I need to plot a graph in a canvas. But how can I use an algebra equation as input, and based on the equation, draw the curve, using javascript?
For example:
x2+5y=250
The equation plots a graph with both positive and negative values.
<!DOCTYPE html>
<html>
<head>
<title>Interactive Line Graph</title>
<script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.6.1.min.js"></script>
<script>
var graph;
var xPadding = 30;
var yPadding = 30;
var data = { values:[
{ X: "1", Y: 15 },
{ X: "2", Y: 35 },
{ X: "3", Y: 60 },
{ X: "4", Y: 14 },
{ X: "5", Y: 20 },
{ X: "6", Y: 95 },
]};
// Returns the max Y value in our data list
function getMaxY() {
var max = 0;
for(var i = 0; i < data.values.length; i ++) {
if(data.values[i].Y > max) {
max = data.values[i].Y;
}
}
max += 10 - max % 10;
return max;
}
// Return the x pixel for a graph point
function getXPixel(val) {
return ((graph.width() - xPadding) / data.values.length) * val + (xPadding * 1.5);
}
// Return the y pixel for a graph point
function getYPixel(val) {
return graph.height() - (((graph.height() - yPadding) / getMaxY()) * val) - yPadding;
}
$(document).ready(function() {
graph = $('#graph');
var c = graph[0].getContext('2d');
c.lineWidth = 2;
c.strokeStyle = '#333';
c.font = 'italic 8pt sans-serif';
c.textAlign = "center";
// Draw the axises
c.beginPath();
c.moveTo(xPadding, 0);
c.lineTo(xPadding, graph.height() - yPadding);
c.lineTo(graph.width(), graph.height() - yPadding);
c.stroke();
// Draw the X value texts
for(var i = 0; i < data.values.length; i ++) {
c.fillText(data.values[i].X, getXPixel(i), graph.height() - yPadding + 20);
}
// Draw the Y value texts
c.textAlign = "right"
c.textBaseline = "middle";
for(var i = 0; i < getMaxY(); i += 10) {
c.fillText(i, xPadding - 10, getYPixel(i));
}
c.strokeStyle = '#f00';
// Draw the line graph
c.beginPath();
c.moveTo(getXPixel(0), getYPixel(data.values[0].Y));
for(var i = 1; i < data.values.length; i ++) {
c.lineTo(getXPixel(i), getYPixel(data.values[i].Y));
}
c.stroke();
// Draw the dots
c.fillStyle = '#333';
for(var i = 0; i < data.values.length; i ++) {
c.beginPath();
c.arc(getXPixel(i), getYPixel(data.values[i].Y), 4, 0, Math.PI * 2, true);
c.fill();
}
});
</script>
</head>
<body>
<canvas id="graph" width="200" height="150">
</canvas>
</body>
</html>
[i am add one example ploter in math.js ] i want to how to full screen plot the graph and mouse are cilck in graph any point to show the details in x&y value.so how to change please help me.
Parsing linear equation.
Or maybe it is the Parsing of the equation that the question is about.
This answer shows how to parse a simple linear equation.
User inputs x2+5y=230 and you need to solve and plot for y for f(x) which would be the function function(x) { return (3 * x -230) / -5; }
Will assume the equation is always in the same form with x and y and some scalars and constants scalar * x + const + scalar * y = const
Define the rules
Rules
Only x and y will be considered variables.
A term is a scalar and a variable 2x or a constant +1.
All additional characters will be ignored including *,/,%
Numbers can have decimal places. Valid numbers 1 +1 0.2 -2 10e5
Scalars must be adjacent to variables 3y2 becomes 6y 3y-2 stays as is.
Parsing
To parse a equation we must break it down into unambiguous easy to manipulate units. In this case a unit I call a term and will have 3 properties.
scalar A number
variable the name of the variable x,y or null for constants
side which side of the equation the term is Left or right
An example equation
2x + 2 + 3y = 4x - 1y
First parsed to create
terms
// shorthand not code
{2,x,true; // true is for left
{2,null,true; // null is a constant
{3,y,true;
{4,x,false;
{-1,y,false;
Once all the terms are parsed then the equation is solved by summing all the terms for x, y and constants and moving everything to the left flipping the sign of any values on the right.
sumX = 2 + -4; //as 4x is on the right it becomes negative
sumY = 3 + 1;
const = 2;
Making the equation
-2x + 4y + 2 = 0
Then move the y out to the right and divide the left by its scalar.
-2x + 2 = 4y
(-2x + 2)/-4 = y
The result is a function that we can call from javascript will the value of x and get the value of y.
function(x){ return (-2 * x + 2) / 4; }
The Parser
The following function parses and returns a function for input equation for x. That function then use to plot the points in the demo below.
function parseEquation(input){
// Important that white spaces are removed first
input = input.replace(/\s+/g,""); // remove whitespaces
input = input.replace(/([\-\+])([xy])/g,"$11$2"); // convert -x -y or +x +y to -1x -1y or +1x +1y
// just to make the logic below a little simpler
var newTerm = () => {term = { val : null, scalar : 1, left : left, };} // create a new term
var pushTerm = () => {terms.push(term); term = null;} // push term and null current
// regExp [xy=] gets "x","y", or "="" or [\-\+]??[0-9\.]+ gets +- number with decimal
var reg =/[xy=]|[\-\+]??[0-9\.eE]+/g; // regExp to split the input string into parts
var parts = input.match(reg); // get all the parts of the equation
var terms = []; // an array of all terms parsed
var term = null; // Numbers as constants and variables with scalars are terms
var left = true; // which side of equation a term is
parts.forEach( p=> {
if (p === "x" || p === "y") {
if (term !== null && term.val !== null) { // is the variable defined
pushTerm(); // yes so push to the stack and null
}
if (term === null) { newTerm(); } // do we need a new term?
term.val = p;
} else if( p === "=") { // is it the equals sign
if (!left) { throw new SyntaxError("Unxpected `=` in equation."); }
if (term === null) { throw new SyntaxError("No left hand side of equation."); }// make sure that there is a left side
terms.push(term); // push the last left side term onto the stack
term = null;
left = false; // everything on the right from here on in
} else { // all that is left are numbers (we hope)
if (isNaN(p)){ throw new SyntaxError("Unknown value '"+p+"' in equation"); }//check that there is a number
if (term !== null && (p[0] === "+" || p[0] === "-")) { // check if number is a new term
pushTerm(); // yes so push to the stack and null
}
if (term === null) { newTerm(); } // do we need a new term?
term.scalar *= Number(p); // set the scalar to the new value
}
});
if (term !== null) { // there may or may not be a term left to push to the stack
pushTerm();
}
// now simplify the equation getting the scalar for left and right sides . x on left y on right
var scalarX = 0;
var scalarY = 0
var valC = 0; // any constants
terms.forEach(t => {
t.scalar *= !t.left ? -1 : 1; // everything on right is negative
if (t.val === "y") {
scalarY += -t.scalar; // reverse sign
} else if (t.val === "x") {
scalarX += t.scalar;
} else {
valC += t.scalar;
}
})
// now build the code string for the equation to solve for x and return y
var code = "return (" + scalarX + " * x + (" + valC + ")) / "+scalarY +";\n";
var equation = new Function("x",code); // create the function
return equation;
}
The following usage examples are all the same equation
var equation = parseEquation("x2+5y+x=230");
var y = equation(10); // get y for x = 10;
equation = parseEquation("x2+x=230-5y");
equation = parseEquation("x2+x-30=200-2y-3y");
equation = parseEquation("200- 2y-3y = x2+x-30");
equation = parseEquation("200-2y- 3y - x2-x+30=0");
equation = parseEquation("100.0 + 100-2y- 3y - x2-x+30=0");
equation = parseEquation("1e2 + 10E1-2y- 3y - x2-x+30=0");
Demo
I have added it to the code in the answer markE has already given. (hope you don't mind markE)
function plot(equation) {
var graph;
var xPadding = 30;
var yPadding = 30;
var data = {
values : [{
X : "1",
Y : 15
}, {
X : "2",
Y : 35
}, {
X : "3",
Y : 60
}, {
X : "4",
Y : 14
}, {
X : "5",
Y : 20
}, {
X : "6",
Y : -30
},
]
};
// Returns the max Y value in our data list
function getMaxY() {
var max = 0;
for (var i = 0; i < data.values.length; i++) {
if (data.values[i].Y > max) {
max = data.values[i].Y;
}
}
max += 10 - max % 10;
return max;
}
var scaleA = 1.4;
// Return the x pixel for a graph point
function getXPixel(val) {
return ((graph.width() / scaleA - xPadding) / data.values.length) * val + (xPadding * 1.5);
}
// Return the y pixel for a graph point
function getYPixel(val) {
return graph.height() / scaleA - (((graph.height() / scaleA - yPadding) / getMaxY()) * val) - yPadding;
}
graph = $('#graph');
var c = graph[0].getContext('2d');
c.clearRect(0,0,graph[0].width,graph[0].height);
c.lineWidth = 2;
c.strokeStyle = '#333';
c.font = 'italic 8pt sans-serif';
c.textAlign = "center";
// Draw the axises
c.beginPath();
c.moveTo(xPadding, 0);
c.lineTo(xPadding, graph.height() / scaleA - yPadding);
c.lineTo(graph.width(), graph.height() / scaleA - yPadding);
c.stroke();
// Draw the X value texts
for (var i = 0; i < data.values.length; i++) {
c.fillText(data.values[i].X, getXPixel(i), graph.height() / scaleA - yPadding + 20);
}
// Draw the Y value texts
c.textAlign = "right"
c.textBaseline = "middle";
for (var i = 0; i < getMaxY(); i += 10) {
c.fillText(i, xPadding - 10, getYPixel(i));
}
c.strokeStyle = '#f00';
// Draw the line graph
c.beginPath();
c.moveTo(getXPixel(0), getYPixel(equation(0)));
for (var i = 1; i < data.values.length; i++) {
c.lineTo(getXPixel(i), getYPixel(equation(i)));
}
c.stroke();
// Draw the dots
c.fillStyle = '#333';
for (var i = 0; i < data.values.length; i++) {
c.beginPath();
c.arc(getXPixel(i), getYPixel(equation(i)), 4, 0, Math.PI * 2, true);
c.fill();
}
}
var codeText = "";
function parseEquation(input){
// Important that white spaces are removed first
input = input.replace(/\s+/g,""); // remove whitespaces
input = input.replace(/([\-\+])([xy])/g,"$11$2"); // convert -x -y or +x +y to -1x -1y or +1x +1y
// just to make the logic below a little simpler
var newTerm = () => {term = { val : null, scalar : 1, left : left, };} // create a new term
var pushTerm = () => {terms.push(term); term = null;} // push term and null current
// regExp [xy=] gets "x","y", or "="" or [\-\+]??[0-9\.]+ gets +- number with decimal
var reg =/[xy=]|[\-\+]??[0-9\.eE]+/g; // regExp to split the input string into parts
var parts = input.match(reg); // get all the parts of the equation
var terms = []; // an array of all terms parsed
var term = null; // Numbers as constants and variables with scalars are terms
var left = true; // which side of equation a term is
parts.forEach(p=>{
if (p === "x" || p === "y") {
if (term !== null && term.val !== null) { // is the variable defined
pushTerm(); // yes so push to the stack and null
}
if (term === null) { newTerm(); } // do we need a new term?
term.val = p;
} else if( p === "="){ // is it the equals sign
if (!left) { throw new SyntaxError("Unxpected `=` in equation."); }
if (term === null) { throw new SyntaxError("No left hand side of equation."); }// make sure that there is a left side
terms.push(term); // push the last left side term onto the stack
term = null;
left = false; // everything on the right from here on in
} else { // all that is left are numbers (we hope)
if (isNaN(p)){ throw new SyntaxError("Unknown value '"+p+"' in equation"); }//check that there is a number
if (term !== null && (p[0] === "+" || p[0] === "-")){ // check if number is a new term
pushTerm(); // yes so push to the stack and null
}
if(term === null){ newTerm(); } // do we need a new term?
term.scalar *= Number(p); // set the scalar to the new value
}
});
if(term !== null){// there may or may not be a term left to push to the stack
pushTerm();
}
// now simplify the equation getting the scalar for left and right sides . x on left y on right
var scalarX = 0;
var scalarY = 0
var valC = 0; // any constants
terms.forEach(t => {
t.scalar *= !t.left ? -1 : 1; // everything on right is negative
if (t.val === "y") {
scalarY += -t.scalar; // reverse sign
} else if (t.val === "x") {
scalarX += t.scalar;
} else {
valC += t.scalar;
}
})
// now build the code string for the equation to solve for x and return y
var code = "return (" + scalarX + " * x + (" + valC + ")) / "+scalarY +";\n";
codeText = code;
var equation = new Function("x",code); // create the function
return equation;
}
function parseAndPlot(){
var input = eqInput.value;
try{
var equation = parseEquation(input);
plot(equation);
error.textContent ="Plot of "+input+ " as 'function(x){ "+codeText+"}'";
}catch(e){
error.textContent = "Error parsing equation. " + e.message;
}
}
var button = document.getElementById("plot");
var eqInput = document.getElementById("equation-text");
var error = document.getElementById("status");
button.addEventListener("click",parseAndPlot);
parseAndPlot();
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>
<canvas id="graph" width="200" height="150"></canvas> <br>
Enter a linear equation : <input id="equation-text" value="x2 + 5y = 250" type="text"></input><input id="plot" value="plot" type=button></input><div id="status"></div>
I think I understand what you're asking...
Your existing code automatically puts your y-axis at the bottom of the canvas so negative y-values will be off-canvas.
Quick solution
The quickest solution is to divide graph.height()/2 so that your graph has it's y-axis near center-canvas. This leaves room for negative values.
Better solution
The better solution is to redesign your graphing system to allow for solutions in all axis directions.
Refactored code showing the quick solution:
I leave it to you to extend the y-axis labels in the negative direction (if desired)
var graph;
var xPadding = 30;
var yPadding = 30;
var data = { values:[
{ X: "1", Y: 15 },
{ X: "2", Y: 35 },
{ X: "3", Y: 60 },
{ X: "4", Y: 14 },
{ X: "5", Y: 20 },
{ X: "6", Y: -30 },
]};
// Returns the max Y value in our data list
function getMaxY() {
var max = 0;
for(var i = 0; i < data.values.length; i ++) {
if(data.values[i].Y > max) {
max = data.values[i].Y;
}
}
max += 10 - max % 10;
return max;
}
// Return the x pixel for a graph point
function getXPixel(val) {
return ((graph.width()/2 - xPadding) / data.values.length) * val + (xPadding * 1.5);
}
// Return the y pixel for a graph point
function getYPixel(val) {
return graph.height()/2 - (((graph.height()/2 - yPadding) / getMaxY()) * val) - yPadding;
}
graph = $('#graph');
var c = graph[0].getContext('2d');
c.lineWidth = 2;
c.strokeStyle = '#333';
c.font = 'italic 8pt sans-serif';
c.textAlign = "center";
// Draw the axises
c.beginPath();
c.moveTo(xPadding, 0);
c.lineTo(xPadding, graph.height()/2 - yPadding);
c.lineTo(graph.width(), graph.height()/2 - yPadding);
c.stroke();
// Draw the X value texts
for(var i = 0; i < data.values.length; i ++) {
c.fillText(data.values[i].X, getXPixel(i), graph.height()/2 - yPadding + 20);
}
// Draw the Y value texts
c.textAlign = "right"
c.textBaseline = "middle";
for(var i = 0; i < getMaxY(); i += 10) {
c.fillText(i, xPadding - 10, getYPixel(i));
}
c.strokeStyle = '#f00';
// Draw the line graph
c.beginPath();
c.moveTo(getXPixel(0), getYPixel(data.values[0].Y));
for(var i = 1; i < data.values.length; i ++) {
c.lineTo(getXPixel(i), getYPixel(data.values[i].Y));
}
c.stroke();
// Draw the dots
c.fillStyle = '#333';
for(var i = 0; i < data.values.length; i ++) {
c.beginPath();
c.arc(getXPixel(i), getYPixel(data.values[i].Y), 4, 0, Math.PI * 2, true);
c.fill();
}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>
<canvas id="graph" width="200" height="300"></canvas>
I have written a map generator in javascript, using classical perlin noise scripts I have found in various places, to get the functionality I want. I have been working in chrome, and have not experienced any problems with the map. However, when I tested it in firefox, it was incredibly slow - almost hanging my system. It fared better in the nightly build, but still 30 times slower than Chrome.
You can find a test page of it here:
http://jsfiddle.net/7Gq3s/
Here is the html code:
<!DOCTYPE html>
<html>
<head>
<title>PerlinMapTest</title>
</head>
<body>
<canvas id="map" width="100" height="100" style="border: 1px solid red">My Canvas</canvas>
<script src="//code.jquery.com/jquery-2.0.0.min.js"></script>
<script>
$(document).ready(function(){
//Log time in two ways
var startTime = new Date().getTime();
console.time("Map generated in: ");
var canvas = $("#map")[0];
var ctx = canvas.getContext("2d");
var id = ctx.createImageData(canvas.width, canvas.height);
var noiseMap = new PerlinNoise(500);
var startx = 0;
var starty = 0;
var value = 0;
for(var i = startx; i < canvas.width; i++){
for(var j = starty; j < canvas.height; j++){
value = noiseMap.noise(i,j, 0, 42);
value = linear(value,-1,1,0,255);
setPixel(id, i, j, 0,0,0,value);
}
}
ctx.putImageData(id,0,0);
var endTime = new Date().getTime();
console.timeEnd("Map generated in: ");
alert("Map generated in: " + (endTime - startTime) + "milliseconds");
});
function setPixel(imageData, x, y, r, g, b, a) {
index = (x + y * imageData.width) * 4;
imageData.data[index+0] = r;
imageData.data[index+1] = g;
imageData.data[index+2] = b;
imageData.data[index+3] = a;
}
//This is a port of Ken Perlin's "Improved Noise"
//http://mrl.nyu.edu/~perlin/noise/
//Originally from http://therandomuniverse.blogspot.com/2007/01/perlin-noise-your-new-best-friend.html
//but the site appears to be down, so here is a mirror of it
//Converted from php to javascript by Christian Moe
//Patched the errors with code from here: http://asserttrue.blogspot.fi/2011/12/perlin-noise-in-javascript_31.html
var PerlinNoise = function(seed) {
this._default_size = 64;
this.seed = seed;
//Initialize the permutation array.
this.p = new Array(512);
this.permutation = [ 151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
];
for (var i=0; i < 256 ; i++) {
this.p[256+i] = this.p[i] = this.permutation[i];
}
};
PerlinNoise.prototype.noise = function(x,y,z,size) {
if (size == undefined)
{
size = this._default_size;
}
//Set the initial value and initial size
var value = 0.0;
var initialSize = size;
//Add finer and finer hues of smoothed noise together
while(size >= 1)
{
value += this.smoothNoise(x / size, y / size, z / size) * size;
size /= 2.0;
}
//Return the result over the initial size
return value / initialSize;
};
//This function determines what cube the point passed resides in
//and determines its value.
PerlinNoise.prototype.smoothNoise = function(x, y, z){
//Offset each coordinate by the seed value
x += this.seed;
y += this.seed;
z += this.seed;
var orig_x = x;
var orig_y = y;
var orig_z = z;
var X = Math.floor(x) & 255, // FIND UNIT CUBE THAT
Y = Math.floor(y) & 255, // CONTAINS POINT.
Z = Math.floor(z) & 255;
x -= Math.floor(x); // FIND RELATIVE X,Y,Z
y -= Math.floor(y); // OF POINT IN CUBE.
z -= Math.floor(z);
var u = this.fade(x), // COMPUTE FADE CURVES
v = this.fade(y), // FOR EACH OF X,Y,Z.
w = this.fade(z);
var A = this.p[X ]+Y, AA = this.p[A]+Z, AB = this.p[A+1]+Z, // HASH COORDINATES OF
B = this.p[X+1]+Y, BA = this.p[B]+Z, BB = this.p[B+1]+Z; // THE 8 CUBE CORNERS,
return this.lerp(w, this.lerp(v, this.lerp(u, this.grad(this.p[AA ], x , y , z ), // AND ADD
this.grad(this.p[BA ], x-1, y , z )), // BLENDED
this.lerp(u, this.grad(this.p[AB ], x , y-1, z ), // RESULTS
this.grad(this.p[BB ], x-1, y-1, z ))),// FROM 8
this.lerp(v, this.lerp(u, this.grad(this.p[AA+1], x , y , z-1 ), // CORNERS
this.grad(this.p[BA+1], x-1, y , z-1 )), // OF CUBE
this.lerp(u, this.grad(this.p[AB+1], x , y-1, z-1 ),
this.grad(this.p[BB+1], x-1, y-1, z-1 ))));
};
PerlinNoise.prototype.fade = function(t) {
return t * t * t * ( ( t * ( (t * 6) - 15) ) + 10);
};
PerlinNoise.prototype.lerp = function(t, a, b) {
//Make a weighted interpolaton between points
return a + t * (b - a);
};
PerlinNoise.prototype.grad = function(hash, x, y, z) {
h = hash & 15; // CONVERT LO 4 BITS OF HASH CODE
u = h<8 ? x : y; // INTO 12 GRADIENT DIRECTIONS.
v = h<4 ? y : (h==12||h==14 ? x : z);
return ((h&1) == 0 ? u : -u) + ((h&2) == 0 ? v : -v);
};
PerlinNoise.prototype.scale = function(n) {
return (1 + n)/2;
};
function linear(int, s1, s2, t1, t2)
{
t = [t1, t2];
s = [s1, s2];
rangeS = s1 - s2;
rangeT = t1 - t2;
if((s1 < s2 && t1 > t2) || (s1>s2 && t1<t2))
{
interpolated = ((int - s1) / rangeS*rangeT) + t1;
}
else
{
interpolated = ((int - s1) / rangeS)*rangeT + t1;
}
if(interpolated > Math.max.apply(Math, t))
{
interpolated = Math.max.apply(Math, t);
}
if(interpolated < Math.min.apply(Math, t))
{
interpolated = Math.min.apply(Math, t);
}
return interpolated;
}
</script>
</body>
</html>
I get 33 ms on Chrome, and 1051ms on Firefox 24 Nightly
The results are inconsistent though. Sometimes the Nightly results is as fast as chrome...
Do you know why there is so much variation in this particular instance?
I don't know enough about the theory of perlin noise to try optimizing the code, so don't know what to do.
I have found the culprit. The slowdown occurs when I have Firebug enabled. That extension must weigh it down.
I'm splitting a element into multiple blocks (defined by a number of rows and columns), and then fade these blocks to create animation effects. The type of animation is decided by the delay() value:
$('.block').each(function (i) {
$(this).stop().delay(30 * i).animate({
'opacity': 1
}, {
duration: 420
});
});
In this case each block's fade effect is delayed by (30 * current block index). The first block gets 0 delay, the second block 30 delay, ..... the last block 30 * (number of blocks) delay. So this will fade all blocks horizontally.
I've posted a list of effects I've come up so far here: http://jsfiddle.net/MRPDw/.
What I need help with is to find the delay expression for a spiral type effect, and maybe others that you think are possible :D
Here is an example of code for a spiral pattern:
case 'spiral':
$('.block', grid).css({
'opacity': 0
});
var order = new Array();
var rows2 = rows/2, x, y, z, n=0;
for (z = 0; z < rows2; z++){
y = z;
for (x = z; x < cols - z - 1; x++) {
order[n++] = y * cols + x;
}
x = cols - z - 1;
for (y = z; y < rows - z - 1; y++) {
order[n++] = y * cols + x;
}
y = rows - z - 1;
for (x = cols - z - 1; x > z; x--) {
order[n++] = y * cols + x;
}
x = z;
for (y = rows - z - 1; y > z; y--) {
order[n++] = y * cols + x;
}
}
for (var m = 0; m < n; m++) {
$('.block-' + order[m], grid).stop().delay(100*m).animate({
opacity: 1
}, {
duration: 420,
complete: (m != n - 1) ||
function () {
alert('done');
}
});
}
break;
See it working in this fiddle.
I also improved on your "RANDOM" animation, to show all the squares, not just a subset. The code for that is:
case 'random':
var order = new Array();
var numbers = new Array();
var x, y, n=0, m=0, ncells = rows*cols;
for (y = 0; y < rows; y++){
for (x = 0; x < cols; x++){
numbers[n] = n++;
}
}
while(m < ncells){
n = Math.floor(Math.random()*ncells);
if (numbers[n] != -1){
order[m++] = n;
numbers[n] = -1;
}
}
$('.block', grid).css({
'opacity': 0
});
for (var m = 0; m < ncells; m++) {
$('.block-' + order[m], grid).stop().delay(100*m).animate({
opacity: 1
}, {
duration: 420,
complete: (m != ncells - 1) ||
function () {
alert('done');
}
});
}
break;
See it working in this fiddle.
Maybe the easiest way to think about making a spiral animation, is to think about your matrix as a piece of paper.
If you fold 2 times that paper in the x and y center axes, you end up getting a smaller square (or rectangle) quadrant.
Now, if you animate this quadrant only from bottom right to top left corner (in the same way you did for your 'diagonal-reverse'), you can propagate this movement to the other 3 quadrants in order to get the final effect of having an animation running from the center of your matrix up to the four corners.
case 'spiral':
$('.block', grid).css({
'opacity': 0
});
n = 0;
var center = {
x: cols / 2,
y: rows / 2
};
// iterate on the second quadrant only
for (var y = 0; y < center.y; y++)
for (var x = 0; x < center.x; x++) {
// and apply the animation to all quadrants, by using the multiple jQuery selector
$('.block-' + (y * rows + x) + ', ' + // 2nd quadrant
'.block-' + (y * rows + cols - x - 1) + ', ' + // 1st quadrant
'.block-' + ((rows - y - 1) * rows + x) + ', ' + // 3rd quadrant
'.block-' + ((rows - y - 1) * rows + cols - x - 1) // 4th quadrant
, grid).stop().delay(100 * (center.y - y + center.x - x)).animate({
opacity: 1
}, {
duration: 420,
complete: function () {
if (++n == rows * cols) {
alert('done'); // fire next animation...
}
}
});
}
Here is the demo (click the spiral link)