Recursion is 4 but the expected output is 64 - javascript

let power2 = (x,n) => {
if(n == 0) return 1;
let temp = power2(x,n/2);
if(n%2 == 1) return temp * temp * x;
return temp*temp;
}
console.log(power2(4,3));
This method has less nodes and time complexity but its giving wrong output

The problem with the original code was the fact that n / 2 will result in a real number when you need it to be treated as an integer. Bitwise operation are always performed on integers so n >> 1 will correctly yield an integer. The same goes with modulo which converts the number to an integer first that's why it worked correctly in your code.
let power2 = (x, n) => {
if (n === 0) return 1;
const temp = power2(x, (n >> 1));
if (n % 2 === 1) return temp * temp * x;
return temp * temp;
}
console.log(power2(4, 3));

If you need custom integer power function, based on recursion, consider this snippet:
// Custom pow
const myPow = (n, i) => i > 0 ? myPow(n, i - 1) * n : 1;
// Test
console.log(myPow(4, 3));

Related

codewars kata: "Is my friend cheating?" Passed all test but using bruteforce, If someone could help me optimize my code by using actual math maybe?

Here is my solution
export function removeNb (n:number):number[][] {
const total = n * (n+1) / 2;
for(let a = n; a > 1; a--){
for(let b = a-1 ;b > 1 ; b--){
if(total - b - a === b*a){
return [[b,a],[a,b]]
}
}
}
return []
}
The problem is this:
A friend of mine takes the sequence of all numbers from 1 to n (where
n > 0).
Within that sequence, he chooses two numbers, a and b.
He says that the product of a and b should be equal to the sum of all
numbers in the sequence, excluding a and b.
Given a number n, could you tell me the numbers he excluded from the
sequence?
The function takes the parameter: n (n is always strictly greater than
0) and returns an array of arrays.
The test cases are as follows:
removeNb(26); //[[15,21],[21,15]]
removeNb(101); //[[55,91],[91,55]]
removeNb(102); //[[70,73],[73,70]]
removeNb(110); //[[70,85],[85,70]]
Update
As Ike mentioned the previous solution doesn't take in account the fact that a and b both need to be less or equal to n so the solution should be updated like this : (b needs to be less then n, ie (total - a) / (a + 1) <= n ie (total - n) / (n + 1) <= a)
function removeNb(n: number) {
const total = n * (n + 1) / 2;
const t: [number, number][] = [];
for (let a = Math.ceil((total - n) / (n + 1)); a * a < total; a++) {
const b = (total - a) / (a + 1)
if (!(b % 1)) t.push([a,b],...(a === b ? [] : [[b,a]]))
}
return t
}
With a bit of maths we can check that tatal - a - b = a * b is equivalent to (total - a) / (a + 1) = b so we can deduce b from a and just check if it is an integer.
Also since a and b are exchangeable we can require b to be greater or equal a i.e (total - a) / (a + 1) >= a <=> total >= a * (a + 2) so we can require a² < total.
So your function can be optimized this way:
function removeNb(n: number) {
const total = n * (n + 1) / 2;
const t: [number, number][] = [];
for (let a = 1; a * a < total; a++) {
const b = (total - a) / (a + 1)
if (!(b % 1)) t.push([a,b],...(a === b ? [] : [[b,a]]))
}
return t
}

How to properly solve fibonacci series in javascript using matrices

I am trying to solve the Fibonacci algorithm using matrices. My target time complexity is an o(logn) instead of an o(n). The return output of the program is not the number for the series but the sixth significant digits. Its why I am returning the remainder of the solution divided by a million.
I have written the code and it runs well but I noticed that for extremely large inputs, I get a NAN(not a number) instead of an output
const fib = (n) => {
let fibMatrix = [[1,1], [1,0]]
if(n == 0){
return 0;
}
raiseToPower(fibMatrix, n - 1);
return Math.floor(fibMatrix[0][0] % 1000000)
}
const raiseToPower = (matrix, n) => {
if(n == 0 || n == 1){
return;
}
let newMatrix = [[1,1], [1,0]]
raiseToPower(matrix, Math.floor(n / 2))
multiplyMatrices(matrix, matrix)
if(n % 2 !== 0){
multiplyMatrices(matrix, newMatrix)
}
}
const multiplyMatrices = (matrix, newMatrix) => {
let x = matrix[0][0]*newMatrix[0][0] + matrix[0][1]*newMatrix[1][0];
let y = matrix[0][0]*newMatrix[0][1] + matrix[0][1]*newMatrix[1][1];
let z = matrix[1][0]*newMatrix[0][0] + matrix[1][1]*newMatrix[1][0];
let w = matrix[1][0]*newMatrix[0][1] + matrix[1][1]*newMatrix[1][1];
matrix[0][0] = x;
matrix[0][1] = y;
matrix[1][0] = z;
matrix[1][1] = w;
}
console.log(fib(2000))
Thats my code above. Is there anything I could change to actually make this much more performant?
I actually found the error. My numbers were getting larger than the maximum value.
I changed this by instead returning the remainder of my value divided by a million to the matrix and then returning the value from the matrix instead of returning the value and then dividing by a million. The former is efficient and works for any sized inputs.
const fib = (n) => {
let fibMatrix = [[1,1], [1,0]]
if(n == 0){
return 0;
}
raiseToPower(fibMatrix, n - 1);
return (fibMatrix[0][0])
}
const raiseToPower = (matrix, n) => {
if(n == 0 || n == 1){
return;
}
let newMatrix = [[1,1], [1,0]]
raiseToPower(matrix, Math.floor(n / 2))
multiplyMatrices(matrix, matrix)
if(n % 2 !== 0){
multiplyMatrices(matrix, newMatrix)
}
}
const multiplyMatrices = (matrix, newMatrix) => {
let x = (matrix[0][0]*newMatrix[0][0] + matrix[0][1]*newMatrix[1][0]);
let y = (matrix[0][0]*newMatrix[0][1] + matrix[0][1]*newMatrix[1][1]);
let z = (matrix[1][0]*newMatrix[0][0] + matrix[1][1]*newMatrix[1][0]);
let w = (matrix[1][0]*newMatrix[0][1] + matrix[1][1]*newMatrix[1][1]);
matrix[0][0] = x % 1000000;
matrix[0][1] = y % 1000000;
matrix[1][0] = z % 1000000;
matrix[1][1] = w % 1000000;
}
console.log(fib(10000))

Not able to solve the power sum for all cases using recursion

I have written the code of this problem but it works for only 70% of the test cases. I can't figure out what is wrong with it. Please help.
Problem:-
Find the number of ways that a given integer, X, can be expressed as the sum of the Nth powers of unique, natural numbers in the range of [1,25] both inclusive.
Hint:-
The answer will be (1^2 + 3^2).
My code is not working for x = 100 and n = 2. The output should be 3 but it returns 33.
let x = 100;
let n = 2;
let num = 0;
let index = 1;
function power(x, n, num, index, ways = 0) {
if (x === num) {
return 1;
}
if (x < num) {
return 0;
}
for (let i = index; i <= 25; i++) {
ways += power(x, n, (num + ((i) ** n)), index + 1);
}
return ways;
}
console.log(power(x, n, num, index));
Your logic is almost right. But you're not properly removing duplicate values and ending up including things like 9^2 + 3^2 + 3^2 + 1^2 or 5^2 + 5^2 + 5^2 + 4^2 + 3^2.
You need to change the recursive index you pass. You shouldn't use your index parameter but your loop iterator, i:
let x = 100;
let n = 2;
let num = 0;
let index = 1;
function power(x, n, num, index, ways = 0) {
if (x === num) {
return 1;
}
if (x < num) {
return 0;
}
for (let i = index; i <= 25; i++) {
// ways += power(x, n, (num + ((i) ** n)), index + 1);
// v-^
ways += power(x, n, (num + ((i) ** n)), i + 1);
}
return ways;
}
console.log(power(x, n, num, index));
I figured this out fairly quickly by writing my own version of the function from scratch, and getting the exact same wrong result. I added some logging and realized the problem and was able to spot it quickly. This translated easily to your code.
But I think my function is cleaner, so I'm including it here. It does much the same logic, but in a cleaner functional manner:
const range = (lo, hi) =>
Array .from ({length: hi - lo + 1}, (_, i) => i + lo)
const sum = (ns) =>
ns .reduce ((a, b) => a + b, 0)
const countPowerSums = (n, p, i = 1) =>
n < 0
? 0
: n == 0
? 1
: sum (range (i, 25) .map (b => countPowerSums (n - b ** p, p, b + 1)))
console .log (countPowerSums (100, 2))

How to generate a random number based on fixed character set in javascript

I'm generating a number based on a fixed character set.
function generator()
{
var text = "";
var char_list = "LEDGJR", number_list = "0123456789";
for(var i=0; i < 2; i++ )
{
text += char_list.charAt(Math.floor(Math.random() * char_list.length));
}
for(var j=0; j < 2; j++ )
{
text += number_list.charAt(Math.floor(Math.random() *
number_list.length));
}
return text;
}
Result :
RE39, JE12 etc...
Once all the permutation related to the above sequence is done, then the generator should generate string as RE391, JE125 means adding one more number to the complete number.
How can I get the permutation count of sequence?
For simplicity consider the case where:
chars = "AB"
nums = "123";
and we want to generate a 4-digit sequence of two chars and two numbers.
We define these variables
rows = [chars, chars, nums, nums]
rowSizes = rows.map(row => row.length) // [2, 2, 3, 3]
It’s easy to see the set size of all possible permuations equals:
spaceSize = rowSizes.reduce((m, n) => m * n, 1) // 2*2*3*3 = 36
And we define two set of utility functions, usage of which I'll explain in detail later.
decodeIndex() which gives us uniqueness
function euclideanDivision(a, b) {
const remainder = a % b;
const quotient = (a - remainder) / b;
return [quotient, remainder]
}
function decodeIndex(index, rowSizes) {
const rowIndexes = []
let dividend = index
for (let i = 0; i < rowSizes.length; i++) {
const [quotient, remainder] = euclideanDivision(dividend, rowSizes[i])
rowIndexes[i] = remainder
dividend = quotient
}
return rowIndexes
}
getNextIndex() which gives us pseudo-randomness
function isPrime(n) {
if (n <= 1) return false;
if (n <= 3) return true;
if (n % 2 == 0 || n % 3 == 0) return false;
for (let i = 5; i * i <= n; i = i + 6) {
if (n % i == 0 || n % (i + 2) == 0) return false;
}
return true;
}
function findNextPrime(n) {
if (n <= 1) return 2;
let prime = n;
while (true) {
prime++;
if (isPrime(prime)) return prime;
}
}
function getIndexGeneratorParams(spaceSize) {
const N = spaceSize;
const Q = findNextPrime(Math.floor(2 * N / (1 + Math.sqrt(5))))
const firstIndex = Math.floor(Math.random() * spaceSize);
return [firstIndex, N, Q]
}
function getNextIndex(prevIndex, N, Q) {
return (prevIndex + Q) % N
}
Uniqueness
Like mentioned above, spaceSize is the number of all possible permutations, thus each index in range(0, spaceSize) uniquely maps to one permutation. decodeIndex helps with this mapping, you can get the corresponding permutation to an index by:
function getSequenceAtIndex(index) {
const tuple = decodeIndex(index, rowSizes)
return rows.map((row, i) => row[tuple[i]]).join('')
}
Pseudo-Randomness
(Credit to this question. I just port that code into JS.)
We get pseudo-randomness by polling a "full cycle iterator"†. The idea is simple:
have the indexes 0..35 layout in a circle, denote upperbound as N=36
decide a step size, denoted as Q (Q=23 in this case) given by this formula‡
Q = findNextPrime(Math.floor(2 * N / (1 + Math.sqrt(5))))
randomly decide a starting point, e.g. number 5
start generating seemingly random nextIndex from prevIndex, by
nextIndex = (prevIndex + Q) % N
So if we put 5 in we get (5 + 23) % 36 == 28. Put 28 in we get (28 + 23) % 36 == 15.
This process will go through every number in circle (jump back and forth among points on the circle), it will pick each number only once, without repeating. When we get back to our starting point 5, we know we've reach the end.
†: I'm not sure about this term, just quoting from this answer
‡: This formula only gives a nice step size that will make things look more "random", the only requirement for Q is it must be coprime to N
Full Solution
Now let's put all the pieces together. Run the snippet to see result.
I've also includes the a counter before each log. For your case with char_list="LEDGJR", number_list="0123456789", the spaceSize for 4-digit sequence should be 6*6*10*10 = 3600
You'll observe the log bump to 5-digit sequence at 3601 😉
function euclideanDivision(a, b) {
const remainder = a % b;
const quotient = (a - remainder) / b;
return [quotient, remainder];
}
function decodeIndex(index, rowSizes) {
const rowIndexes = [];
let divident = index;
for (let i = 0; i < rowSizes.length; i++) {
const [quotient, remainder] = euclideanDivision(divident, rowSizes[i]);
rowIndexes[i] = remainder;
divident = quotient;
}
return rowIndexes;
}
function isPrime(n) {
if (n <= 1) return false;
if (n <= 3) return true;
if (n % 2 == 0 || n % 3 == 0) return false;
for (let i = 5; i * i <= n; i = i + 6) {
if (n % i == 0 || n % (i + 2) == 0) return false;
}
return true;
}
function findNextPrime(n) {
if (n <= 1) return 2;
let prime = n;
while (true) {
prime++;
if (isPrime(prime)) return prime;
}
}
function getIndexGeneratorParams(spaceSize) {
const N = spaceSize;
const Q = findNextPrime(Math.floor((2 * N) / (1 + Math.sqrt(5))));
const firstIndex = Math.floor(Math.random() * spaceSize);
return [firstIndex, N, Q];
}
function getNextIndex(prevIndex, N, Q) {
return (prevIndex + Q) % N;
}
function generatorFactory(rows) {
const rowSizes = rows.map((row) => row.length);
function getSequenceAtIndex(index) {
const tuple = decodeIndex(index, rowSizes);
return rows.map((row, i) => row[tuple[i]]).join("");
}
const spaceSize = rowSizes.reduce((m, n) => m * n, 1);
const [firstIndex, N, Q] = getIndexGeneratorParams(spaceSize);
let currentIndex = firstIndex;
let exhausted = false;
function generator() {
if (exhausted) return null;
const sequence = getSequenceAtIndex(currentIndex);
currentIndex = getNextIndex(currentIndex, N, Q);
if (currentIndex === firstIndex) exhausted = true;
return sequence;
}
return generator;
}
function getRows(chars, nums, rowsOfChars, rowsOfNums) {
const rows = [];
while (rowsOfChars--) {
rows.push(chars);
}
while (rowsOfNums--) {
rows.push(nums);
}
return rows;
}
function autoRenewGeneratorFactory(chars, nums, initRowsOfChars, initRowsOfNums) {
let realGenerator;
let currentRowOfNums = initRowsOfNums;
function createRealGenerator() {
const rows = getRows(chars, nums, initRowsOfChars, currentRowOfNums);
const generator = generatorFactory(rows);
currentRowOfNums++;
return generator;
}
realGenerator = createRealGenerator();
function proxyGenerator() {
const sequence = realGenerator();
if (sequence === null) {
realGenerator = createRealGenerator();
return realGenerator();
} else {
return sequence;
}
}
return proxyGenerator;
}
function main() {
const char_list = "LEDGJR"
const number_list = "0123456789";
const generator = autoRenewGeneratorFactory(char_list, number_list, 2, 2);
let couter = 0
setInterval(() => {
console.log(++couter, generator())
}, 10);
}
main();

Efficiently count the number of bits in an integer in JavaScript

Let's say I have an integer I and want to get the count of 1s in its binary form.
I am currently using the following code.
Number(i.toString(2).split("").sort().join("")).toString().length;
Is there a faster way to do this? I am thinking about using bitwise operators. Any thoughts?
NOTE: i is within the 32-bit limitation.
You can use a strategy from this collection of Bit Twiddling Hacks:
function bitCount (n) {
n = n - ((n >> 1) & 0x55555555)
n = (n & 0x33333333) + ((n >> 2) & 0x33333333)
return ((n + (n >> 4) & 0xF0F0F0F) * 0x1010101) >> 24
}
console.log(bitCount(0xFF)) //=> 8
Note that the above strategy only works for 32-bit integers (a limitation of bitwise operators in JavaScript).
A more general approach for larger integers would involve counting 32-bit chunks individually (thanks to harold for the inspiration):
function bitCount (n) {
var bits = 0
while (n !== 0) {
bits += bitCount32(n | 0)
n /= 0x100000000
}
return bits
}
function bitCount32 (n) {
n = n - ((n >> 1) & 0x55555555)
n = (n & 0x33333333) + ((n >> 2) & 0x33333333)
return ((n + (n >> 4) & 0xF0F0F0F) * 0x1010101) >> 24
}
console.log(bitCount(Math.pow(2, 53) - 1)) //=> 53
You could also use a regular expression:
function bitCount (n) {
return n.toString(2).match(/1/g).length
}
console.log(bitCount(0xFF)) //=> 8
A recursive very nice but slow way:
function count1(n, accumulator=0) {
if (n === 0) {
return accumulator
}
return count1(n/2, accumulator+(n&1))
}
console.log(count1(Number.MAX_SAFE_INTEGER));
But if you want a very fast one (faster than T.J. Crowder answer)):
count1s=(n)=>n.toString(2).replace(/0/g,"").length
console.log(count1s(Number.MAX_SAFE_INTEGER));
Note: some of the other solutions do not work with bit integers (> 32 bit)
these two do!
Now, if we consider only 32 bit numbers, the fastest way is this:
function count1s32(i) {
var count = 0;
i = i - ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
i = (i + (i >> 4)) & 0x0f0f0f0f;
i = i + (i >> 8);
i = i + (i >> 16);
count += i & 0x3f;
return count;
}
console.log(count1s32(0xffffffff));
https://jsperf.com/count-1/1
53 bit comparison:
32 bit comparison:
Benchmark here! (since jsperf is often down).
function log(data) {
document.getElementById("log").textContent += data + "\n";
}
benchmark = (() => {
time_function = function(ms, f, num) {
var z;
var t = new Date().getTime();
for (z = 0;
((new Date().getTime() - t) < ms); z++) f(num);
return (z / ms)
} // returns how many times the function was run in "ms" milliseconds.
// two sequential loops
count1s = (n) => n.toString(2).replace(/0/g, "").length
// three loops and a function.
count1j = (n) => n.toString(2).split('').filter(v => +v).length
/* Excluded from test because it's too slow :D
function count1(n, accumulator=0) {
if (n === 0) {
return accumulator
}
return count1(n / 2, accumulator + (n & 1))
}
*/
function countOnes(i) {
var str = i.toString(2);
var n;
var count = 0;
for (n = 0; n < str.length; ++n) {
if (str[n] === "1") {
++count;
}
}
return count;
} // two sequential loops ( one is the toString(2) )
function count1sb(num) {
i = Math.floor(num / 0x100000000);
// if (i > 0) {
i = i - ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
i = (i + (i >> 4)) & 0x0f0f0f0f;
i = i + (i >> 8);
i = i + (i >> 16);
count = i & 0x3f;
i = num & 0xffffffff;
// }
i = i - ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
i = (i + (i >> 4)) & 0x0f0f0f0f;
i = i + (i >> 8);
i = i + (i >> 16);
count += i & 0x3f;
return count;
}
function benchmark() {
function compare(a, b) {
if (a[1] > b[1]) {
return -1;
}
if (a[1] < b[1]) {
return 1;
}
return 0;
}
funcs = [
[count1s, 0],
[count1j, 0],
[count1sb, 0],
[countOnes, 0]
];
funcs.forEach((ff) => {
console.log("Benchmarking: " + ff[0].name);
ff[1] = time_function(2500, ff[0], Number.MAX_SAFE_INTEGER);
console.log("Score: " + ff[1]);
})
return funcs.sort(compare);
}
return benchmark;
})()
log("Starting benchmark...\n");
res = benchmark();
console.log("Winner: " + res[0][0].name + " !!!");
count = 1;
res.forEach((r) => {
log((count++) + ". " + r[0].name + " score: " + Math.floor(10000 * r[1] / res[0][1]) / 100 + ((count == 2) ? "% *winner*" : "% speed of winner.") + " (" + Math.round(r[1] * 100) / 100 + ")");
});
log("\nWinner code:\n");
log(res[0][0].toString());
<textarea cols=80 rows=30 id="log"></textarea>
The benchmark will run for 10s.
Doing n = n & (n - 1) you removing last 1 bit in the number.
According to this, you can use the following algorithm:
function getBitCount(n) {
var tmp = n;
var count = 0;
while (tmp > 0) {
tmp = tmp & (tmp - 1);
count++;
}
return count;
}
console.log(getBitCount(Math.pow(2, 10) -1));
Given that you're creating, sorting, and joining an array, if it's literally faster you want, you're probably better off doing it the boring way:
console.log(countOnes(8823475632));
function countOnes(i) {
var str = i.toString(2);
var n;
var count = 0;
for (n = 0; n < str.length; ++n) {
if (str[n] === "1") {
++count;
}
}
return count;
}
(Use str.charAt(n) instead of str[n] if you need to support obsolete browsers.)
It's not as l33t or concise, but I bet it's faster it's much faster:
...and similarly on Firefox, IE11 (IE11 to a lesser degree).
Below works fine with any number:
var i=8823475632,count=0;while (i=Math.floor(i)) i&1?count++:0,i/=2
console.log(count); //17
change the i to the value you want or wrap it as a function
if integer is within 32-bit , below works
var i=10,count=0;while (i) i&1?count++:0,i>>=1
if you want to use an absolute one liner solution you can have a look at this.
countBits = n => n.toString(2).split('0').join('').length;
1.Here n.toString(2) converts n into binary string
2.split('0') makes array out of the binary string splitting only at
0's and hence returning an array of only 1 present in binary of n
3.join('') joins all one and making a string of 1s
4.length finds length of the string actually counting number of 1's in n.
A few more "fun" 1-liners:
Recursive: count each bit recursively until there's no more bits set
let f = x => !x ? 0 : (x & 1) + f(x >>= 1);
Functional: split the base 2 string of x and return the accumulated length of bits set
g = x => x.toString(2).split('0').map(bits => bits.length).reduce((a, b) => a + b);
Keeps on checking if last bit is 1, and then removing it. If it finds last bit is one, it adds it to its result.
Math.popcount = function (n) {
let result = 0;
while (n) {
result += n % 2;
n = n >>> 1;
};
return result;
};
console.log(Math.popcount(0b1010));
For 64 bits, you can represent the number as two integers, the first is the top 32 digits, and the second is the bottom 32. To count number of ones in 64 bits, you can seperate them into 2, 32 bit integers, and add the popcount of the first and second.
You can skip Number, sort and the second toString. Use filter to only consider the 1s (a truthy value) in the array then retrieve how many got through with length.
i.toString(2).split('').filter(v => +v).length
Simple solution if you just want to count number of bit!
const integer = Number.MAX_SAFE_INTEGER;
integer.toString(2).split("").reduce((acc,val)=>parseInt(acc)+parseInt(val),0);
Regex
const bitCount = (n) => (n.toString(2).match(/1/g) || []).length;
Bitwise AND, Right Shift
function bitCount(n) {
let count = 0;
while(n) {
count += n & 1;
n >>= 1;
}
return count;
}
Brian Kernighan algorithm
function bitCount(n) {
let count = 0;
while(n) {
n &= (n-1);
count ++;
}
return count;
}
test:
bitCount(0) // 0
bitCount(1) // 1
bitCount(2) // 1
bitCount(3) // 2

Categories