProjection, false, projection);
gl.clearColor(0, 0, 0, 1.0);
gl.clear(gl.COLOR_BUFFER_BIT);
gl.drawElements(gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0);
<canvas id='canvas' width='256' height='256'></canvas>
Changing bitsRequired to 17 (only change) causes the problem, the green pixel line disappears:
const assert = (condition, message) => {
if (!condition) throw new Error(message);
};
const canvas = document.getElementById('canvas');
const gl = canvas.getContext('webgl2');
assert(gl !== null, `WebGL2 was unexpectedly not supported.`);
const testImage = new Uint8Array(Array.from(
{ length: 512 * 512 },
(_, i) => (i % 16 > 7) !== (Math.floor(i / 512) % 16 > 7)
? [0, 0xff, 0, 0xff]
: [0, 0, 0xff, 0xff],
).flat());
const bitsRequired = 17;
const offset = -1 / (1 << bitsRequired);
const vData = new Float32Array([
-1, 0, 0, 0.5 + offset, 1, 0, 0.015625, 0.5 + offset,
1, 2, 0.015625, 0.515625 + offset, -1, 2, 0, 0.515625 + offset,
]);
const zoom = 2 ** (bitsRequired - 14);
const projection = new Float32Array([
zoom, 0, 0, 0,
0, zoom, 0, 0,
0, 0, -zoom, 0,
0, 0, 0, 1,
]);
const indices = new Uint16Array([0, 1, 2, 0, 2, 3]);
const texture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, 512, 512, 0, gl.RGBA, gl.UNSIGNED_BYTE, testImage);
const vao = gl.createVertexArray();
gl.bindVertexArray(vao);
gl.enableVertexAttribArray(0);
gl.enableVertexAttribArray(1);
const vBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, vBuffer);
gl.vertexAttribPointer(0, 2, gl.FLOAT, false, 16, 0);
gl.vertexAttribPointer(1, 2, gl.FLOAT, false, 16, 8);
gl.bufferData(gl.ARRAY_BUFFER, vData, gl.STATIC_DRAW);
const iBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, iBuffer);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indices, gl.STATIC_DRAW);
const vertexShaderSrc = `#version 300 es
precision highp float;
uniform mat4 projection;
layout(location = 0) in vec2 aPosition;
layout(location = 1) in vec2 aTextureCoord;
out vec2 vTextureCoord;
void main(void) {
gl_Position = projection * vec4(aPosition, 0.0, 1.0);
vTextureCoord = aTextureCoord;
}`;
const fragmentShaderSrc = `#version 300 es
precision highp float;
uniform sampler2D sampler;
in vec2 vTextureCoord;
out vec4 fColor;
void main(void){
// vec2 texCoordRounded = vec2(
// (floor(vTextureCoord.x * 512.) + 0.5) / 512.,
// (floor(vTextureCoord.y * 512.) + 0.5) / 512.
// );
// vec4 color = texture(sampler, texCoordRounded);
vec4 color = texture(sampler, vTextureCoord);
fColor = color;
}`;
const program = gl.createProgram();
assert(program !== null, `Program was unexpectedly \`null\`.`);
const vertexShader = gl.createShader(gl.VERTEX_SHADER);
assert(vertexShader !== null, `Vertex-shader was unexpectedly \`null\`.`);
gl.shaderSource(vertexShader, vertexShaderSrc);
gl.compileShader(vertexShader);
assert(gl.getShaderParameter(vertexShader, gl.COMPILE_STATUS), `Vertex-shader failed to compile:\n${gl.getShaderInfoLog(vertexShader)}`);
const fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);
assert(fragmentShader !== null, `Vertex-shader was unexpectedly \`null\`.`);
gl.shaderSource(fragmentShader, fragmentShaderSrc);
gl.compileShader(fragmentShader);
assert(gl.getShaderParameter(fragmentShader, gl.COMPILE_STATUS), `Fragment-shader failed to compile:\n${gl.getShaderInfoLog(fragmentShader)}`);
gl.attachShader(program, vertexShader);
gl.attachShader(program, fragmentShader);
gl.linkProgram(program);
assert(gl.getProgramParameter(program, gl.LINK_STATUS), `Program linking failed:\n${gl.getProgramInfoLog(program)}`);
gl.useProgram(program);
const uniformLocationSampler = gl.getUniformLocation(program, 'sampler');
gl.uniform1i(uniformLocationSampler, 0);
const uniformLocationProjection = gl.getUniformLocation(program, 'projection');
gl.uniformMatrix4fv(uniformLocationProjection, false, projection);
gl.clearColor(0, 0, 0, 1.0);
gl.clear(gl.COLOR_BUFFER_BIT);
gl.drawElements(gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0);
<canvas id='canvas' width='256' height='256'></canvas>
Activating the previously commented manual rounding before the texture call (only change) on what's still float32 causes the green pixel line to re-appear, fixing the problem, but why?
const assert = (condition, message) => {
if (!condition) throw new Error(message);
};
const canvas = document.getElementById('canvas');
const gl = canvas.getContext('webgl2');
assert(gl !== null, `WebGL2 was unexpectedly not supported.`);
const testImage = new Uint8Array(Array.from(
{ length: 512 * 512 },
(_, i) => (i % 16 > 7) !== (Math.floor(i / 512) % 16 > 7)
? [0, 0xff, 0, 0xff]
: [0, 0, 0xff, 0xff],
).flat());
const bitsRequired = 17;
const offset = -1 / (1 << bitsRequired);
const vData = new Float32Array([
-1, 0, 0, 0.5 + offset, 1, 0, 0.015625, 0.5 + offset,
1, 2, 0.015625, 0.515625 + offset, -1, 2, 0, 0.515625 + offset,
]);
const zoom = 2 ** (bitsRequired - 14);
const projection = new Float32Array([
zoom, 0, 0, 0,
0, zoom, 0, 0,
0, 0, -zoom, 0,
0, 0, 0, 1,
]);
const indices = new Uint16Array([0, 1, 2, 0, 2, 3]);
const texture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, 512, 512, 0, gl.RGBA, gl.UNSIGNED_BYTE, testImage);
const vao = gl.createVertexArray();
gl.bindVertexArray(vao);
gl.enableVertexAttribArray(0);
gl.enableVertexAttribArray(1);
const vBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, vBuffer);
gl.vertexAttribPointer(0, 2, gl.FLOAT, false, 16, 0);
gl.vertexAttribPointer(1, 2, gl.FLOAT, false, 16, 8);
gl.bufferData(gl.ARRAY_BUFFER, vData, gl.STATIC_DRAW);
const iBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, iBuffer);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indices, gl.STATIC_DRAW);
const vertexShaderSrc = `#version 300 es
precision highp float;
uniform mat4 projection;
layout(location = 0) in vec2 aPosition;
layout(location = 1) in vec2 aTextureCoord;
out vec2 vTextureCoord;
void main(void) {
gl_Position = projection * vec4(aPosition, 0.0, 1.0);
vTextureCoord = aTextureCoord;
}`;
const fragmentShaderSrc = `#version 300 es
precision highp float;
uniform sampler2D sampler;
in vec2 vTextureCoord;
out vec4 fColor;
void main(void){
vec2 texCoordRounded = vec2(
(floor(vTextureCoord.x * 512.) + 0.5) / 512.,
(floor(vTextureCoord.y * 512.) + 0.5) / 512.
);
vec4 color = texture(sampler, texCoordRounded);
// vec4 color = texture(sampler, vTextureCoord);
fColor = color;
}`;
const program = gl.createProgram();
assert(program !== null, `Program was unexpectedly \`null\`.`);
const vertexShader = gl.createShader(gl.VERTEX_SHADER);
assert(vertexShader !== null, `Vertex-shader was unexpectedly \`null\`.`);
gl.shaderSource(vertexShader, vertexShaderSrc);
gl.compileShader(vertexShader);
assert(gl.getShaderParameter(vertexShader, gl.COMPILE_STATUS), `Vertex-shader failed to compile:\n${gl.getShaderInfoLog(vertexShader)}`);
const fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);
assert(fragmentShader !== null, `Vertex-shader was unexpectedly \`null\`.`);
gl.shaderSource(fragmentShader, fragmentShaderSrc);
gl.compileShader(fragmentShader);
assert(gl.getShaderParameter(fragmentShader, gl.COMPILE_STATUS), `Fragment-shader failed to compile:\n${gl.getShaderInfoLog(fragmentShader)}`);
gl.attachShader(program, vertexShader);
gl.attachShader(program, fragmentShader);
gl.linkProgram(program);
assert(gl.getProgramParameter(program, gl.LINK_STATUS), `Program linking failed:\n${gl.getProgramInfoLog(program)}`);
gl.useProgram(program);
const uniformLocationSampler = gl.getUniformLocation(program, 'sampler');
gl.uniform1i(uniformLocationSampler, 0);
const uniformLocationProjection = gl.getUniformLocation(program, 'projection');
gl.uniformMatrix4fv(uniformLocationProjection, false, projection);
gl.clearColor(0, 0, 0, 1.0);
gl.clear(gl.COLOR_BUFFER_BIT);
gl.drawElements(gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0);
<canvas id='canvas' width='256' height='256'></canvas>
[1]: Edit: I found a comment in an otherwise unrelated question which supports my guess of sampling using normalized integers, but still no official documentation:
Many modern GPUs use some fixed-point representation for the texcoords, so there is only a limited set of positions which can be sampled between two texels (typically 256).
Note that the comment is from 2014 (9 years old), and my guess would be the default is 16 bit normalized integer instead of 8 bit by now.
Edit2: I now also found this in the directx d3d spec (thanks to a blog post)
Texture coordinates for sampling operations are snapped to fixed point (after being scaled by texture size), to uniformly distribute precision across texture space, in choosing filter tap locations/weights. Weight values are converted back to floating point before actual filtering arithmetic is performed.
I still can't find any authoritative documentation for opengl/webgl though. It's getting more and more clear, that what's happening is exactly my guess, but where is the documentation, and is "uniform distribution" enough reason to cut off 8 bit of precision?
why degrade the coordinates at the last step?
... because GPUs can do a few billion texture filtering operations per second, and you really don't want to waste power and silicon area doing calculations at fp32 precision if all practical use cases need 8-bit fixed point.
Note this is 8-bits of sub-texel accuracy (i.e. granularity for GL_LINEAR filtering between two adjacent texels). Selecting texels is done at whatever higher precision is needed (most modern GPUs can uniquely address 16K textures, with 8-bits of subtexel accuracy).
Related
To prevent XY-problems, I'll describe the problem, followed by my current idea for a solution. Given this has to have been solved a thousand times by other people, I need a sanity check, whether I am running down the completely wrong path, or not.
In 2D pixel graphics (GL_NEAREST), when translating by half of a screen pixel, rounding behavior determines the color of a fragment. This means frequently choosing the wrong texel.
From my understanding, in the following image:
On the left side, fragments' UV-coordinates will be exactly between texels (by construction, UVs selecting size of the quad pixels from the texture).
The rasterizer won't include some fragments (e.g. left side, red stripes, not shown on the right), due to conflict rules for seamless connections between triangles.
Default rounding will only be correct, if UV-space up is also screen-space up. This fails immediately when rotating, see the right side.
E.g. for a y-flipped texture, the selected texels are one row off. Clamping to prevent texture bleeds would result in one row being used twice, and one missing¹. When freely rotating sprites, these errors may occur for certain rows or columns.
I'm aware of two common approaches, which both seem to fail:
Rounding vertices to pixel-corners, which I don't see working when sprites can rotate.
Having transparent border pixels in the texture-atlas. This is a somewhat dirty patch, and has costs. It destroys power-of-two sized textures (unless increasing the size by four times), and required border-size depends on mipmap-level.
For 2D pixel-graphics, almost everything is a textured quad. Given this, my current idea is to render each quad slightly larger (to have both side's fragments included in the problem-case). I'd then manually round to middle of texels in the fragment-shader, and drop fragments, which would be outside of the intended texture.
Is this a bad idea? How do other people solve this?
(1): Example webgl code always needs a lot of boilerplate. The problem imho does not require a demonstration, but people do love clicking things which display something.
The following has y-flipped UVs, and clamps in the fragment-shader. To be able to see texels selected, a colorful texture is generated:
The entire thing is on 8x8 pixels, using a quad constructed to be 5x5, upscaled for ease-of-view.
const assert = (condition, message) => {
if (!condition) throw new Error(message);
};
const canvas = document.getElementById('canvas');
const gl = canvas.getContext('webgl2', { antialias: false });
assert(gl !== null, `WebGL2 was unexpectedly not supported.`);
const distribution = (x) => Math.E ** (-((1.6 * x) ** 2));
const rollover = 11;
const getColors = (i) => [0, 1, 2].map(e => Math.round(0xff * distribution((((e + 0.5) + (i % rollover) / rollover * 3) % 3) - 1.5)));
const textureSize = 8;
const testImage = new Uint8Array(Array.from(
{ length: textureSize * textureSize },
(_, i) => [...getColors(i), 0xff],
).flat());
const positionPerPixel = 2 / 8;
const selectionInPixels = 5;
const offsetY = -0.5;
const vertices = [
[0, 0 + offsetY],
[selectionInPixels, 0 + offsetY],
[selectionInPixels, selectionInPixels + offsetY],
[0, selectionInPixels + offsetY],
].map(coordPair => coordPair.map(coord => (coord - 2) * positionPerPixel));
const pixelOffset = 2;
const normalizedCoordPerPixel = 1 / textureSize;
const textureCoords = [
[0, selectionInPixels],
[selectionInPixels, selectionInPixels],
[selectionInPixels, 0],
[0, 0],
].map(coordPair => coordPair.map(coord => (coord + pixelOffset) * normalizedCoordPerPixel));
const vData = new Float32Array(vertices.map((e, i) => [...e, ...textureCoords[i]]).flat());
const indices = new Uint16Array([0, 1, 2, 0, 2, 3]);
const texture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, 8, 8, 0, gl.RGBA, gl.UNSIGNED_BYTE, testImage);
const vao = gl.createVertexArray();
gl.bindVertexArray(vao);
gl.enableVertexAttribArray(0);
gl.enableVertexAttribArray(1);
const vBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, vBuffer);
gl.vertexAttribPointer(0, 2, gl.FLOAT, false, 16, 0);
gl.vertexAttribPointer(1, 2, gl.FLOAT, false, 16, 8);
gl.bufferData(gl.ARRAY_BUFFER, vData, gl.STATIC_DRAW);
const iBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, iBuffer);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indices, gl.STATIC_DRAW);
const vertexShaderSrc = `#version 300 es
precision highp float;
layout(location = 0) in vec2 aPosition;
layout(location = 1) in vec2 aTextureCoord;
out vec2 vTextureCoord;
void main(void) {
gl_Position = vec4(aPosition, 0.0, 1.0);
vTextureCoord = aTextureCoord;
}`;
const maxTextureCoord = Math.max(...textureCoords.flat());
const minTextureCoord = Math.min(...textureCoords.flat());
const fragmentShaderSrc = `#version 300 es
precision highp float;
uniform sampler2D sampler;
in vec2 vTextureCoord;
out vec4 fColor;
void main(void){
vec2 clamped = vec2(
clamp(vTextureCoord.x, ${minTextureCoord} + 0.01, ${maxTextureCoord} - 0.01),
clamp(vTextureCoord.y, ${minTextureCoord} + 0.01, ${maxTextureCoord} - 0.01)
);
fColor = texture(sampler, clamped);
}`;
const program = gl.createProgram();
assert(program !== null, `Program was unexpectedly \`null\`.`);
const vertexShader = gl.createShader(gl.VERTEX_SHADER);
assert(vertexShader !== null, `Vertex-shader was unexpectedly \`null\`.`);
gl.shaderSource(vertexShader, vertexShaderSrc);
gl.compileShader(vertexShader);
assert(gl.getShaderParameter(vertexShader, gl.COMPILE_STATUS), `Vertex-shader failed to compile:\n${gl.getShaderInfoLog(vertexShader)}`);
const fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);
assert(fragmentShader !== null, `Vertex-shader was unexpectedly \`null\`.`);
gl.shaderSource(fragmentShader, fragmentShaderSrc);
gl.compileShader(fragmentShader);
assert(gl.getShaderParameter(fragmentShader, gl.COMPILE_STATUS), `Fragment-shader failed to compile:\n${gl.getShaderInfoLog(fragmentShader)}`);
gl.attachShader(program, vertexShader);
gl.attachShader(program, fragmentShader);
gl.linkProgram(program);
assert(gl.getProgramParameter(program, gl.LINK_STATUS), `Program linking failed:\n${gl.getProgramInfoLog(program)}`);
gl.useProgram(program);
const uniformLocationSampler = gl.getUniformLocation(program, 'sampler');
gl.uniform1i(uniformLocationSampler, 0);
gl.clearColor(0, 0, 0, 1.0);
gl.clear(gl.COLOR_BUFFER_BIT);
gl.drawElements(gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0);
#canvas {
width: 256px;
height: 256px;
image-rendering: pixelated;
}
<canvas id='canvas' width='8' height='8'></canvas>
The code is a slightly modified copy&paste from a related problem (limited subtexel precision leading to UVs snapping to exactly half-way between texels). Therefore, some oddities may still be left in there.
I have some streaming data, I want to draw interpolated vertices using gl.POINTS using WebGL2. I have smoothing function to produce circles and this is really what I need (I may want to interpolate twofold or threefold):
To illustrate problem:
To interpolate between vertices, here in JavaScript twofold:
var array = new Float32Array([-0.9, -0.9, 0.9, -0.9, 0.9, 0.9, -0.9, 0.9]);
var array2 = new Float32Array(array.length * 2 - 2);
/* init canvas */
var gl = document.getElementById('plot2').getContext('webgl2');
gl.canvas.width = gl.canvas.height = 128;
gl.viewportWidth = gl.canvas.width;
gl.viewportHeight = gl.canvas.height;
gl.viewport(0, 0, gl.viewportWidth, gl.viewportHeight);
const fs_point = `#version 300 es
precision mediump float;
out vec4 color;
void main() {
color = vec4(0.5, 0., 0.5, 0.8);
}`;
const vs_points = `#version 300 es
precision mediump float;
in vec2 vPos;
void main() {
gl_Position = vec4(vPos.x, vPos.y, 0, 1.0);
gl_PointSize = 10.0;
}`;
const shaderProgram = gl.createProgram();
let shader = gl.createShader(gl.FRAGMENT_SHADER);
gl.shaderSource(shader, fs_point);
gl.compileShader(shader);
gl.attachShader(shaderProgram, shader);
shader = gl.createShader(gl.VERTEX_SHADER);
gl.shaderSource(shader, vs_points);
gl.compileShader(shader);
gl.attachShader(shaderProgram, shader);
gl.linkProgram(shaderProgram);
gl.useProgram(shaderProgram);
gl.clearColor(0.0, 0.0, 0.0, 0.0);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA);
gl.enable(gl.BLEND);
gl.disable(gl.DEPTH_TEST);
shaderProgram.vertexPositionAttribute = gl.getAttribLocation(shaderProgram, "vPos");
gl.enableVertexAttribArray(shaderProgram.vertexPositionAttribute);
const pointPosBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, pointPosBuffer);
gl.bufferData(gl.ARRAY_BUFFER, array2, gl.DYNAMIC_DRAW);
pointPosBuffer.itemSize = 2;
gl.vertexAttribPointer(shaderProgram.vertexPositionAttribute, pointPosBuffer.itemSize, gl.FLOAT, false, 0, 0);
/* /init canvas */
/* loop */
gl.clear(gl.COLOR_BUFFER_BIT);
//array changes, manual interpolation
for(var i = 0; i < array.length; i += 2) {
array2[2 * i] = array[i];
array2[2 * i + 1] = array[i + 1];
}
//here starts interpolation
for(var i = 2; i < array2.length - 2; i += 4) {
array2[i] = (array2[i - 2] + array2[i + 2]) * 0.5;
array2[i + 1] = (array2[i - 1] + array2[i + 3]) * 0.5;
}
gl.bufferData(gl.ARRAY_BUFFER, array2, gl.DYNAMIC_DRAW); //array values changes
gl.drawArrays(gl.GL_POINTS, 0, 7);
/* /loop */
<canvas id="plot2"></canvas>
It is really really awkward to do it manually, so here is switch to shader:
var array = new Float32Array([-0.9, -0.9, 0.9, -0.9, 0.9, 0.9, -0.9, 0.9]),
gl = document.getElementById('plot3').getContext('webgl2');
gl.canvas.width = gl.canvas.height = 128;
gl.viewportWidth = gl.canvas.width;
gl.viewportHeight = gl.canvas.height;
gl.viewport(0, 0, gl.viewportWidth, gl.viewportHeight);
const fs_point = `#version 300 es
precision mediump float;
out vec4 color;
void main() {
color = vec4(0.5, 0., 0.5, 0.8);
}`;
const vs_points = `#version 300 es
precision mediump float;
in vec4 vPos;
void main() {
switch (gl_VertexID % 3) {
case 0:
gl_Position = vec4(vPos.x, vPos.y, 0, 1.0);
break;
case 1:
gl_Position = vec4(0.5 * (vPos.x + vPos.z), 0.5 * (vPos.y + vPos.w), 0, 1.0);
break;
case 2:
gl_Position = vec4(vPos.z, vPos.w, 0, 1.0);
break;
}
gl_PointSize = 12.0;
}`;
const shaderProgram = gl.createProgram();
let shader = gl.createShader(gl.FRAGMENT_SHADER);
gl.shaderSource(shader, fs_point);
gl.compileShader(shader);
gl.attachShader(shaderProgram, shader);
shader = gl.createShader(gl.VERTEX_SHADER);
gl.shaderSource(shader, vs_points);
gl.compileShader(shader);
gl.attachShader(shaderProgram, shader);
gl.linkProgram(shaderProgram);
gl.useProgram(shaderProgram);
gl.clearColor(0.0, 0.0, 0.0, 0.0);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA);
gl.enable(gl.BLEND);
gl.disable(gl.DEPTH_TEST);
shaderProgram.vertexPositionAttribute = gl.getAttribLocation(shaderProgram, "vPos");
gl.enableVertexAttribArray(shaderProgram.vertexPositionAttribute);
const pointPosBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, pointPosBuffer);
gl.bufferData(gl.ARRAY_BUFFER, array, gl.DYNAMIC_DRAW);
pointPosBuffer.itemSize = 4;
gl.vertexAttribPointer(shaderProgram.vertexPositionAttribute, pointPosBuffer.itemSize, gl.FLOAT, false, 8, 0);
const indexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
const indices = new Uint8Array([
0, 0, 0,
1, 1, 1,
2, 2, 2
]);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indices, gl.STATIC_DRAW);
/* /init canvas */
/* loop */
gl.clear(gl.COLOR_BUFFER_BIT);
//array changes, manual interpolation
gl.bufferData(gl.ARRAY_BUFFER, array, gl.DYNAMIC_DRAW); //array values changes
gl.drawElements(gl.GL_POINTS, 9, gl.UNSIGNED_BYTE, 0);
/* /loop */
<canvas id="plot3"></canvas>
Here, I want to use indices and supply two pairs of x, y coordinates to shader. I see only three dots. I think the code tells the indices, calls three times the same quad of vertices interpolating them according to index (which seems to fail), advances 8 bytes (2 Float coordinates) and draws again.
Is there easier way to interpolate between vertices?
Aren't gl_VertexID or gl_InstanceID (tried the same at instanced version) suppose to advance every index / vertex?
Is this due to index reuse?
I'm trying to use instancing with WebGL based on this guide. I've tried to create a simple example that draws a red triangle on the left and a blue triangle on the right. When I run it, it draws a blue triangle on the left and I don't understand why.
I've tried changing the arguments to drawArraysInstancedANGLE but that doesn't help. I've tried changing the order of lines for binding buffers and setting attribute pointers, etc. What am I doing wrong? Thanks
const canvas = document.getElementById("canvas");
const gl = canvas.getContext("webgl");
const ext = gl.getExtension("ANGLE_instanced_arrays");
const vert = gl.createShader(gl.VERTEX_SHADER);
const frag = gl.createShader(gl.FRAGMENT_SHADER);
const program = gl.createProgram();
gl.shaderSource(vert, `
attribute vec4 a_position;
attribute vec4 a_color;
varying vec4 v_color;
void main() {
gl_Position = a_position;
v_color = a_color;
}
`);
gl.shaderSource(frag, `
precision mediump float;
varying vec4 v_color;
void main() {
gl_FragColor = v_color;
}
`);
gl.compileShader(vert);
gl.compileShader(frag);
gl.attachShader(program, vert);
gl.attachShader(program, frag);
gl.linkProgram(program);
const a_position = gl.getAttribLocation(program, "a_position");
const buffer1 = gl.createBuffer();
const positions = [-0.5, 0, -0.5, 0.2, -0.3, 0, 0.5, 0, 0.5, 0.2, 0.3, 0];
gl.bindBuffer(gl.ARRAY_BUFFER, buffer1);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(positions), gl.STATIC_DRAW);
const a_color = gl.getAttribLocation(program, "a_color");
const buffer2 = gl.createBuffer();
const colors = [1, 0, 0, 1, 0, 0, 1, 1];
gl.bindBuffer(gl.ARRAY_BUFFER, buffer2);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(colors), gl.STATIC_DRAW);
gl.viewport(0, 0, 300, 300);
gl.useProgram(program);
gl.bindBuffer(gl.ARRAY_BUFFER, buffer1);
gl.enableVertexAttribArray(a_position);
gl.vertexAttribPointer(a_position, 2, gl.FLOAT, false, 0, 0);
gl.bindBuffer(gl.ARRAY_BUFFER, buffer2);
gl.enableVertexAttribArray(a_color);
gl.vertexAttribPointer(a_color, 4, gl.FLOAT, false, 0, 0);
ext.vertexAttribDivisorANGLE(a_color, 1);
ext.drawArraysInstancedANGLE(gl.TRIANGLES, 0, 3, 2);
<canvas id="canvas" width="300" height="300"></canvas>
So I see you mostly already got an answer in the comments.
The code is drawing the first triangle twice, once in red, then once in blue.
But, ... you mentioned indexing a uniform array. That would be unusual
Normally you'd put per instance data in a buffer. The example on the site linked used a matrix just to be generic since a matrix well will let you do just about any math (translation, rotation, scale, 3d projection, ...) but just as an example, you could just pass in single x offset.
const canvas = document.getElementById("canvas");
const gl = canvas.getContext("webgl");
const ext = gl.getExtension("ANGLE_instanced_arrays");
const vert = gl.createShader(gl.VERTEX_SHADER);
const frag = gl.createShader(gl.FRAGMENT_SHADER);
const program = gl.createProgram();
gl.shaderSource(vert, `
attribute vec4 a_position;
attribute float a_xoffset;
attribute vec4 a_color;
varying vec4 v_color;
void main() {
gl_Position = a_position;
gl_Position.x += a_xoffset;
v_color = a_color;
}
`);
gl.shaderSource(frag, `
precision mediump float;
varying vec4 v_color;
void main() {
gl_FragColor = v_color;
}
`);
gl.compileShader(vert);
gl.compileShader(frag);
gl.attachShader(program, vert);
gl.attachShader(program, frag);
gl.linkProgram(program);
const a_position = gl.getAttribLocation(program, "a_position");
const buffer1 = gl.createBuffer();
const positions = [-0.5, 0, -0.5, 0.2, -0.3, 0];
gl.bindBuffer(gl.ARRAY_BUFFER, buffer1);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(positions), gl.STATIC_DRAW);
const a_color = gl.getAttribLocation(program, "a_color");
const buffer2 = gl.createBuffer();
const colors = [1, 0, 0, 1, 0, 0, 1, 1];
gl.bindBuffer(gl.ARRAY_BUFFER, buffer2);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(colors), gl.STATIC_DRAW);
const a_xoffset = gl.getAttribLocation(program, "a_xoffset");
const buffer3 = gl.createBuffer();
const xoffsets = [0, 1];
gl.bindBuffer(gl.ARRAY_BUFFER, buffer3);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(xoffsets), gl.STATIC_DRAW);
gl.viewport(0, 0, 300, 300);
gl.useProgram(program);
gl.bindBuffer(gl.ARRAY_BUFFER, buffer1);
gl.enableVertexAttribArray(a_position);
gl.vertexAttribPointer(a_position, 2, gl.FLOAT, false, 0, 0);
gl.bindBuffer(gl.ARRAY_BUFFER, buffer2);
gl.enableVertexAttribArray(a_color);
gl.vertexAttribPointer(a_color, 4, gl.FLOAT, false, 0, 0);
ext.vertexAttribDivisorANGLE(a_color, 1);
gl.bindBuffer(gl.ARRAY_BUFFER, buffer3);
gl.enableVertexAttribArray(a_xoffset);
gl.vertexAttribPointer(a_xoffset, 1, gl.FLOAT, false, 0, 0);
ext.vertexAttribDivisorANGLE(a_xoffset, 1);
ext.drawArraysInstancedANGLE(gl.TRIANGLES, 0, 3, 2);
<canvas id="canvas" width="300" height="300"></canvas>
I'm just pointing that out because you have millions of values in a buffer but uniforms are far more limited so indexing a uniform for instancing is not common.
If you actually wanted different data per instance then yes you'd have to do something else.
One example is here
I'm busy transferring some code from OpenGL to WebGL2 (to do duel depth peeling) but I'm getting a warning in my console that I cannot make sense of and the output is just black.
I've gone through the process of drawing some of the buffers individually and discovered the warning only appears inside the loop for (var p = 1; p < numPasses; p++) when I do the geometry passes.
The shaders I based mine off also made extensive use of gl_NormalMatrix, gl_ModelViewMatrix, and gl_Vertex that I think could also be a result of the black output. I assume just replacing gl_ModelViewMatrix * gl_Vertex with uProjMatrix * uViewMatrix * uModelMatrix * vec4(inVertexPosition, 1.0); will yield the same result.
(function() {
var script = document.createElement("script");
script.onload = function() {
main();
};
script.src = "https://mdn.github.io/webgl-examples/tutorial/gl-matrix.js";
document.head.appendChild(script);
})();
var initShader, peelShader, blendShader, finalShader;
var accumTex0, accumTex1;
var backBlenderFBO, peelingSingleFBO;
var depthTex = [], frontBlenderTex = [], backTempTex = [], backBlenderTex = [];
var quadVAO;
var drawBuffers;
function main() {
const canvas = document.querySelector("#glcanvas");
const gl = canvas.getContext("webgl2", { alpha: false });
if (!gl) {
alert("Unable to initialize WebGL. Your browser or machine may not support it.");
return;
}
var ext = gl.getExtension("EXT_color_buffer_float");
if (!ext) { alert("Unable to initialize WebGL. Your browser or machine may not support it."); return; }
quadVAO = newMesh(gl);
drawBuffers = [gl.COLOR_ATTACHMENT0, gl.COLOR_ATTACHMENT1, gl.COLOR_ATTACHMENT2, gl.COLOR_ATTACHMENT3, gl.COLOR_ATTACHMENT4, gl.COLOR_ATTACHMENT5, gl.COLOR_ATTACHMENT6];
// Dual Peeling Render Targets
backBlenderTex = newTexture(gl, gl.TEXTURE_2D, gl.RGBA32F, 640, 480, gl.RGBA, gl.FLOAT, null);
backBlenderFBO = newFramebuffer(gl, [backBlenderTex]);
depthTex[0] = newTexture(gl, gl.TEXTURE_2D, gl.RG32F, 640, 480, gl.RG, gl.FLOAT, null);
frontBlenderTex[0] = newTexture(gl, gl.TEXTURE_2D, gl.RGBA32F, 640, 480, gl.RGBA, gl.FLOAT, null);
backTempTex[0] = newTexture(gl, gl.TEXTURE_2D, gl.RGBA32F, 640, 480, gl.RGBA, gl.FLOAT, null);
depthTex[1] = newTexture(gl, gl.TEXTURE_2D, gl.RG32F, 640, 480, gl.RG, gl.FLOAT, null);
frontBlenderTex[1] = newTexture(gl, gl.TEXTURE_2D, gl.RGBA32F, 640, 480, gl.RGBA, gl.FLOAT, null);
backTempTex[1] = newTexture(gl, gl.TEXTURE_2D, gl.RGBA32F, 640, 480, gl.RGBA, gl.FLOAT, null);
peelingSingleFBO = newFramebuffer(gl, [depthTex[0], frontBlenderTex[0], backTempTex[0], depthTex[1], frontBlenderTex[1], backTempTex[1], backBlenderTex]);
bindFramebuffer(gl, null);
initShader = newShader(gl, vsInitSource, fsInitSource);
peelShader = newShader(gl, vsPeelSource, fsPeelSource);
blendShader = newShader(gl, vsBlendSource, fsBlendSource);
finalShader = newShader(gl, vsFinalSource, fsFinalSource);
gl.disable(gl.CULL_FACE);
draw(gl);
}
// See below link to make sense of this function
// https://stackoverflow.com/questions/37381980/get-some-trounble-when-using-drawbuffers-in-webgl2
function getDrawBuffers(gl, ...idx) {
var buffers = [gl.NONE, gl.NONE, gl.NONE, gl.NONE, gl.NONE, gl.NONE, gl.NONE];
for (var i = 0; i < idx.length; i++) {
if (i == idx[i]) buffers[i] = drawBuffers[i];
}
return buffers;
}
function draw(gl) {
// setup MVP
const proj = mat4.create();
const cameraSize = 0.2;
mat4.ortho(proj, 0.0, 1.0, 0.0, 1.0, 0.0001, 10.0);
const view = mat4.create();
mat4.lookAt(view, [0, 0, 2], [0, 0, 0], [0, 1, 0]);
gl.disable(gl.DEPTH_TEST);
gl.enable(gl.BLEND);
bindFramebuffer(gl, peelingSingleFBO);
gl.drawBuffers(getDrawBuffers(gl, 1, 2));
gl.clearColor(0, 0, 0, 0);
gl.clear(gl.COLOR_BUFFER_BIT);
const maxDepth = 1;
gl.drawBuffers(getDrawBuffers(gl, 0));
gl.clearColor(-maxDepth, -maxDepth, 0, 0);
gl.clear(gl.COLOR_BUFFER_BIT);
gl.blendEquation(gl.MAX);
// init
// bindFramebuffer(gl, null); // to test with
// gl.drawBuffers([gl.BACK]); // to test with
gl.useProgram(initShader);
drawMesh(gl, initShader, proj, view, { x: 0.0, y: 0.0, z: 0.0 }, { r: 1.0, g: 0.0, b: 0.0, a: 1.0 });
gl.useProgram(null);
// return; // to test with
// peeling & blending
gl.drawBuffers(getDrawBuffers(gl, 6));
var backgroundColor = [1, 1, 1];
gl.clearColor(backgroundColor[0], backgroundColor[1], backgroundColor[2], 0);
gl.clear(gl.COLOR_BUFFER_BIT);
// return; // to test with
// for each pass
var numPasses = 4;
var currID = 0;
for (var p = 1; p < numPasses; p++) {
currID = p % 2;
var prevID = 1 - currID;
var bufID = currID * 3;
gl.drawBuffers(getDrawBuffers(gl, bufID + 1, bufID + 2));
gl.clearColor(0, 0, 0, 0);
gl.clear(gl.COLOR_BUFFER_BIT);
gl.drawBuffers(getDrawBuffers(gl, bufID));
gl.clearColor(-maxDepth, -maxDepth, 0, 0);
gl.clear(gl.COLOR_BUFFER_BIT);
// all three blending render targets
gl.drawBuffers(getDrawBuffers(gl, bufID, bufID + 1, bufID + 2));
gl.blendEquation(gl.MAX);
gl.useProgram(peelShader);
bindTexture(gl, gl.TEXTURE0, gl.TEXTURE_2D, depthTex[prevID]); // DepthBlenderTex
bindTexture(gl, gl.TEXTURE1, gl.TEXTURE_2D, frontBlenderTex[prevID]); // FrontBlenderTex
gl.uniform1f(gl.getUniformLocation(peelShader, "uAlpha"), 0.6);
drawMesh(gl, peelShader, proj, view, { x: 0.0, y: 0.0, z: 0.0 }, { r: 1.0, g: 0.0, b: 0.0, a: 1.0 });
gl.useProgram(null);
// alpha blend the back color
gl.drawBuffers(getDrawBuffers(gl, 6));
gl.blendEquation(gl.FUNC_ADD);
gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA);
gl.useProgram(blendShader);
bindTexture(gl, gl.TEXTURE0, gl.TEXTURE_2D, backTempTex[currID]); // TempTex
drawFullscreenQuad(gl);
gl.useProgram(null);
}
gl.disable(gl.BLEND);
// final pass
bindFramebuffer(gl, null);
gl.drawBuffers([gl.BACK]);
gl.useProgram(finalShader);
bindTexture(gl, gl.TEXTURE0, gl.TEXTURE_2D, depthTex[currID]); // DepthBlenderTex
bindTexture(gl, gl.TEXTURE1, gl.TEXTURE_2D, frontBlenderTex[currID]); // FrontBlenderTex
bindTexture(gl, gl.TEXTURE2, gl.TEXTURE_2D, backBlenderTex); // BackBlenderTex
drawFullscreenQuad(gl);
gl.useProgram(null);
}
function newShader(gl, vsSource, fsSource) {
const vertexShader = loadSource(gl, gl.VERTEX_SHADER, vsSource);
const fragmentShader = loadSource(gl, gl.FRAGMENT_SHADER, fsSource);
const shaderProgram = gl.createProgram();
gl.attachShader(shaderProgram, vertexShader);
gl.attachShader(shaderProgram, fragmentShader);
gl.linkProgram(shaderProgram);
if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS)) {
alert("Unable to initialize the shader program: " + gl.getProgramInfoLog(shaderProgram));
return null;
}
return shaderProgram;
}
function loadSource(gl, type, source) {
const shader = gl.createShader(type);
gl.shaderSource(shader, source);
gl.compileShader(shader);
if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
alert("An error occurred compiling the shaders: " + gl.getShaderInfoLog(shader));
gl.deleteShader(shader);
return null;
}
return shader;
}
function newMesh(gl) {
var vertices = [1.0, 1.0, 1.0, -1.0, -1.0, -1.0, -1.0, 1.0];
var indicies = [0, 1, 3, 1, 2, 3];
const vao = gl.createVertexArray();
gl.bindVertexArray(vao);
const vb = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, vb);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices), gl.STATIC_DRAW);
const eb = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, eb);
gl.bufferData(
gl.ELEMENT_ARRAY_BUFFER,
new Uint16Array(indicies),
gl.STATIC_DRAW
);
gl.vertexAttribPointer(0, 2, gl.FLOAT, false, 2 * 4, 0);
gl.enableVertexAttribArray(null);
gl.bindVertexArray(null);
return vao;
}
function drawFullscreenQuad(gl) {
gl.bindVertexArray(quadVAO);
gl.drawElements(gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0);
gl.bindVertexArray(null);
}
function drawMesh(gl, prog, proj, view, pos, col) {
gl.uniformMatrix4fv(gl.getUniformLocation(prog, "uProjMatrix"), false, proj);
gl.uniformMatrix4fv(gl.getUniformLocation(prog, "uViewMatrix"), false, view);
gl.bindVertexArray(quadVAO);
const model = mat4.create();
var trans = vec3.create();
vec3.set(trans, pos.x, pos.y, pos.z);
mat4.translate(model, model, trans);
gl.uniform4fv(gl.getUniformLocation(prog, "uColor"), [col.r, col.g, col.b, col.a]);
gl.uniformMatrix4fv(gl.getUniformLocation(prog, "uModelMatrix"), false, model);
gl.drawElements(gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0);
gl.bindVertexArray(null);
}
function newTexture(gl, target, internalFormat, height, width, format, type, pixels) {
var tid = gl.createTexture();
gl.bindTexture(target, tid);
gl.texParameteri(target, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(target, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
gl.texParameteri(target, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.texParameteri(target, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.texImage2D(target, 0, internalFormat, width, height, 0, format, type, pixels);
return tid;
}
function bindTexture(gl, idx, target, id) {
gl.activeTexture(idx);
gl.bindTexture(target, id);
// wait should I be doing glUniforml1(id, ...) here?
}
function newFramebuffer(gl, colorAttachments) {
var fib = gl.createFramebuffer();
gl.bindFramebuffer(gl.FRAMEBUFFER, fib);
for (var i = 0; i < colorAttachments.length; i++) {
gl.framebufferTexture2D(
gl.FRAMEBUFFER,
drawBuffers[i],
gl.TEXTURE_2D,
colorAttachments[i],
0
);
}
if (gl.checkFramebufferStatus(gl.FRAMEBUFFER) !== gl.FRAMEBUFFER_COMPLETE) {
alert(gl.checkFramebufferStatus(gl.FRAMEBUFFER).toString(16));
}
return fib;
}
function bindFramebuffer(gl, fib) {
gl.bindFramebuffer(gl.FRAMEBUFFER, fib);
}
const vsInitSource = `#version 300 es
layout(location=0) in vec3 inVertexPosition;
uniform mat4 uModelMatrix;
uniform mat4 uViewMatrix;
uniform mat4 uProjMatrix;
void main(void) {
gl_Position = uProjMatrix * uViewMatrix * uModelMatrix * vec4(inVertexPosition, 1.0);
}`;
const fsInitSource = `#version 300 es
precision mediump float;
layout(location=0) out vec2 outColor;
void main(void) {
// This seems very important because it is based on the near/far values
// What is the correct value I can expect here?
outColor.xy = vec2(-gl_FragCoord.z, gl_FragCoord.z);
}`;
const vsPeelSource = `#version 300 es
layout(location=0) in vec3 inVertexPosition;
uniform mat4 uModelMatrix;
uniform mat4 uViewMatrix;
uniform mat4 uProjMatrix;
// I believe this is what gives the model the green and white stripes
// Not required?
// vec3 ShadeVertex() {
// float diffuse = abs(normalize(gl_NormalMatrix * gl_Normal).z);
// return vec3(gl_Vertex.xy, diffuse);
// }
void main(void) {
gl_Position = uProjMatrix * uViewMatrix * uModelMatrix * vec4(inVertexPosition, 1.0);
//gl_TexCoord[0].xyz = ShadeVertex();
}`;
const fsPeelSource = `#version 300 es
precision mediump float;
uniform float uAlpha;
#define COLOR_FREQ 30.0
#define ALPHA_FREQ 30.0
vec4 ShadeFragment() {
vec4 color;
color.rgb = vec3(.4,.85,.0);
color.a = uAlpha;
return color;
}
uniform sampler2D DepthBlenderTex;
uniform sampler2D FrontBlenderTex;
#define MAX_DEPTH 1.0
layout(location=0) out vec4 outFragData0;
layout(location=1) out vec4 outFragData1;
layout(location=2) out vec4 outFragData2;
void main(void) {
// window-space depth interpolated linearly in screen space
float fragDepth = gl_FragCoord.z;
vec2 depthBlender = texture(DepthBlenderTex, gl_FragCoord.xy).xy;
vec4 forwardTemp = texture(FrontBlenderTex, gl_FragCoord.xy);
// Depths and 1.0-alphaMult always increase
// so we can use pass-through by default with MAX blending
outFragData0.xy = depthBlender;
// Front colors always increase (DST += SRC*ALPHA_MULT)
// so we can use pass-through by default with MAX blending
outFragData1 = forwardTemp;
// Because over blending makes color increase or decrease,
// we cannot pass-through by default.
// Each pass, only one fragment writes a color greater than 0
outFragData2 = vec4(0.0);
float nearestDepth = -depthBlender.x;
float farthestDepth = depthBlender.y;
float alphaMultiplier = 1.0 - forwardTemp.w;
if (fragDepth < nearestDepth || fragDepth > farthestDepth) {
// Skip this depth in the peeling algorithm
outFragData0.xy = vec2(-MAX_DEPTH);
return;
}
if (fragDepth > nearestDepth && fragDepth < farthestDepth) {
// This fragment needs to be peeled again
outFragData0.xy = vec2(-fragDepth, fragDepth);
return;
}
// If we made it here, this fragment is on the peeled layer from last pass
// therefore, we need to shade it, and make sure it is not peeled any farther
vec4 color = ShadeFragment();
outFragData0.xy = vec2(-MAX_DEPTH);
if (fragDepth == nearestDepth) {
outFragData1.xyz += color.rgb * color.a * alphaMultiplier;
outFragData1.w = 1.0 - alphaMultiplier * (1.0 - color.a);
} else {
outFragData2 += color;
}
}`;
const vsBlendSource = `#version 300 es
layout(location=0) in vec3 inVertexPosition;
uniform mat4 uModelMatrix;
uniform mat4 uViewMatrix;
uniform mat4 uProjMatrix;
void main(void) {
gl_Position = uProjMatrix * uViewMatrix * uModelMatrix * vec4(inVertexPosition, 1.0);
}`;
const fsBlendSource = `#version 300 es
precision mediump float;
uniform sampler2D TempTex;
layout(location=0) out vec4 outColor;
void main(void) {
outColor = texture(TempTex, gl_FragCoord.xy);
// for occlusion query
if (outColor.a == 0.0) discard;
}`;
const vsFinalSource = `#version 300 es
layout(location=0) in vec3 inVertexPosition;
uniform mat4 uModelMatrix;
uniform mat4 uViewMatrix;
uniform mat4 uProjMatrix;
void main(void) {
gl_Position = uProjMatrix * uViewMatrix * uModelMatrix * vec4(inVertexPosition, 1.0);
}`;
const fsFinalSource = `#version 300 es
precision mediump float;
uniform sampler2D DepthBlenderTex;
uniform sampler2D FrontBlenderTex;
uniform sampler2D BackBlenderTex;
layout(location=0) out vec4 outColor;
void main(void)
{
vec4 frontColor = texture(FrontBlenderTex, gl_FragCoord.xy);
vec3 backColor = texture(BackBlenderTex, gl_FragCoord.xy).rgb;
float alphaMultiplier = 1.0 - frontColor.w;
// front + back
outColor.rgb = frontColor.rgb + backColor * alphaMultiplier;
// front blender
// outColor.rgb = frontColor.rgb + vec3(alphaMultiplier);
// back blender
// outColor.rgb = backColor;
}`;
<canvas id="glcanvas" width="640" height="480"></canvas>
Using the same Texture for reading and writing in the Framebuffer is not alowed GLSL (see Point 6.27 at https://www.khronos.org/registry/webgl/specs/latest/1.0/#6.26)
But you can create two FrameBuffers with seperate textures and swap then every Frame. So you can read from the last rendered and write to the second Texture and when done simply swap it.
I have a canvas with webgl. I initialize webgl, create a fragment and a vertex shader, two triangles to cover the whole and a texture.
const vertexShaderSource = `
attribute vec2 a_position;
attribute vec2 a_texCoord;
uniform vec2 u_resolution;
varying vec2 v_texCoord;
void main() {
// convert the rectangle from pixels to 0.0 to 1.0
vec2 zeroToOne = a_position / u_resolution;
// convert from 0->1 to 0->2
vec2 zeroToTwo = zeroToOne * 2.0;
// convert from 0->2 to -1->+1 (clipspace)
vec2 clipSpace = zeroToTwo - 1.0;
gl_Position = vec4(clipSpace * vec2(1, -1), 0, 1);
// pass the texCoord to the fragment shader
// The GPU will interpolate this value between points.
v_texCoord = a_texCoord;
}
`;
const fragmentShaderSource = `
precision mediump float;
// our texture
uniform sampler2D u_image;
// the texCoords passed in from the vertex shader.
varying vec2 v_texCoord;
void main() {
gl_FragColor = texture2D(u_image, v_texCoord);
}
`;
I create the texture from a ImageData object whose elements are randomly chosen (each pixel a different color). When I apply the texture, it seems to cover the whole area with the upper-left pixel color stretching to cover the whole canvas.
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, IMAGEDATA);
This is the code I have so far:
const width = 128;
const height = 128;
var createShader = function (gl, shaderSource, shaderType) {
const shader = gl.createShader(shaderType);
gl.shaderSource(shader, shaderSource);
gl.compileShader(shader);
const compiled = gl.getShaderParameter(shader, gl.COMPILE_STATUS);
if (!compiled) {
console.log(`Error compiling shader: ${gl.getShaderInfoLog(shader)}`);
return;
}
return shader;
};
var createProgram = function(gl, shaders, opt_attribs, opt_locations) {
const program = gl.createProgram();
for (var ii = 0; ii < shaders.length; ++ii) {
gl.attachShader(program, shaders[ii]);
}
if (opt_attribs) {
for (var ii = 0; ii < opt_attribs.length; ++ii) {
gl.bindAttribLocation(program, opt_locations ? opt_locations[ii] : ii, opt_attribs[ii]);
}
}
gl.linkProgram(program);
// Check the link status
var linked = gl.getProgramParameter(program, gl.LINK_STATUS);
if (!linked) {
console.log(`Error linking shader parameter: ${gl.getProgramInfoLog(program)}`);
gl.deleteProgram(program);
return;
}
return program;
}
// create canvas
const canvas = document.createElement('canvas');
canvas.width = width;
canvas.height = height;
// imagedata to update the texture
const imageData = {
imageData: new ImageData(width, height),
dataBuf: null,
dataBuf8: null,
data: null
};
imageData.dataBuf = new ArrayBuffer(imageData.imageData.data.length);
imageData.dataBuf8 = new Uint8ClampedArray(imageData.dataBuf);
imageData.data = new Uint32Array(imageData.dataBuf);
const gl = canvas.getContext('webgl') || canvas.getContext('experimental-webgl');
document.getElementById('container').appendChild(canvas);
// shaders
const vertexShaderSource = `
attribute vec2 a_position;
attribute vec2 a_texCoord;
uniform vec2 u_resolution;
varying vec2 v_texCoord;
void main() {
// convert the rectangle from pixels to 0.0 to 1.0
vec2 zeroToOne = a_position / u_resolution;
// convert from 0->1 to 0->2
vec2 zeroToTwo = zeroToOne * 2.0;
// convert from 0->2 to -1->+1 (clipspace)
vec2 clipSpace = zeroToTwo - 1.0;
gl_Position = vec4(clipSpace * vec2(1, -1), 0, 1);
// pass the texCoord to the fragment shader
// The GPU will interpolate this value between points.
v_texCoord = a_texCoord;
}
`;
const fragmentShaderSource = `
precision mediump float;
// our texture
uniform sampler2D u_image;
// the texCoords passed in from the vertex shader.
varying vec2 v_texCoord;
void main() {
gl_FragColor = texture2D(u_image, v_texCoord);
}
`;
const vertexShader = createShader(gl, vertexShaderSource, gl.VERTEX_SHADER);
const fragmentShader = createShader(gl, fragmentShaderSource, gl.FRAGMENT_SHADER);
const program = createProgram(gl, [vertexShader, fragmentShader]);
gl.useProgram(program);
// triangle and triangle buffers
var positionLocation = gl.getAttribLocation(program, "a_position");
var resolutionLocation = gl.getUniformLocation(program, "u_resolution");
gl.uniform2f(resolutionLocation, canvas.width, canvas.height);
const buffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array([
0, 0,
canvas.width, 0,
0, canvas.height,
0, canvas.height,
canvas.width, canvas.height,
canvas.width, 0]), gl.STATIC_DRAW);
gl.enableVertexAttribArray(positionLocation);
gl.vertexAttribPointer(positionLocation, 2, gl.FLOAT, false, 0, 0);
var texCoordLocation = gl.getUniformLocation(program, "a_texCoord");
var texCoordBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, texCoordBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array([
0, 0,
canvas.width, 0,
0, canvas.height,
0, canvas.height,
canvas.width, canvas.height,
canvas.width, 0]), gl.STATIC_DRAW);
gl.enableVertexAttribArray(texCoordLocation);
gl.vertexAttribPointer(texCoordLocation, 2, gl.FLOAT, false, 0, 0);
// texture
const texture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
for (let i = 0; i < imageData.data.length; i++) {
const r = Math.round(Math.random() * 100);
const g = Math.round(Math.random() * 100);
const b = Math.round(Math.random() * 100);
imageData.data[i] = (255 << 24) | // alpha
(b << 16) | // blue
(g << 8) | // green
r; //
}
imageData.imageData.data.set(imageData.dataBuf8);
// bind texture and draw
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, imageData.imageData);
gl.drawArrays(gl.TRIANGLES, 0, 6);
<div id="container"></div>
How can I correctly place the texture?
Just two errors, Wrong location type for a_texCoords and wrong texture coords should be in the range 0 to 1.
See code below for corrections.
const width = 128;
const height = 128;
var createShader = function(gl, shaderSource, shaderType) {
const shader = gl.createShader(shaderType);
gl.shaderSource(shader, shaderSource);
gl.compileShader(shader);
const compiled = gl.getShaderParameter(shader, gl.COMPILE_STATUS);
if (!compiled) {
console.log(`Error compiling shader: ${gl.getShaderInfoLog(shader)}`);
return;
}
return shader;
};
var createProgram = function(gl, shaders, opt_attribs, opt_locations) {
const program = gl.createProgram();
for (var ii = 0; ii < shaders.length; ++ii) {
gl.attachShader(program, shaders[ii]);
}
if (opt_attribs) {
for (var ii = 0; ii < opt_attribs.length; ++ii) {
gl.bindAttribLocation(program, opt_locations ? opt_locations[ii] : ii, opt_attribs[ii]);
}
}
gl.linkProgram(program);
// Check the link status
var linked = gl.getProgramParameter(program, gl.LINK_STATUS);
if (!linked) {
console.log(`Error linking shader parameter: ${gl.getProgramInfoLog(program)}`);
gl.deleteProgram(program);
return;
}
return program;
}
// create canvas
const canvas = document.createElement('canvas');
canvas.width = width;
canvas.height = height;
// imagedata to update the texture
const imageData = {
imageData: new ImageData(width, height),
dataBuf: null,
dataBuf8: null,
data: null
};
imageData.dataBuf = new ArrayBuffer(imageData.imageData.data.length);
imageData.dataBuf8 = new Uint8ClampedArray(imageData.dataBuf);
imageData.data = new Uint32Array(imageData.dataBuf);
const gl = canvas.getContext('webgl') || canvas.getContext('experimental-webgl');
document.getElementById('container').appendChild(canvas);
// shaders
const vertexShaderSource = `
attribute vec2 a_position;
attribute vec2 a_texCoord;
uniform vec2 u_resolution;
varying vec2 v_texCoord;
void main() {
// convert the rectangle from pixels to 0.0 to 1.0
vec2 zeroToOne = a_position / u_resolution;
// convert from 0->1 to 0->2
vec2 zeroToTwo = zeroToOne * 2.0;
// convert from 0->2 to -1->+1 (clipspace)
vec2 clipSpace = zeroToTwo - 1.0;
gl_Position = vec4(clipSpace * vec2(1, -1), 0, 1);
// pass the texCoord to the fragment shader
// The GPU will interpolate this value between points.
v_texCoord = a_texCoord;
}
`;
const fragmentShaderSource = `
precision mediump float;
// our texture
uniform sampler2D u_image;
// the texCoords passed in from the vertex shader.
varying vec2 v_texCoord;
void main() {
gl_FragColor = texture2D(u_image, v_texCoord);
}
`;
const vertexShader = createShader(gl, vertexShaderSource, gl.VERTEX_SHADER);
const fragmentShader = createShader(gl, fragmentShaderSource, gl.FRAGMENT_SHADER);
const program = createProgram(gl, [vertexShader, fragmentShader]);
gl.useProgram(program);
// triangle and triangle buffers
var positionLocation = gl.getAttribLocation(program, "a_position");
var resolutionLocation = gl.getUniformLocation(program, "u_resolution");
gl.uniform2f(resolutionLocation, canvas.width, canvas.height);
const buffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array([
0, 0,
canvas.width, 0,
0, canvas.height,
0, canvas.height,
canvas.width, canvas.height,
canvas.width, 0
]), gl.STATIC_DRAW);
gl.enableVertexAttribArray(positionLocation);
gl.vertexAttribPointer(positionLocation, 2, gl.FLOAT, false, 0, 0);
// You had the wrong location type getUniformLocation a_exCoord is an attribute
var texCoordLocation = gl.getAttribLocation(program, "a_texCoord");
var texCoordBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, texCoordBuffer);
// You had the wrong texture coords.Coords are in the range 0 to 1
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array([
0, 0,
1, 0,
0, 1,
0, 1,
1, 1,
1, 0
]), gl.STATIC_DRAW);
gl.enableVertexAttribArray(texCoordLocation);
gl.vertexAttribPointer(texCoordLocation, 2, gl.FLOAT, false, 0, 0);
// texture
const texture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
// changed this as I thought you where indexing a 8bit array then saw you
// correctly index a 32 bit array. Id did not change the code back but yours was
// correct as well.
for (let i = 0; i < imageData.dataBuf8.length; i += 4) {
imageData.dataBuf8[i] = Math.random() * 255;; // red
imageData.dataBuf8[i + 1] = Math.random() * 255; // green
imageData.dataBuf8[i + 2] = Math.random() * 255; // blue
imageData.dataBuf8[i + 3] = Math.random() * 255; // alpha //
}
imageData.imageData.data.set(imageData.dataBuf8);
// bind texture and draw
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, imageData.imageData);
gl.drawArrays(gl.TRIANGLES, 0, 6);
canvas {
border: 2px solid black;
}
<div id="container"></div>