How to decrypt RSA encrypted string from JavaScript in C#? - javascript

I have an asymmetric RSA key pair stored in two separate files. I want to generate a new symmetric key and encrypt it with public RSA key in my postbuild.js GULP script, so the user cannot access it. Then I want to send it to the C# server, where it would be decrypted and used.
I use the following JavaScript code in Node.js for encryption:
const generateAndEncryptKey = () => {
const symmetricKey = crypto.randomBytes(32);
const publicKey = fs.readFileSync("pubkey.pem", "utf8");
const encryptedSymmetricKey = crypto.publicEncrypt({
key: publicKey,
padding: crypto.constants.RSA_PKCS1_OAEP_PADDING,
oaepHash: "sha256",
}, Buffer.from(symmetricKey)).toString("base64");
return encryptedSymmetricKey;
}
The above code somehow works and generates a base64 string that I later send to the server. I'm not sure if this is the correct way to do this.
But I'm unable to find a way to decrypt this string in C#. I tried to use the BouncyCastle library and the following code:
public string DecryptKey(string encryptedKey) {
var privateKey = #"-----BEGIN RSA PRIVATE KEY-----
...shortened...
-----END RSA PRIVATE KEY-----";
var bytesToDecrypt = Convert.FromBase64String(encryptedKey);
var decryptEngine = new Pkcs1Encoding(new RsaEngine());
using (var txtreader = new StringReader(privateKey)) {
AsymmetricCipherKeyPair keyPair = (AsymmetricCipherKeyPair)new PemReader(txtreader).ReadObject();
decryptEngine.Init(false, keyPair.Private);
}
var decrypted = Encoding.UTF8.GetString(decryptEngine.ProcessBlock(bytesToDecrypt, 0, bytesToDecrypt.Length));
return decrypted;
}
But the ProcessBlock method always throws an InvalidCipherTextException "unknown block type".
Can someone help me to find out what am I doing wrong or point me to another better way of achieving this?

Decryption with the C# code fails because in the NodeJS code OAEP/SHA256 is used as padding and in the C# code PKCS#1 v1.5 padding. For decryption to work, both paddings must be identical. The padding in the C# code can be adapted to that of the NodeJS code as follows:
var decryptEngine = new OaepEncoding(new RsaEngine(), new Sha256Digest());
Also, the decrypted key must not be UTF-8 decoded as this corrupts the data. Either it is returned as byte[], or if conversion to a string is desired, a suitable binary-to-text encoding such as Base64 or hex must be used.
With these changes decryption works in the C# code.

Related

Encryption and Decryption in Java and Javascript (Nodejs)

I encrypt a text in Java and want to decrypt in Javascript and vice versa, my Java code looks like this
Cipher c = Cipher.getInstance("AES/GCM/NoPadding");
SecretKeySpec k = new SecretKeySpec(this.key.getBytes(), "AES");
c.init(Cipher.ENCRYPT_MODE, k);
byte[] encryptedData = c.doFinal(this.value.getBytes());
byte[] iv = c.getIV();
sb.append(new String(Base64.getEncoder().encode(iv)));
sb.append(';');
sb.append(new String(Base64.getEncoder().encode(encryptedData)));
// send sb.toString() to the other end
I tried node-forge and elliptic for decryption in Nodejs, in node-forge I have an error complaining about tag which I don't have, can someone provide a solution in Nodejs.
Javascript Code
function convertFromMxBase64(FormatEncryptedString) {
const speratorIndex = FormatEncryptedString.indexOf(';');
const encryptedBase64 = mxFormatEncryptedString.substr(speratorIndex + 1);
const ivBase64 = mxFormatEncryptedString.substr(0, speratorIndex);
return {
iv: forge.util.createBuffer(forge.util.decode64(ivBase64), 'utf8'),
payload: forge.util.createBuffer(forge.util.decode64(encryptedBase64), 'utf8')
};
}
function decrypt() {
let { iv, payload } = convertFromMxBase64(mxCombi);
const key = forge.util.createBuffer(theKey, 'utf8');
var cipher = forge.cipher.createDecipher("AES-GCM", key); // forge.rc2.createDecryptionCipher(key);
cipher.start({ iv });
cipher.update(payload);
cipher.finish();
var encrypted = cipher.output;
// outputs encrypted hex
console.log(encrypted.toHex());
}
The GCM mode uses by definition a tag which is needed for the authenticity/integrity check.
The tag issue on the NodeJS side is caused by not taking the authentication tag into account. On the Java side this is not necessary because the SunJCE provider does this automatically by appending the tag to the ciphertext: Therefore, the last 16 bytes of the result are the tag. On the NodeJS side, in contrast, ciphertext and tag are handled detached, so that both parts must be explicitly separated, e.g.:
var ciphertext = forge.util.createBuffer(payload.data.substring(0, payload.length() - 16));
var tag = forge.util.createBuffer(payload.data.substring(payload.length() - 16));
Tag and ciphertext must be passed to the cipher instance as follows:
cipher.start({ iv:iv, tag:tag }); // apply tag
cipher.update(ciphertext); // apply ciphertext
Another bug is that the UTF-8 encoding is used when creating iv and payload. This is wrong, the data must be passed as binary string, i.e. 'utf8' must either be replaced by 'binary' or removed completely.
iv: forge.util.createBuffer(forge.util.decode64(ivBase64)),
payload: forge.util.createBuffer(forge.util.decode64(encryptedBase64))
Also, in getBytes() of the Java code an encoding should be specified, e.g. getBytes(StandardCharsets.UTF_8). If this is not done, a platform-dependent default encoding is used, which means that different encodings can be applied depending on the environment.
With these changes, decryption works on the NodeJS side.

RSA encrypt using jsencrypt and decrypt using bouncy castle?

Right I've a small problem. I'm using a Javascript library (jsencrypt) to encrypt a message in a browser. This message is then sent to the backend where it is decrypted using a Java library (bouncycastle). My problem is although I can encrypt and decrypt messages using both libraries they don't seem to want to work together. So when I encrypt my message in a browser and send it to the backend I end up getting garbled gibberish. Does anyone have any idea what's going on here?
JSENCRYPT
var text = "This is another msg!";
var pubkey = "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAwyTZf5gRWJdEevtK7sJSz14lhs1Jw7+aFhGtr4cbDGxdiXH8J+BwuYmBc6QFMhRw7AeYcgkx9zPb3SICzr+oK17RMA6T66dH+GPXp75LFUmfONfk2JdSeO80mMODGctSuefWDvoQ24Cq0Bz+ysrhP7hRqvJso5a0GMNPwt8ErtWfz4HZjSsaaZ7gXga2h5dq1OTcGNfevkDN9CJtFW/0Wwb/F6cnXngVHE41rsN4POUB3IWcX2CrCGxSraa+xsT/P7AJ8HRJ4wcjl9G2K/rlHJ8ZXZKlIuWwEzx0/F0IjE+S93tLpDgt6YJxjWqYqjL2uuJAGmEU323+PWA3jFTC+QIDAQAB";
var encrypt = new JSEncrypt();
encrypt.setPublicKey(pubkey);
var ciphertext = encrypt.encrypt(text);
console.log("ciphertext : " + ciphertext);
var decrypt = new JSEncrypt();
decrypt.setPrivateKey($("#privkey").val());
var plaintext = decrypt.decrypt(ciphertext);
console.log("plaintext : " + plaintext);
BOUNCYCASTLE
String cipherText = "jQ/I+oyyIfG5ARIHZsa6MfxwHciCt+3p6l+bLh4NPinq2s8eDjbO9O8abhVt2xuBQQcPAIaqbiP3Y3vRFYLOD2O+inKWiL1SpSBxvUb0XlWMgLmOqWUL6w6sL2iEla3i5EbdlrkK0uLA7QOUc6/fGVyLVe8VL7Vv4BGlo/cxR2FN74HK4MtLFRNaLKejwD6WbCNQoz4sIMA/Ez8GRSVEMyeYVZoWELShvyIRCqVADboAeuEP5l+oFlzgQfW6HFdpPnX+9TnHrbezdWhXiuJiD1Mq4VTicsya50MNcXJuPDV7NINYZs72UCS8NTYvfVkFc2lO7EUlDvvJ7Ns4wWuuWQ==";
PemReader pemReader = new PemReader(new InputStreamReader(new FileInputStream("priv.pem")));
PemObject pemObject = null;
try
{
pemObject = pemReader.readPemObject();
} finally {
pemReader.close();
}
PrivateKey privateKey = EncryptionUtil.generatePrivateKey(pemObject.getContent());
byte[] plainText = EncryptionUtil.asymDecrypt(privateKey, cipherText.getBytes());
System.out.println(new String(plainText));
#EbbeM.Pedersen
You are properly getting different default padding modes. Keywords
like RSA-OAEP padding & PKCS#1 padding comes to mind.
This was indeed the issue. I changed the default padding in bouncycastle to PKCS#1 and it all works now.
Thanks a million.

Different encryption in Crypto.js and .NET Cryptography using AES

I am trying to encrypt a message from client and decrypt it on the server. I put the AES key and iv in users cookies.
The problem is that the encrypted string from Crypto.js is G0eNQap/h6u+7566MTOH3w==, and the encrypted string from .NET is F7RemlJeNBhcaZ/FjCK4xw==. It has the same length, but not the same value.
I gues I am doing something wrong with encoding. Could you point out the mistake? Thanks in advance.
Crypto.js
var communicationKey = CryptoJS.enc.Base64.parse(getCookie("SessionKey"));
var communicationIV = CryptoJS.enc.Base64.parse(getCookie("IV"));
var encrypted = CryptoJS.AES.encrypt("Message", communicationKey, {
iv: communicationIV,
mode: CryptoJS.mode.CFB
});
console.log("Result: " + CryptoJS.enc.Base64.stringify(encrypted.ciphertext));
.NET:
string key = context.Cookies["SessionKey"].Value;
newUser.UserKey = Convert.FromBase64String(key);
string iv = context.Cookies["IV"].Value;
newUser.InitializationVector = Convert.FromBase64String(iv);
byte[] encryptedMessage = EncryptStringToBytes_Aes("Message", source.UserKey, source.InitializationVector);
In your js code you are using CryptoJS.mode.CFB.
If your EncryptStringToBytes_Aes is exact copy of MSDN sample - then it uses CBC AES encryption mode (it is default for AESManaged).
So you have to change either js or C# code for both of them use the same encryption mode.

Javascript with SJCL lib, decrypt AES in GCM mode

I try to decrypt an cipher with AES in GCM mode with the SJCL library in Javascript (from within CasperJS).
When I execute the code below the error I receive is:
error: TypeError: 'undefined' is not a function (evaluating 'b.encrypt([0,
0,0,0])')
The code:
var masterkey = '39537496606860671661230109146651832357';
var cipher = 'Sa2Rk3bbdiaI7mO/';
var iv = '59804781381539321505720964105';
var authdata = '199590863504973848417387014842606357793';
var decff = sjcl.mode.gcm.decrypt(masterkey, cipher, iv, authdata);
console.log (decff);
As you can see, I am basically just calling the decrypt function as the SJCL docs told me to.
The encryption was done in python with this code: https://github.com/bozhu/AES-GCM-Python Wich I found is this thread: AES in GCM mode in Python
Is there anything special I have to consider when encrypting in one language and decrypting in another? Im afraid so...
Can I check somehow if the encryption information are valid AES/GCM?
Im not really sure how to proceed here since Im no JS or Python or encryption expert.
For background information:
I try to achieve a more or less secure encryption in pure python (so I can run it on Google App Engine) and the fitting decryption in pure JS.
Thanks for any help.
You cannot directly decrypt try converting your encrypted string, cypher, IV and auth data to bitArray.
const data = sjcl.mode.gcm.decrypt(cipherArray, encryptedBitArray, iv, authArray, 128);
Here 128 is size you can use 256 as well.
Also try to append your IV with the encypted string.
const bitArray = sjcl.codec.base64.toBits(content);
const bitArrayCopy = bitArray.slice(0);
const ivdec = bitArrayCopy.slice(0, 4);
const encryptedBitArray = bitArray.slice(4);
var key = sjcl.codec.base64.toBits("2d73c1dd2f6a3c981afc7c0d49d7b58f");
let cipher = new sjcl.cipher.aes(key);

Validating a JWT in node.js

I'm trying to parse and validate a JWT token in node.js based on this sample (authored in .NET): https://github.com/liveservices/LiveSDK/blob/master/Samples/Asp.net/AuthenticationTokenSample/JsonWebToken.cs
Here is my node js javascript that validates the token:
var validateSignature = function(key, claims, envelope, signature) {
var hasher = crypto.createHash('sha256');
hasher.update(key + "JWTSig");
var key = hasher.digest('binary');
var hmac = crypto.createHmac('sha256', key);
hmac.update(envelope + '.' + claims);
var out = hmac.digest('base64');
console.log(out);
console.log(signature);
console.log(out === signature);
}
Now, the very weird thing is - it almost works. Here's the output of the three console.log statements:
pEwNPJ+LUHBdvNx631UzdyVhPFUOvFY8jG3x/cP81FE=
pEwNPJ-LUHBdvNx631UzdyVhPFUOvFY8jG3x_cP81FE
false
It seems suspicious to me that the hashes are both the same except for the +-/_=
Anybody spot my mistake? Something to do with my base64 encoding.
UPDATE
I played some more and there seems to be something funky going on with base64 encoding here. The following code in node js:
console.log(signature);
var b = new Buffer(signature, 'base64');
console.log(b.toString('base64'));
yields:
pEwNPJ-LUHBdvNx631UzdyVhPFUOvFY8jG3x_cP81FE
pEwNPJLUHBdvNx631UzdyVhPFUOvFY8jG3xcP81F
Which seems very odd, right?
Thanks to Timothy Meade for commenting and pushing me in the right direction.
Node's Buffer type generates standard Base64 with +, / and =
There is a URL safe base64 encoding as mentioned here: http://en.wikipedia.org/wiki/Base64
It replaces + with -, / with _ and = is optional. The token that is passed on the QueryString (d'uh) is a URL safe version. Hence the difference.
Code was fixed by a simple:
out = out.replace('+','-').replace('/','_').replace('=','');
I wrote this library a while ago, I guess you can use some of the code. It is supposed to run in both node.js and in a modern browser.
JWT library for javascript
This is not the exact method that you were trying to use, but I believe it is the preferred way to validate a JWT in NodeJS. Note that I am using the NPM base64url library to convert between base64Url (the default encoding for a JWT) and base64 (what NodeJS expects for the verification function).
Also note, you need a public and private keypair to sign and verify respectively. I have included the private and public keys that were used to sign and verify this JWT at the bottom of this post.
const base64 = require('base64url');
const crypto = require('crypto');
const verifyFunction = crypto.createVerify('RSA-SHA256');
const fs = require('fs');
// The sample JWT from https://jwt.io/
const JWT = 'eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWUsImlhdCI6MTUxNjIzOTAyMn0.POstGetfAytaZS82wHcjoTyoqhMyxXiWdR7Nn7A29DNSl0EiXLdwJ6xC6AfgZWF1bOsS_TuYI3OG85AmiExREkrS6tDfTQ2B3WXlrr-wp5AokiRbz3_oB4OxG-W9KcEEbDRcZc0nH3L7LzYptiy1PtAylQGxHTWZXtGz4ht0bAecBgmpdgXMguEIcoqPJ1n3pIWk_dUZegpqx0Lka21H6XxUTxiy8OcaarA8zdnPUnV6AmNP3ecFawIFYdvJB_cm-GvpCSbr8G8y_Mllj8f4x9nBH8pQux89_6gUY618iYv7tuPWBFfEbLxtF2pZS6YC1aSfLQxeNe8djT9YjpvRZA';
// This just gets the value of the public key (same as the one at bottom of this post)
const PUB_KEY = fs.readFileSync(__dirname + '/id_rsa_pub.pem', 'utf8');
// Split the JWT by `.` to get each part
const jwtHeader = JWT.split('.')[0];
const jwtPayload = JWT.split('.')[1];
const jwtSignature = JWT.split('.')[2];
// We only need the first two pieces to verify
verifyFunction.write(jwtHeader + '.' + jwtPayload);
verifyFunction.end();
// IMPORTANT: NodeJS expects base64 format, not base64url format!
const jwtSignatureBase64 = base64.toBase64(jwtSignature);
// IMPORTANT: You need to specify that the `jwtSignatureBase64` data is base64 format,
// otherwise, it will default to Buffer format and return false
const signatureIsValid = verifyFunction.verify(PUB_KEY, jwtSignatureBase64, 'base64');
console.log(signatureIsValid); // true
The keys below are from the example JWT mentioned here.
Private Key:
-----BEGIN RSA PRIVATE KEY-----
MIIEogIBAAKCAQEAnzyis1ZjfNB0bBgKFMSvvkTtwlvBsaJq7S5wA+kzeVOVpVWw
kWdVha4s38XM/pa/yr47av7+z3VTmvDRyAHcaT92whREFpLv9cj5lTeJSibyr/Mr
m/YtjCZVWgaOYIhwrXwKLqPr/11inWsAkfIytvHWTxZYEcXLgAXFuUuaS3uF9gEi
NQwzGTU1v0FqkqTBr4B8nW3HCN47XUu0t8Y0e+lf4s4OxQawWD79J9/5d3Ry0vbV
3Am1FtGJiJvOwRsIfVChDpYStTcHTCMqtvWbV6L11BWkpzGXSW4Hv43qa+GSYOD2
QU68Mb59oSk2OB+BtOLpJofmbGEGgvmwyCI9MwIDAQABAoIBACiARq2wkltjtcjs
kFvZ7w1JAORHbEufEO1Eu27zOIlqbgyAcAl7q+/1bip4Z/x1IVES84/yTaM8p0go
amMhvgry/mS8vNi1BN2SAZEnb/7xSxbflb70bX9RHLJqKnp5GZe2jexw+wyXlwaM
+bclUCrh9e1ltH7IvUrRrQnFJfh+is1fRon9Co9Li0GwoN0x0byrrngU8Ak3Y6D9
D8GjQA4Elm94ST3izJv8iCOLSDBmzsPsXfcCUZfmTfZ5DbUDMbMxRnSo3nQeoKGC
0Lj9FkWcfmLcpGlSXTO+Ww1L7EGq+PT3NtRae1FZPwjddQ1/4V905kyQFLamAA5Y
lSpE2wkCgYEAy1OPLQcZt4NQnQzPz2SBJqQN2P5u3vXl+zNVKP8w4eBv0vWuJJF+
hkGNnSxXQrTkvDOIUddSKOzHHgSg4nY6K02ecyT0PPm/UZvtRpWrnBjcEVtHEJNp
bU9pLD5iZ0J9sbzPU/LxPmuAP2Bs8JmTn6aFRspFrP7W0s1Nmk2jsm0CgYEAyH0X
+jpoqxj4efZfkUrg5GbSEhf+dZglf0tTOA5bVg8IYwtmNk/pniLG/zI7c+GlTc9B
BwfMr59EzBq/eFMI7+LgXaVUsM/sS4Ry+yeK6SJx/otIMWtDfqxsLD8CPMCRvecC
2Pip4uSgrl0MOebl9XKp57GoaUWRWRHqwV4Y6h8CgYAZhI4mh4qZtnhKjY4TKDjx
QYufXSdLAi9v3FxmvchDwOgn4L+PRVdMwDNms2bsL0m5uPn104EzM6w1vzz1zwKz
5pTpPI0OjgWN13Tq8+PKvm/4Ga2MjgOgPWQkslulO/oMcXbPwWC3hcRdr9tcQtn9
Imf9n2spL/6EDFId+Hp/7QKBgAqlWdiXsWckdE1Fn91/NGHsc8syKvjjk1onDcw0
NvVi5vcba9oGdElJX3e9mxqUKMrw7msJJv1MX8LWyMQC5L6YNYHDfbPF1q5L4i8j
8mRex97UVokJQRRA452V2vCO6S5ETgpnad36de3MUxHgCOX3qL382Qx9/THVmbma
3YfRAoGAUxL/Eu5yvMK8SAt/dJK6FedngcM3JEFNplmtLYVLWhkIlNRGDwkg3I5K
y18Ae9n7dHVueyslrb6weq7dTkYDi3iOYRW8HRkIQh06wEdbxt0shTzAJvvCQfrB
jg/3747WSsf/zBTcHihTRBdAv6OmdhV4/dD5YBfLAkLrd+mX7iE=
-----END RSA PRIVATE KEY-----
Public Key:
-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAnzyis1ZjfNB0bBgKFMSv
vkTtwlvBsaJq7S5wA+kzeVOVpVWwkWdVha4s38XM/pa/yr47av7+z3VTmvDRyAHc
aT92whREFpLv9cj5lTeJSibyr/Mrm/YtjCZVWgaOYIhwrXwKLqPr/11inWsAkfIy
tvHWTxZYEcXLgAXFuUuaS3uF9gEiNQwzGTU1v0FqkqTBr4B8nW3HCN47XUu0t8Y0
e+lf4s4OxQawWD79J9/5d3Ry0vbV3Am1FtGJiJvOwRsIfVChDpYStTcHTCMqtvWb
V6L11BWkpzGXSW4Hv43qa+GSYOD2QU68Mb59oSk2OB+BtOLpJofmbGEGgvmwyCI9
MwIDAQAB
-----END PUBLIC KEY-----

Categories