Related
I want a 5 character string composed of characters picked randomly from the set [a-zA-Z0-9].
What's the best way to do this with JavaScript?
I think this will work for you:
function makeid(length) {
let result = '';
const characters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';
const charactersLength = characters.length;
let counter = 0;
while (counter < length) {
result += characters.charAt(Math.floor(Math.random() * charactersLength));
counter += 1;
}
return result;
}
console.log(makeid(5));
//Can change 7 to 2 for longer results.
let r = (Math.random() + 1).toString(36).substring(7);
console.log("random", r);
Note: The above algorithm has the following weaknesses:
It will generate anywhere between 0 and 6 characters due to the fact that trailing zeros get removed when stringifying floating points.
It depends deeply on the algorithm used to stringify floating point numbers, which is horrifically complex. (See the paper "How to Print Floating-Point Numbers Accurately".)
Math.random() may produce predictable ("random-looking" but not really random) output depending on the implementation. The resulting string is not suitable when you need to guarantee uniqueness or unpredictability.
Even if it produced 6 uniformly random, unpredictable characters, you can expect to see a duplicate after generating only about 50,000 strings, due to the birthday paradox. (sqrt(36^6) = 46656)
Math.random is bad for this kind of thing
server side
Use node crypto module -
var crypto = require("crypto");
var id = crypto.randomBytes(20).toString('hex');
// "bb5dc8842ca31d4603d6aa11448d1654"
The resulting string will be twice as long as the random bytes you generate; each byte encoded to hex is 2 characters. 20 bytes will be 40 characters of hex.
client side
Use the browser's crypto module, crypto.getRandomValues -
The crypto.getRandomValues() method lets you get cryptographically strong random values. The array given as the parameter is filled with random numbers (random in its cryptographic meaning).
// dec2hex :: Integer -> String
// i.e. 0-255 -> '00'-'ff'
function dec2hex (dec) {
return dec.toString(16).padStart(2, "0")
}
// generateId :: Integer -> String
function generateId (len) {
var arr = new Uint8Array((len || 40) / 2)
window.crypto.getRandomValues(arr)
return Array.from(arr, dec2hex).join('')
}
console.log(generateId())
// "82defcf324571e70b0521d79cce2bf3fffccd69"
console.log(generateId(20))
// "c1a050a4cd1556948d41"
A step-by-step console example -
> var arr = new Uint8Array(4) # make array of 4 bytes (values 0-255)
> arr
Uint8Array(4) [ 0, 0, 0, 0 ]
> window.crypto
Crypto { subtle: SubtleCrypto }
> window.crypto.getRandomValues()
TypeError: Crypto.getRandomValues requires at least 1 argument, but only 0 were passed
> window.crypto.getRandomValues(arr)
Uint8Array(4) [ 235, 229, 94, 228 ]
For IE11 support you can use -
(window.crypto || window.msCrypto).getRandomValues(arr)
For browser coverage see https://caniuse.com/#feat=getrandomvalues
client side (old browsers)
If you must support old browsers, consider something like uuid -
const uuid = require("uuid");
const id = uuid.v4();
// "110ec58a-a0f2-4ac4-8393-c866d813b8d1"
Short, easy and reliable
Returns exactly 5 random characters, as opposed to some of the top rated answers found here.
Math.random().toString(36).slice(2, 7);
Here's an improvement on doubletap's excellent answer. The original has two drawbacks which are addressed here:
First, as others have mentioned, it has a small probability of producing short strings or even an empty string (if the random number is 0), which may break your application. Here is a solution:
(Math.random().toString(36)+'00000000000000000').slice(2, N+2)
Second, both the original and the solution above limit the string size N to 16 characters. The following will return a string of size N for any N (but note that using N > 16 will not increase the randomness or decrease the probability of collisions):
Array(N+1).join((Math.random().toString(36)+'00000000000000000').slice(2, 18)).slice(0, N)
Explanation:
Pick a random number in the range [0,1), i.e. between 0 (inclusive) and 1 (exclusive).
Convert the number to a base-36 string, i.e. using characters 0-9 and a-z.
Pad with zeros (solves the first issue).
Slice off the leading '0.' prefix and extra padding zeros.
Repeat the string enough times to have at least N characters in it (by Joining empty strings with the shorter random string used as the delimiter).
Slice exactly N characters from the string.
Further thoughts:
This solution does not use uppercase letters, but in almost all cases (no pun intended) it does not matter.
The maximum string length at N = 16 in the original answer is measured in Chrome. In Firefox it's N = 11. But as explained, the second solution is about supporting any requested string length, not about adding randomness, so it doesn't make much of a difference.
All returned strings have an equal probability of being returned, at least as far as the results returned by Math.random() are evenly distributed (this is not cryptographic-strength randomness, in any case).
Not all possible strings of size N may be returned. In the second solution this is obvious (since the smaller string is simply being duplicated), but also in the original answer this is true since in the conversion to base-36 the last few bits may not be part of the original random bits. Specifically, if you look at the result of Math.random().toString(36), you'll notice the last character is not evenly distributed. Again, in almost all cases it does not matter, but we slice the final string from the beginning rather than the end of the random string so that short strings (e.g. N=1) aren't affected.
Update:
Here are a couple other functional-style one-liners I came up with. They differ from the solution above in that:
They use an explicit arbitrary alphabet (more generic, and suitable to the original question which asked for both uppercase and lowercase letters).
All strings of length N have an equal probability of being returned (i.e. strings contain no repetitions).
They are based on a map function, rather than the toString(36) trick, which makes them more straightforward and easy to understand.
So, say your alphabet of choice is
var s = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
Then these two are equivalent to each other, so you can pick whichever is more intuitive to you:
Array(N).join().split(',').map(function() { return s.charAt(Math.floor(Math.random() * s.length)); }).join('');
and
Array.apply(null, Array(N)).map(function() { return s.charAt(Math.floor(Math.random() * s.length)); }).join('');
Edit:
I seems like qubyte and Martijn de Milliano came up with solutions similar to the latter (kudos!), which I somehow missed. Since they don't look as short at a glance, I'll leave it here anyway in case someone really wants a one-liner :-)
Also, replaced 'new Array' with 'Array' in all solutions to shave off a few more bytes.
The most compact solution, because slice is shorter than substring. Subtracting from the end of the string allows to avoid floating point symbol generated by the random function:
Math.random().toString(36).slice(-5);
or even
(+new Date).toString(36).slice(-5);
Update: Added one more approach using btoa method:
btoa(Math.random()).slice(0, 5);
btoa(+new Date).slice(-7, -2);
btoa(+new Date).substr(-7, 5);
// Using Math.random and Base 36:
console.log(Math.random().toString(36).slice(-5));
// Using new Date and Base 36:
console.log((+new Date).toString(36).slice(-5));
// Using Math.random and Base 64 (btoa):
console.log(btoa(Math.random()).slice(0, 5));
// Using new Date and Base 64 (btoa):
console.log(btoa(+new Date).slice(-7, -2));
console.log(btoa(+new Date).substr(-7, 5));
A newer version with es6 spread operator:
[...Array(30)].map(() => Math.random().toString(36)[2]).join('')
The 30 is an arbitrary number, you can pick any token length you want
The 36 is the maximum radix number you can pass to numeric.toString(), which means all numbers and a-z lowercase letters
The 2 is used to pick the 3rd index from the random string which looks like this: "0.mfbiohx64i", we could take any index after 0.
Something like this should work
function randomString(len, charSet) {
charSet = charSet || 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';
var randomString = '';
for (var i = 0; i < len; i++) {
var randomPoz = Math.floor(Math.random() * charSet.length);
randomString += charSet.substring(randomPoz,randomPoz+1);
}
return randomString;
}
Call with default charset [a-zA-Z0-9] or send in your own:
var randomValue = randomString(5);
var randomValue = randomString(5, 'PICKCHARSFROMTHISSET');
function randomstring(L) {
var s = '';
var randomchar = function() {
var n = Math.floor(Math.random() * 62);
if (n < 10) return n; //1-10
if (n < 36) return String.fromCharCode(n + 55); //A-Z
return String.fromCharCode(n + 61); //a-z
}
while (s.length < L) s += randomchar();
return s;
}
console.log(randomstring(5));
Random String Generator (Alpha-Numeric | Alpha | Numeric)
/**
* Pseudo-random string generator
* http://stackoverflow.com/a/27872144/383904
* Default: return a random alpha-numeric string
*
* #param {Integer} len Desired length
* #param {String} an Optional (alphanumeric), "a" (alpha), "n" (numeric)
* #return {String}
*/
function randomString(len, an) {
an = an && an.toLowerCase();
var str = "",
i = 0,
min = an == "a" ? 10 : 0,
max = an == "n" ? 10 : 62;
for (; i++ < len;) {
var r = Math.random() * (max - min) + min << 0;
str += String.fromCharCode(r += r > 9 ? r < 36 ? 55 : 61 : 48);
}
return str;
}
console.log(randomString(10)); // i.e: "4Z8iNQag9v"
console.log(randomString(10, "a")); // i.e: "aUkZuHNcWw"
console.log(randomString(10, "n")); // i.e: "9055739230"
While the above uses additional checks for the desired A/N, A, N output,
let's break it down the to the essentials (Alpha-Numeric only) for a better understanding:
Create a function that accepts an argument (desired length of the random String result)
Create an empty string like var str = ""; to concatenate random characters
Inside a loop create a rand index number from 0 to 61 (0..9+A..Z+a..z = 62)
Create a conditional logic to Adjust/fix rand (since it's 0..61) incrementing it by some number (see examples below) to get back the right CharCode number and the related Character.
Inside the loop concatenate to str a String.fromCharCode( incremented rand )
Let's picture the ASCII Character table ranges:
_____0....9______A..........Z______a..........z___________ Character
| 10 | | 26 | | 26 | Tot = 62 characters
48....57 65..........90 97..........122 CharCode ranges
Math.floor( Math.random * 62 ) gives a range from 0..61 (what we need).
Let's fix the random to get the correct charCode ranges:
| rand | charCode | (0..61)rand += fix = charCode ranges |
------+----------+----------+--------------------------------+-----------------+
0..9 | 0..9 | 48..57 | rand += 48 = 48..57 |
A..Z | 10..35 | 65..90 | rand += 55 /* 90-35 = 55 */ = 65..90 |
a..z | 36..61 | 97..122 | rand += 61 /* 122-61 = 61 */ = 97..122 |
The conditional operation logic from the table above:
rand += rand>9 ? ( rand<36 ? 55 : 61 ) : 48 ;
// rand += true ? ( true ? 55 else 61 ) else 48 ;
From the explanation above, here's the resulting alpha-numeric snippet:
function randomString(len) {
var str = ""; // String result
for (var i = 0; i < len; i++) { // Loop `len` times
var rand = Math.floor(Math.random() * 62); // random: 0..61
var charCode = rand += rand > 9 ? (rand < 36 ? 55 : 61) : 48; // Get correct charCode
str += String.fromCharCode(charCode); // add Character to str
}
return str; // After all loops are done, return the concatenated string
}
console.log(randomString(10)); // i.e: "7GL9F0ne6t"
Or if you will:
const randomString = (n, r='') => {
while (n--) r += String.fromCharCode((r=Math.random()*62|0, r+=r>9?(r<36?55:61):48));
return r;
};
console.log(randomString(10))
To meet requirement [a-zA-Z0-9] and length of 5 characters, use
For Browser:
btoa(Math.random().toString()).substring(10,15);
For NodeJS:
Buffer.from(Math.random().toString()).toString("base64").substring(10,15);
Lowercase letters, uppercase letters, and numbers will occur.
(it's typescript compatible)
The simplest way is:
(new Date%9e6).toString(36)
This generate random strings of 5 characters based on the current time. Example output is 4mtxj or 4mv90 or 4mwp1
The problem with this is that if you call it two times on the same second, it will generate the same string.
The safer way is:
(0|Math.random()*9e6).toString(36)
This will generate a random string of 4 or 5 characters, always diferent. Example output is like 30jzm or 1r591 or 4su1a
In both ways the first part generate a random number. The .toString(36) part cast the number to a base36 (alphadecimal) representation of it.
Here are some easy one liners. Change new Array(5) to set the length.
Including 0-9a-z
new Array(5).join().replace(/(.|$)/g, function(){return ((Math.random()*36)|0).toString(36);})
Including 0-9a-zA-Z
new Array(5).join().replace(/(.|$)/g, function(){return ((Math.random()*36)|0).toString(36)[Math.random()<.5?"toString":"toUpperCase"]();});
Codegolfed for ES6 (0-9a-z)
Array(5).fill().map(n=>(Math.random()*36|0).toString(36)).join('')
I know everyone has got it right already, but i felt like having a go at this one in the most lightweight way possible(light on code, not CPU):
function rand(length, current) {
current = current ? current : '';
return length ? rand(--length, "0123456789ABCDEFGHIJKLMNOPQRSTUVWXTZabcdefghiklmnopqrstuvwxyz".charAt(Math.floor(Math.random() * 60)) + current) : current;
}
console.log(rand(5));
It takes a bit of time to wrap your head around, but I think it really shows how awesome javascript's syntax is.
Generate a secure random alphanumeric Base-62 string:
function generateUID(length)
{
return window.btoa(String.fromCharCode(...window.crypto.getRandomValues(new Uint8Array(length * 2)))).replace(/[+/]/g, "").substring(0, length);
}
console.log(generateUID(22)); // "yFg3Upv2cE9cKOXd7hHwWp"
console.log(generateUID(5)); // "YQGzP"
There is no best way to do this. You can do it any way you prefer, as long as the result suits your requirements. To illustrate, I've created many different examples, all which should provide the same end-result
Most other answers on this page ignore the upper-case character requirement.
Here is my fastest solution and most readable. It basically does the same as the accepted solution, except it is a bit faster.
function readableRandomStringMaker(length) {
for (var s=''; s.length < length; s += 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'.charAt(Math.random()*62|0));
return s;
}
console.log(readableRandomStringMaker(length));
// e3cbN
Here is a compact, recursive version which is much less readable:
const compactRandomStringMaker = (length) => length-- && "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789".charAt(Math.random()*62|0) + (compactRandomStringMaker(length)||"");
console.log(compactRandomStringMaker(5));
// DVudj
A more compact one-liner:
Array(5).fill().map(()=>"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789".charAt(Math.random()*62)).join("")
// 12oEZ
A variation of the above:
" ".replaceAll(" ",()=>"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789".charAt(Math.random()*62))
The most compact one-liner, but inefficient and unreadable - it adds random characters and removes illegal characters until length is l:
((l,f=(p='')=>p.length<l?f(p+String.fromCharCode(Math.random()*123).replace(/[^a-z0-9]/i,'')):p)=>f())(5)
A cryptographically secure version, which is wasting entropy for compactness, and is a waste regardless because the generated string is so short:
[...crypto.getRandomValues(new Uint8Array(999))].map((c)=>String.fromCharCode(c).replace(/[^a-z0-9]/i,'')).join("").substr(0,5)
// 8fzPq
Or, without the length-argument it is even shorter:
((f=(p='')=>p.length<5?f(p+String.fromCharCode(Math.random()*123).replace(/[^a-z0-9]/i,'')):p)=>f())()
// EV6c9
Then a bit more challenging - using a nameless recursive arrow function:
((l,s=((l)=>l--&&"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789".charAt(Math.random()*62|0)+(s(l)||""))) => s(l))(5);
// qzal4
This is a "magic" variable which provides a random character every time you access it:
const c = new class { [Symbol.toPrimitive]() { return "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789".charAt(Math.random()*62|0) } };
console.log(c+c+c+c+c);
// AgMnz
A simpler variant of the above:
const c=()=>"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789".charAt(Math.random()*62|0);
c()+c()+c()+c()+c();
// 6Qadw
In case anyone is interested in a one-liner (although not formatted as such for your convenience) that allocates the memory at once (but note that for small strings it really does not matter) here is how to do it:
Array.apply(0, Array(5)).map(function() {
return (function(charset){
return charset.charAt(Math.floor(Math.random() * charset.length))
}('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'));
}).join('')
You can replace 5 by the length of the string you want. Thanks to #AriyaHidayat in this post for the solution to the map function not working on the sparse array created by Array(5).
If you are using Lodash or Underscore, then it so simple:
var randomVal = _.sample('ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789', 5).join('');
const c = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'
const s = [...Array(5)].map(_ => c[~~(Math.random()*c.length)]).join('')
Here's the method I created.
It will create a string containing both uppercase and lowercase characters.
In addition I've included the function that will created an alphanumeric string too.
Working examples:
http://jsfiddle.net/greatbigmassive/vhsxs/ (alpha only)
http://jsfiddle.net/greatbigmassive/PJwg8/ (alphanumeric)
function randString(x){
var s = "";
while(s.length<x&&x>0){
var r = Math.random();
s+= String.fromCharCode(Math.floor(r*26) + (r>0.5?97:65));
}
return s;
}
Upgrade July 2015
This does the same thing but makes more sense and includes all letters.
var s = "";
while(s.length<x&&x>0){
v = Math.random()<0.5?32:0;
s += String.fromCharCode(Math.round(Math.random()*((122-v)-(97-v))+(97-v)));
}
One liner:
Array(15).fill(null).map(() => Math.random().toString(36).substr(2)).join('')
// Outputs: 0h61cbpw96y83qtnunwme5lxk1i70a6o5r5lckfcyh1dl9fffydcfxddd69ada9tu9jvqdx864xj1ul3wtfztmh2oz2vs3mv6ej0fe58ho1cftkjcuyl2lfkmxlwua83ibotxqc4guyuvrvtf60naob26t6swzpil
Improved #Andrew's answer above :
Array.from({ length : 1 }, () => Math.random().toString(36)[2]).join('');
Base 36 conversion of the random number is inconsistent, so selecting a single indice fixes that. You can change the length for a string with the exact length desired.
Assuming you use underscorejs it's possible to elegantly generate random string in just two lines:
var possible = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';
var random = _.sample(possible, 5).join('');
function randomString (strLength, charSet) {
var result = [];
strLength = strLength || 5;
charSet = charSet || 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';
while (strLength--) { // (note, fixed typo)
result.push(charSet.charAt(Math.floor(Math.random() * charSet.length)));
}
return result.join('');
}
This is as clean as it will get. It is fast too, http://jsperf.com/ay-random-string.
Fast and improved algorithm. Does not guarantee uniform (see comments).
function getRandomId(length) {
if (!length) {
return '';
}
const possible =
'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';
let array;
if ('Uint8Array' in self && 'crypto' in self && length <= 65536) {
array = new Uint8Array(length);
self.crypto.getRandomValues(array);
} else {
array = new Array(length);
for (let i = 0; i < length; i++) {
array[i] = Math.floor(Math.random() * 62);
}
}
let result = '';
for (let i = 0; i < length; i++) {
result += possible.charAt(array[i] % 62);
}
return result;
}
How about this compact little trick?
var possible = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';
var stringLength = 5;
function pickRandom() {
return possible[Math.floor(Math.random() * possible.length)];
}
var randomString = Array.apply(null, Array(stringLength)).map(pickRandom).join('');
You need the Array.apply there to trick the empty array into being an array of undefineds.
If you're coding for ES2015, then building the array is a little simpler:
var randomString = Array.from({ length: stringLength }, pickRandom).join('');
You can loop through an array of items and recursively add them to a string variable, for instance if you wanted a random DNA sequence:
function randomDNA(len) {
len = len || 100
var nuc = new Array("A", "T", "C", "G")
var i = 0
var n = 0
s = ''
while (i <= len - 1) {
n = Math.floor(Math.random() * 4)
s += nuc[n]
i++
}
return s
}
console.log(randomDNA(5));
Case Insensitive Alphanumeric Chars:
function randStr(len) {
let s = '';
while (s.length < len) s += Math.random().toString(36).substr(2, len - s.length);
return s;
}
// usage
console.log(randStr(50));
The benefit of this function is that you can get different length random string and it ensures the length of the string.
Case Sensitive All Chars:
function randStr(len) {
let s = '';
while (len--) s += String.fromCodePoint(Math.floor(Math.random() * (126 - 33) + 33));
return s;
}
// usage
console.log(randStr(50));
Custom Chars
function randStr(len, chars='abc123') {
let s = '';
while (len--) s += chars[Math.floor(Math.random() * chars.length)];
return s;
}
// usage
console.log(randStr(50));
console.log(randStr(50, 'abc'));
console.log(randStr(50, 'aab')); // more a than b
The problem with responses to "I need random strings" questions (in whatever language) is practically every solution uses a flawed primary specification of string length. The questions themselves rarely reveal why the random strings are needed, but I would challenge you rarely need random strings of length, say 8. What you invariably need is some number of unique strings, for example, to use as identifiers for some purpose.
There are two leading ways to get strictly unique strings: deterministically (which is not random) and store/compare (which is onerous). What do we do? We give up the ghost. We go with probabilistic uniqueness instead. That is, we accept that there is some (however small) risk that our strings won't be unique. This is where understanding collision probability and entropy are helpful.
So I'll rephrase the invariable need as needing some number of strings with a small risk of repeat. As a concrete example, let's say you want to generate a potential of 5 million IDs. You don't want to store and compare each new string, and you want them to be random, so you accept some risk of repeat. As example, let's say a risk of less than 1 in a trillion chance of repeat. So what length of string do you need? Well, that question is underspecified as it depends on the characters used. But more importantly, it's misguided. What you need is a specification of the entropy of the strings, not their length. Entropy can be directly related to the probability of a repeat in some number of strings. String length can't.
And this is where a library like EntropyString can help. To generate random IDs that have less than 1 in a trillion chance of repeat in 5 million strings using entropy-string:
import {Random, Entropy} from 'entropy-string'
const random = new Random()
const bits = Entropy.bits(5e6, 1e12)
const string = random.string(bits)
"44hTNghjNHGGRHqH9"
entropy-string uses a character set with 32 characters by default. There are other predefined characters sets, and you can specify your own characters as well. For example, generating IDs with the same entropy as above but using hex characters:
import {Random, Entropy, charSet16} from './entropy-string'
const random = new Random(charSet16)
const bits = Entropy.bits(5e6, 1e12)
const string = random.string(bits)
"27b33372ade513715481f"
Note the difference in string length due to the difference in total number of characters in the character set used. The risk of repeat in the specified number of potential strings is the same. The string lengths are not. And best of all, the risk of repeat and the potential number of strings is explicit. No more guessing with string length.
One-liner using map that gives you full control on the length and characters.
const rnd = (len, chars='ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789') => [...Array(len)].map(() => chars.charAt(Math.floor(Math.random() * chars.length))).join('')
console.log(rnd(12))
I've got a Javascript ArrayBuffer that I would like to be converted into a hex string.
Anyone knows of a function that I can call or a pre written function already out there?
I have only been able to find arraybuffer to string functions, but I want the hexdump of the array buffer instead.
function buf2hex(buffer) { // buffer is an ArrayBuffer
return [...new Uint8Array(buffer)]
.map(x => x.toString(16).padStart(2, '0'))
.join('');
}
// EXAMPLE:
const buffer = new Uint8Array([ 4, 8, 12, 16 ]).buffer;
console.log(buf2hex(buffer)); // = 04080c10
This function works in four steps:
Converts the buffer into an array.
For each x the array, it converts that element to a hex string (e.g., 12 becomes c).
Then it takes that hex string and left pads it with zeros (e.g., c becomes 0c).
Finally, it takes all of the hex values and joins them into a single string.
Below is another longer implementation that is a little easier to understand, but essentially does the same thing:
function buf2hex(buffer) { // buffer is an ArrayBuffer
// create a byte array (Uint8Array) that we can use to read the array buffer
const byteArray = new Uint8Array(buffer);
// for each element, we want to get its two-digit hexadecimal representation
const hexParts = [];
for(let i = 0; i < byteArray.length; i++) {
// convert value to hexadecimal
const hex = byteArray[i].toString(16);
// pad with zeros to length 2
const paddedHex = ('00' + hex).slice(-2);
// push to array
hexParts.push(paddedHex);
}
// join all the hex values of the elements into a single string
return hexParts.join('');
}
// EXAMPLE:
const buffer = new Uint8Array([ 4, 8, 12, 16 ]).buffer;
console.log(buf2hex(buffer)); // = 04080c10
Here is a sweet ES6 solution, using padStart and avoiding the quite confusing prototype-call-based solution of the accepted answer. It is actually faster as well.
function bufferToHex (buffer) {
return [...new Uint8Array (buffer)]
.map (b => b.toString (16).padStart (2, "0"))
.join ("");
}
How this works:
An Array is created from a Uint8Array holding the buffer data. This is so we can modify the array to hold string values later.
All the Array items are mapped to their hex codes and padded with 0 characters.
The array is joined into a full string.
Here are several methods for encoding an ArrayBuffer to hex, in order of speed. All methods were tested in Firefox initially, but afterwards I went and tested in Chrome (V8). In Chrome the methods were mostly in the same order but it did have slight differenences--the important thing is that #1 is the fastest method in all environments by a huge margin.
If you want to see how slow the currently selected answer is, you can go ahead and scroll to the bottom of this list.
TL;DR
Method #1 (just below this) is the fastest method I tested for encoding to a hex string. If, for some very good reason, you need to support IE, you may need to replace the .padStart call with the .slice trick used in method #6 when precomputing the hex octets to make sure every octet is 2 characters.
1. Precomputed Hex Octets w/ for Loop (Fastest/Baseline)
This approach computes the 2-character hex octets for every possible value of an unsigned byte: [0, 255], and then just maps each value in the ArrayBuffer through the array of octet strings. Credit to Aaron Watters for the original answer using this method.
NOTE: as mentioned by Cref, you may get a performance boost in V8 (Chromium/Chrome/Edge/Brave/etc.) by using the loop to just concatenate hex octets into one big string as you go and then returning the string after the loop. V8 seems to optimize string concatenation very well while Firefox performed better with building up an array and then .joining it into a string at the end as I did in the code below. That would probably be a micro-optimization subject to change with the whims of optimizing JS compilers though..
const byteToHex = [];
for (let n = 0; n <= 0xff; ++n)
{
const hexOctet = n.toString(16).padStart(2, "0");
byteToHex.push(hexOctet);
}
function hex(arrayBuffer)
{
const buff = new Uint8Array(arrayBuffer);
const hexOctets = []; // new Array(buff.length) is even faster (preallocates necessary array size), then use hexOctets[i] instead of .push()
for (let i = 0; i < buff.length; ++i)
hexOctets.push(byteToHex[buff[i]]);
return hexOctets.join("");
}
2. Precomputed Hex Octets w/ Array.map (~30% slower)
Same as the above method, where we precompute an array in which the value for each index is the hex string for the index's value, but we use a hack where we call the Array prototype's map() method with the buffer. This is a more functional approach, but if you really want speed you will always use for loops rather than ES6 array methods, as all modern JS engines optimize them much better.
IMPORTANT: You cannot use new Uint8Array(arrayBuffer).map(...). Although Uint8Array implements the ArrayLike interface, its map method will return another Uint8Array which cannot contain strings (hex octets in our case), hence the Array prototype hack.
function hex(arrayBuffer)
{
return Array.prototype.map.call(
new Uint8Array(arrayBuffer),
n => byteToHex[n]
).join("");
}
3. Precomputed ASCII Character Codes (~230% slower)
Well this was a disappointing experiment. I wrote up this function because I thought it would be even faster than Aaron's precomputed hex octets--boy was I wrong LOL. While Aaron maps entire bytes to their corresponding 2-character hex codes, this solution uses bitshifting to get the hex character for the first 4 bits in each byte and then the one for the last 4 and uses String.fromCharCode(). Honestly I think String.fromCharCode() must just be poorly optimized, since it is not used by very many people and is low on browser vendors' lists of priorities.
const asciiCodes = new Uint8Array(
Array.prototype.map.call(
"0123456789abcdef",
char => char.charCodeAt()
)
);
function hex(arrayBuffer)
{
const buff = new Uint8Array(arrayBuffer);
const charCodes = new Uint8Array(buff.length * 2);
for (let i = 0; i < buff.length; ++i)
{
charCodes[i * 2] = asciiCodes[buff[i] >>> 4];
charCodes[i * 2 + 1] = asciiCodes[buff[i] & 0xf];
}
return String.fromCharCode(...charCodes);
}
4. Array.prototype.map() w/ padStart() (~290% slower)
This method maps an array of bytes using the Number.toString() method to get the hex and then padding the octet with a "0" if necessary via the String.padStart() method.
IMPORTANT: String.padStart() is a relative new standard, so you should not use this or method #5 if you are planning on supporting browsers older than 2017 or so or Internet Explorer. TBH if your users are still using IE you should probably just go to their houses at this point and install Chrome/Firefox. Do us all a favor. :^D
function hex(arrayBuffer)
{
return Array.prototype.map.call(
new Uint8Array(arrayBuffer),
n => n.toString(16).padStart(2, "0")
).join("");
}
5. Array.from().map() w/ padStart() (~370% slower)
This is the same as #4 but instead of the Array prototype hack, we create an actual number array from the Uint8Array and call map() on that directly. We pay in speed though.
function hex(arrayBuffer)
{
return Array.from(new Uint8Array(arrayBuffer))
.map(n => n.toString(16).padStart(2, "0"))
.join("");
}
6. Array.prototype.map() w/ slice() (~450% slower)
This is the selected answer, do not use this unless you are a typical web developer and performance makes you uneasy (answer #1 is supported by just as many browsers).
function hex(arrayBuffer)
{
return Array.prototype.map.call(
new Uint8Array(arrayBuffer),
n => ("0" + n.toString(16)).slice(-2)
).join("");
}
Lesson #1
Precomputing stuff can be a very effective memory-for-speed tradeoff sometimes. In theory, the array of precomputed hex octets can be stored in just 1024 bytes (256 possible hex values ⨉ 2 characters/value ⨉ 2 bytes/character for a UTF-16 string representation used by most/all browsers), which is nothing in a modern computer. Realistically there are some more bytes in there used for storing the array and string lengths and maybe type information since this is JavaScript, but the memory usage is still negligible for a massive performance improvement.
Lesson #2
Help out the optimizing compiler. The browser's JavaScript compiler regularly attempts to understand your code and break it down to the fastest possible machine code for your CPU to execute. Because JavaScript is a very dynamic language, this can be hard to do and sometimes the browser just gives up and leaves all sorts of type checks and worse under-the-hood because it can't be sure that x will indeed be a string or number, and vice versa. Using modern functional programming additions like the .map method of the built-in Array class can cause headaches for the browser because callback functions can capture outside variables and do all sorts of other things that often hurt performance. For-loops are well-studied and relatively simple constructs, so the browser developers have incorporated all sorts of tricks for the compiler to optimize your JavaScript for-loops. Keep it simple.
Here is another solution which is, on Chrome (and probably node too) about 3x faster than the other suggestions using map and toString:
function bufferToHex(buffer) {
var s = '', h = '0123456789ABCDEF';
(new Uint8Array(buffer)).forEach((v) => { s += h[v >> 4] + h[v & 15]; });
return s;
}
Additional bonus: you can easily choose uppercase/lowercase output.
See bench here: http://jsben.ch/Vjx2V
The simplest way to convert arraybuffer to hex:
const buffer = new Uint8Array([ 4, 8, 12, 16 ]);
console.log(Buffer.from(buffer).toString("hex")); // = 04080c10
uint8array.reduce((a, b) => a + b.toString(16).padStart(2, '0'), '')
Surprisingly, it is important to use reduce instead of map. This is because map is reimplemented for typed arrays to return a typed array for each element, instead of a uint8.
The following solution uses precomputed lookup tables for both forward and backward conversion.
// look up tables
var to_hex_array = [];
var to_byte_map = {};
for (var ord=0; ord<=0xff; ord++) {
var s = ord.toString(16);
if (s.length < 2) {
s = "0" + s;
}
to_hex_array.push(s);
to_byte_map[s] = ord;
}
// converter using lookups
function bufferToHex2(buffer) {
var hex_array = [];
//(new Uint8Array(buffer)).forEach((v) => { hex_array.push(to_hex_array[v]) });
for (var i=0; i<buffer.length; i++) {
hex_array.push(to_hex_array[buffer[i]]);
}
return hex_array.join('')
}
// reverse conversion using lookups
function hexToBuffer(s) {
var length2 = s.length;
if ((length2 % 2) != 0) {
throw "hex string must have length a multiple of 2";
}
var length = length2 / 2;
var result = new Uint8Array(length);
for (var i=0; i<length; i++) {
var i2 = i * 2;
var b = s.substring(i2, i2 + 2);
result[i] = to_byte_map[b];
}
return result;
}
This solution is faster than the winner of the previous benchmark:
http://jsben.ch/owCk5 tested in both Chrome and Firefox on a Mac laptop. Also see the benchmark code for a test validation function.
[edit: I change the forEach to a for loop and now it's even faster.]
This one's inspired by Sam Claus' #1 which is indeed the fastest method on here. Still, I've found that using plain string concatenation instead of using an array as a string buffer is even faster! At least it is on Chrome. (which is V8 which is almost every browser these days and NodeJS)
const len = 0x100, byteToHex = new Array(len), char = String.fromCharCode;
let n = 0;
for (; n < 0x0a; ++n) byteToHex[n] = '0' + n;
for (; n < 0x10; ++n) byteToHex[n] = '0' + char(n + 87);
for (; n < len; ++n) byteToHex[n] = n.toString(16);
function byteArrayToHex(byteArray) {
const l = byteArray.length;
let hex = '';
for (let i = 0; i < l; ++i) hex += byteToHex[byteArray[i] % len];
return hex;
}
function bufferToHex(arrayBuffer) {
return byteArrayToHex(new Uint8Array(arrayBuffer));
}
I use this to hexdump ArrayBuffers the same way that Node dumps Buffers.
function pad(n: string, width: number, z = '0') {
return n.length >= width ? n : new Array(width - n.length + 1).join(z) + n;
}
function hexdump(buf: ArrayBuffer) {
let view = new Uint8Array(buf);
let hex = Array.from(view).map(v => this.pad(v.toString(16), 2));
return `<Buffer ${hex.join(" ")}>`;
}
Example (with transpiled js version):
const buffer = new Uint8Array([ 4, 8, 12, 16 ]).buffer;
console.log(hexdump(buffer)); // <Buffer 04 08 0c 10>
In Node, we can use Buffer.from(uint8array, "hex")
If you find this and need to encode / decode even faster and potentially reduce the amount of memory needed, then the already provided answers, then this might work for you.
It leverages the TextEncoder, which is present in any browser (https://caniuse.com/textencoder) and in nodejs, to concat the resulting hex string or to get the hex charcodes.
In nodejs you should use the option already provided like so:
function nodeEncode(arr: Uint8Array) {
return Buffer.from(arr).toString('hex');
}
function nodeDecode(hexString: string) {
return Uint8Array.from(Buffer.from(hexString, 'hex'));
}
But in the browser environment you can use the TextEncoder like so:
const nibbleIntegerToHexCharCode = new TextEncoder().encode("0123456789abcdef");
function uint8ArrayToHexString(input: Uint8Array) {
const output = new Uint8Array(input.length * 2);
for (let i = 0; i < input.length; i++) {
const v = input[i];
output[i * 2 + 0] = nibbleIntegerToHexCharCode[(v & 0xf0) >> 4];
output[i * 2 + 1] = nibbleIntegerToHexCharCode[(v & 0x0f)];
}
return new TextDecoder().decode(output);
}
const charCodeToNibbleInteger = new Uint8Array(0xff + 1);
for (let i = 0; i < charCodeToNibbleInteger.length; i++)
charCodeToNibbleInteger[i] = nibbleIntegerToHexCharCode.findIndex(v => v == i);
function hexStringToUInt8Array(input: string) {
const encodedInput = new TextEncoder().encode(input);
const output = new Uint8Array(encodedInput.length / 2);
for (let i = 0; i < output.length; i++) {
const upper = charCodeToNibbleInteger[encodedInput[i * 2 + 0]] << 4;
const lower = charCodeToNibbleInteger[encodedInput[i * 2 + 1]];
output[i] = upper + lower;
}
return output;
}
The output of the hex function the nodeEncoder function and the uint8ArrayToHexString function are identical but the time to compute them differs.
For 22 MB of UInt8Array:
nodeEncoder takes 70 ms
uint8ArrayToHexString 280 ms
hex takes 1400 ms
There might also be a stark difference in the amount of memory used.
I've asked the question Transform patterns of code points in a binary 1 hour ago: I needed to convert sets like [$a-z] into a binary like this:
01 24 // $
00 // interval between 2 code points
61 00 // a
7a 00 // z
I get sets like [$a-z] from the UnicodeSet site. It just requires you to input a pattern and generate a code point set.
I've rewritten a bit of my simple, but non-trivial, UnicodeSet to binary set converter. Now, instead of reading real code points, I read their escaped form \u by enabling the Escape option on the UnicodeSet site. I did this because the browser looks to strip some characters from the returned set.
However my final output for the set returned by the pattern [:age=5.0:]&[[:gc=L:][:gc=Nl:][:gc=Mn:][:gc=Mc:][:gc=Nd:][:gc=Pc:]\$_] after converting it to binary by myself looks to have wrong surrogates.
My function for reading and skipping an individual code point in the input set is nextCodePoint:
function nextCodePoint()
{
u_ch = input.charCodeAt(inputOffset);
__escaped__ = false;
// Handle escape
if (u_ch === 0x5C)
{
__escaped__ = true;
u_ch = input.charCodeAt(inputOffset + 1);
// Handle \u
if (u_ch === 0x75)
{
inputOffset += 2;
// Skip the left XXXX base
u_start = inputOffset;
inputOffset += 4;
// Skip the right XXXX base (limited for messy patterns)
if (input.charCodeAt(inputOffset) !== 0x5C)
inputOffset += 4;
return parseInt(input.slice(u_start, inputOffset), 16);
}
}
++inputOffset;
return u_ch;
}
Any ideas?
My UTF-16 encoding was correct, however the issue was that I did look for \u escapes, but nor for \U escapes. The UnicodeSet site returns \uXXXX or \UXXXXXXXX in some parts.
Here:
function nextCodePoint()
{
u_ch = input.charCodeAt(inputOffset);
__escaped__ = false;
// Handle escape
if (u_ch === 0x5C)
{
__escaped__ = true;
u_ch = input.charCodeAt(inputOffset + 1);
u_upper = (u_ch === 0x55);
// Handle \u
if (u_upper || (u_ch === 0x75))
{
inputOffset += 2;
// Skip the left XXXX base
u_start = inputOffset;
inputOffset += 4;
// Skip the right XXXX base
if (u_upper) inputOffset += 4;
return parseInt(input.slice(u_start, inputOffset), 16);
}
}
++inputOffset;
return u_ch;
}
I have a byte array of the form [4,-101,122,-41,-30,23,-28,3,..] which I want to convert in the form 6d69f597b217fa333246c2c8
I'm using below function
function toHexString(bytes) {
return bytes.map(function(byte) {
return (byte & 0xFF).toString(16)
}).join('')
}
which is giving me a string of the same form but I suspect that it's not an efficient conversion because the hex string is bit shorter than expected. I think translating should get "0a10a6dc".
Please tell me if I'm wrong or is this a right conversion but maybe I'm not using the right byte array
byte array 4,-127,45,126,58,-104,41,-27,-43,27,-35,100,-50,-77,93,-16,96,105,-101,-63,48,-105,49,-67,110,111,26,84,67,-89,-7,-50,10,-12,56,47,-49,-42,-11,-8,-96,-117,-78,97,-105,9,-62,-44,-97,-73,113,96,23,112,-14,-62,103,-104,90,-14,117,78,31,-116,-7
Corresponding conversion 4812d7e3a9829e5d51bdd64ceb35df060699bc1309731bd6e6f1a5443a7f9ceaf4382fcfd6f5f8a08bb261979c2d49fb771601770f2c267985af2754e1f8cf9
You are missing the padding in the hex conversion. You'll want to use
function toHexString(byteArray) {
return Array.from(byteArray, function(byte) {
return ('0' + (byte & 0xFF).toString(16)).slice(-2);
}).join('')
}
so that each byte transforms to exactly two hex digits. Your expected output would be 04812d7e3a9829e5d51bdd64ceb35df060699bc1309731bd6e6f1a5443a7f9ce0af4382fcfd6f5f8a08bb2619709c2d49fb771601770f2c267985af2754e1f8cf9
Using map() won't work if the input is of a type like Uint8Array: the result of map() is also Uint8Array which can't hold the results of string conversion.
function toHexString(byteArray) {
var s = '0x';
byteArray.forEach(function(byte) {
s += ('0' + (byte & 0xFF).toString(16)).slice(-2);
});
return s;
}
A more concise and performant (see https://jsperf.com/byte-array-to-hex-string) alternative using Array.reduce():
function toHexString(byteArray) {
return byteArray.reduce((output, elem) =>
(output + ('0' + elem.toString(16)).slice(-2)),
'');
}
(Also without "& 0xFF" because in my opinion if an array is passed in that contains values larger than 255, the output should be messed up, so that the user can more easily see that their input was wrong.)
Since this is the first Google hit for "js byte to hex" and I needed some time to understand the function of Bergi, I rewrote the function and added some comments that made it easier for me to understand:
function byteToHex(byte) {
// convert the possibly signed byte (-128 to 127) to an unsigned byte (0 to 255).
// if you know, that you only deal with unsigned bytes (Uint8Array), you can omit this line
const unsignedByte = byte & 0xff;
// If the number can be represented with only 4 bits (0-15),
// the hexadecimal representation of this number is only one char (0-9, a-f).
if (unsignedByte < 16) {
return '0' + unsignedByte.toString(16);
} else {
return unsignedByte.toString(16);
}
}
// bytes is an typed array (Int8Array or Uint8Array)
function toHexString(bytes) {
// Since the .map() method is not available for typed arrays,
// we will convert the typed array to an array using Array.from().
return Array.from(bytes)
.map(byte => byteToHex(byte))
.join('');
}
For more information about the const unsignedByte = byte & 0xff-part, check What does AND 0xFF do?.
Array.from is not available in every browser (e.g. not in IE11), check How to convert a JavaScript Typed Array into a JavaScript Array for more information
The OP forgot to add the leading 0 for numbers that can be displayed with only 4 bits.
All of the previous solutions work but they all require the creation of many strings and concatenation and slicing of the created strings. I got thinking there has to be a better way to go about it now that there are typed arrays. I originally did this using node and then commented out the lines that use Buffer and changed them to TypedArrays so it would work in a browser too.
It's more code but it's significantly faster, at least in the quick jsperf (no longer working) I put together. The string manipulation version in the accepted answer performed 37000 ops/sec while the code below managed 317000 ops/sec. There is a lot of hidden overhead in creating string objects.
function toHexString (byteArray) {
//const chars = new Buffer(byteArray.length * 2);
const chars = new Uint8Array(byteArray.length * 2);
const alpha = 'a'.charCodeAt(0) - 10;
const digit = '0'.charCodeAt(0);
let p = 0;
for (let i = 0; i < byteArray.length; i++) {
let nibble = byteArray[i] >>> 4;
chars[p++] = nibble > 9 ? nibble + alpha : nibble + digit;
nibble = byteArray[i] & 0xF;
chars[p++] = nibble > 9 ? nibble + alpha : nibble + digit;
}
//return chars.toString('utf8');
return String.fromCharCode.apply(null, chars);
}
IMHO, A simpler solution with Typescript:
const convertHashToHex = (value: TypedArray | number[]) : string => {
return value.map(v => v.toString(16).padStart(2, '0')).join('');
}
JS version:
const convertHashToHex = (value) => {
return value.map(v => v.toString(16).padStart(2, '0')).join('');
}
You need to pad the hex conversion with the appropriate number of leading zeroes.
When converting a byte array to a hex array, we have to consider how they can be signed numbers. If so, we gotta convert them to decimal numbers first. signed numbers to decimal conversion. Then, we can use the .toString(16) method to convert it to hex.
const hexArr = byteArr.map((byte) => {
if (byte < 0) {
byte = -((byte ^ 0xff) + 1); //converting 2s complement to a decimal number
}
//add padding at the start to ensure it's always 2 characters long otherwise '01' will be '1'
return byte.toString(16).padStart(2, '0');
});
This is cross-browser solution for ArrayBuffer:
function buf2hex(buffer) {
var u = new Uint8Array(buffer),
a = new Array(u.length),
i = u.length;
while (i--) // map to hex
a[i] = (u[i] < 16 ? '0' : '') + u[i].toString(16);
u = null; // free memory
return a.join('');
};
If running on Nodejs
just use Buffer.toString('base64')
crypto.randomBytes(byteLength).toString('base64')
I want a 5 character string composed of characters picked randomly from the set [a-zA-Z0-9].
What's the best way to do this with JavaScript?
I think this will work for you:
function makeid(length) {
let result = '';
const characters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';
const charactersLength = characters.length;
let counter = 0;
while (counter < length) {
result += characters.charAt(Math.floor(Math.random() * charactersLength));
counter += 1;
}
return result;
}
console.log(makeid(5));
//Can change 7 to 2 for longer results.
let r = (Math.random() + 1).toString(36).substring(7);
console.log("random", r);
Note: The above algorithm has the following weaknesses:
It will generate anywhere between 0 and 6 characters due to the fact that trailing zeros get removed when stringifying floating points.
It depends deeply on the algorithm used to stringify floating point numbers, which is horrifically complex. (See the paper "How to Print Floating-Point Numbers Accurately".)
Math.random() may produce predictable ("random-looking" but not really random) output depending on the implementation. The resulting string is not suitable when you need to guarantee uniqueness or unpredictability.
Even if it produced 6 uniformly random, unpredictable characters, you can expect to see a duplicate after generating only about 50,000 strings, due to the birthday paradox. (sqrt(36^6) = 46656)
Math.random is bad for this kind of thing
server side
Use node crypto module -
var crypto = require("crypto");
var id = crypto.randomBytes(20).toString('hex');
// "bb5dc8842ca31d4603d6aa11448d1654"
The resulting string will be twice as long as the random bytes you generate; each byte encoded to hex is 2 characters. 20 bytes will be 40 characters of hex.
client side
Use the browser's crypto module, crypto.getRandomValues -
The crypto.getRandomValues() method lets you get cryptographically strong random values. The array given as the parameter is filled with random numbers (random in its cryptographic meaning).
// dec2hex :: Integer -> String
// i.e. 0-255 -> '00'-'ff'
function dec2hex (dec) {
return dec.toString(16).padStart(2, "0")
}
// generateId :: Integer -> String
function generateId (len) {
var arr = new Uint8Array((len || 40) / 2)
window.crypto.getRandomValues(arr)
return Array.from(arr, dec2hex).join('')
}
console.log(generateId())
// "82defcf324571e70b0521d79cce2bf3fffccd69"
console.log(generateId(20))
// "c1a050a4cd1556948d41"
A step-by-step console example -
> var arr = new Uint8Array(4) # make array of 4 bytes (values 0-255)
> arr
Uint8Array(4) [ 0, 0, 0, 0 ]
> window.crypto
Crypto { subtle: SubtleCrypto }
> window.crypto.getRandomValues()
TypeError: Crypto.getRandomValues requires at least 1 argument, but only 0 were passed
> window.crypto.getRandomValues(arr)
Uint8Array(4) [ 235, 229, 94, 228 ]
For IE11 support you can use -
(window.crypto || window.msCrypto).getRandomValues(arr)
For browser coverage see https://caniuse.com/#feat=getrandomvalues
client side (old browsers)
If you must support old browsers, consider something like uuid -
const uuid = require("uuid");
const id = uuid.v4();
// "110ec58a-a0f2-4ac4-8393-c866d813b8d1"
Short, easy and reliable
Returns exactly 5 random characters, as opposed to some of the top rated answers found here.
Math.random().toString(36).slice(2, 7);
Here's an improvement on doubletap's excellent answer. The original has two drawbacks which are addressed here:
First, as others have mentioned, it has a small probability of producing short strings or even an empty string (if the random number is 0), which may break your application. Here is a solution:
(Math.random().toString(36)+'00000000000000000').slice(2, N+2)
Second, both the original and the solution above limit the string size N to 16 characters. The following will return a string of size N for any N (but note that using N > 16 will not increase the randomness or decrease the probability of collisions):
Array(N+1).join((Math.random().toString(36)+'00000000000000000').slice(2, 18)).slice(0, N)
Explanation:
Pick a random number in the range [0,1), i.e. between 0 (inclusive) and 1 (exclusive).
Convert the number to a base-36 string, i.e. using characters 0-9 and a-z.
Pad with zeros (solves the first issue).
Slice off the leading '0.' prefix and extra padding zeros.
Repeat the string enough times to have at least N characters in it (by Joining empty strings with the shorter random string used as the delimiter).
Slice exactly N characters from the string.
Further thoughts:
This solution does not use uppercase letters, but in almost all cases (no pun intended) it does not matter.
The maximum string length at N = 16 in the original answer is measured in Chrome. In Firefox it's N = 11. But as explained, the second solution is about supporting any requested string length, not about adding randomness, so it doesn't make much of a difference.
All returned strings have an equal probability of being returned, at least as far as the results returned by Math.random() are evenly distributed (this is not cryptographic-strength randomness, in any case).
Not all possible strings of size N may be returned. In the second solution this is obvious (since the smaller string is simply being duplicated), but also in the original answer this is true since in the conversion to base-36 the last few bits may not be part of the original random bits. Specifically, if you look at the result of Math.random().toString(36), you'll notice the last character is not evenly distributed. Again, in almost all cases it does not matter, but we slice the final string from the beginning rather than the end of the random string so that short strings (e.g. N=1) aren't affected.
Update:
Here are a couple other functional-style one-liners I came up with. They differ from the solution above in that:
They use an explicit arbitrary alphabet (more generic, and suitable to the original question which asked for both uppercase and lowercase letters).
All strings of length N have an equal probability of being returned (i.e. strings contain no repetitions).
They are based on a map function, rather than the toString(36) trick, which makes them more straightforward and easy to understand.
So, say your alphabet of choice is
var s = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
Then these two are equivalent to each other, so you can pick whichever is more intuitive to you:
Array(N).join().split(',').map(function() { return s.charAt(Math.floor(Math.random() * s.length)); }).join('');
and
Array.apply(null, Array(N)).map(function() { return s.charAt(Math.floor(Math.random() * s.length)); }).join('');
Edit:
I seems like qubyte and Martijn de Milliano came up with solutions similar to the latter (kudos!), which I somehow missed. Since they don't look as short at a glance, I'll leave it here anyway in case someone really wants a one-liner :-)
Also, replaced 'new Array' with 'Array' in all solutions to shave off a few more bytes.
The most compact solution, because slice is shorter than substring. Subtracting from the end of the string allows to avoid floating point symbol generated by the random function:
Math.random().toString(36).slice(-5);
or even
(+new Date).toString(36).slice(-5);
Update: Added one more approach using btoa method:
btoa(Math.random()).slice(0, 5);
btoa(+new Date).slice(-7, -2);
btoa(+new Date).substr(-7, 5);
// Using Math.random and Base 36:
console.log(Math.random().toString(36).slice(-5));
// Using new Date and Base 36:
console.log((+new Date).toString(36).slice(-5));
// Using Math.random and Base 64 (btoa):
console.log(btoa(Math.random()).slice(0, 5));
// Using new Date and Base 64 (btoa):
console.log(btoa(+new Date).slice(-7, -2));
console.log(btoa(+new Date).substr(-7, 5));
A newer version with es6 spread operator:
[...Array(30)].map(() => Math.random().toString(36)[2]).join('')
The 30 is an arbitrary number, you can pick any token length you want
The 36 is the maximum radix number you can pass to numeric.toString(), which means all numbers and a-z lowercase letters
The 2 is used to pick the 3rd index from the random string which looks like this: "0.mfbiohx64i", we could take any index after 0.
Something like this should work
function randomString(len, charSet) {
charSet = charSet || 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';
var randomString = '';
for (var i = 0; i < len; i++) {
var randomPoz = Math.floor(Math.random() * charSet.length);
randomString += charSet.substring(randomPoz,randomPoz+1);
}
return randomString;
}
Call with default charset [a-zA-Z0-9] or send in your own:
var randomValue = randomString(5);
var randomValue = randomString(5, 'PICKCHARSFROMTHISSET');
function randomstring(L) {
var s = '';
var randomchar = function() {
var n = Math.floor(Math.random() * 62);
if (n < 10) return n; //1-10
if (n < 36) return String.fromCharCode(n + 55); //A-Z
return String.fromCharCode(n + 61); //a-z
}
while (s.length < L) s += randomchar();
return s;
}
console.log(randomstring(5));
Random String Generator (Alpha-Numeric | Alpha | Numeric)
/**
* Pseudo-random string generator
* http://stackoverflow.com/a/27872144/383904
* Default: return a random alpha-numeric string
*
* #param {Integer} len Desired length
* #param {String} an Optional (alphanumeric), "a" (alpha), "n" (numeric)
* #return {String}
*/
function randomString(len, an) {
an = an && an.toLowerCase();
var str = "",
i = 0,
min = an == "a" ? 10 : 0,
max = an == "n" ? 10 : 62;
for (; i++ < len;) {
var r = Math.random() * (max - min) + min << 0;
str += String.fromCharCode(r += r > 9 ? r < 36 ? 55 : 61 : 48);
}
return str;
}
console.log(randomString(10)); // i.e: "4Z8iNQag9v"
console.log(randomString(10, "a")); // i.e: "aUkZuHNcWw"
console.log(randomString(10, "n")); // i.e: "9055739230"
While the above uses additional checks for the desired A/N, A, N output,
let's break it down the to the essentials (Alpha-Numeric only) for a better understanding:
Create a function that accepts an argument (desired length of the random String result)
Create an empty string like var str = ""; to concatenate random characters
Inside a loop create a rand index number from 0 to 61 (0..9+A..Z+a..z = 62)
Create a conditional logic to Adjust/fix rand (since it's 0..61) incrementing it by some number (see examples below) to get back the right CharCode number and the related Character.
Inside the loop concatenate to str a String.fromCharCode( incremented rand )
Let's picture the ASCII Character table ranges:
_____0....9______A..........Z______a..........z___________ Character
| 10 | | 26 | | 26 | Tot = 62 characters
48....57 65..........90 97..........122 CharCode ranges
Math.floor( Math.random * 62 ) gives a range from 0..61 (what we need).
Let's fix the random to get the correct charCode ranges:
| rand | charCode | (0..61)rand += fix = charCode ranges |
------+----------+----------+--------------------------------+-----------------+
0..9 | 0..9 | 48..57 | rand += 48 = 48..57 |
A..Z | 10..35 | 65..90 | rand += 55 /* 90-35 = 55 */ = 65..90 |
a..z | 36..61 | 97..122 | rand += 61 /* 122-61 = 61 */ = 97..122 |
The conditional operation logic from the table above:
rand += rand>9 ? ( rand<36 ? 55 : 61 ) : 48 ;
// rand += true ? ( true ? 55 else 61 ) else 48 ;
From the explanation above, here's the resulting alpha-numeric snippet:
function randomString(len) {
var str = ""; // String result
for (var i = 0; i < len; i++) { // Loop `len` times
var rand = Math.floor(Math.random() * 62); // random: 0..61
var charCode = rand += rand > 9 ? (rand < 36 ? 55 : 61) : 48; // Get correct charCode
str += String.fromCharCode(charCode); // add Character to str
}
return str; // After all loops are done, return the concatenated string
}
console.log(randomString(10)); // i.e: "7GL9F0ne6t"
Or if you will:
const randomString = (n, r='') => {
while (n--) r += String.fromCharCode((r=Math.random()*62|0, r+=r>9?(r<36?55:61):48));
return r;
};
console.log(randomString(10))
To meet requirement [a-zA-Z0-9] and length of 5 characters, use
For Browser:
btoa(Math.random().toString()).substring(10,15);
For NodeJS:
Buffer.from(Math.random().toString()).toString("base64").substring(10,15);
Lowercase letters, uppercase letters, and numbers will occur.
(it's typescript compatible)
The simplest way is:
(new Date%9e6).toString(36)
This generate random strings of 5 characters based on the current time. Example output is 4mtxj or 4mv90 or 4mwp1
The problem with this is that if you call it two times on the same second, it will generate the same string.
The safer way is:
(0|Math.random()*9e6).toString(36)
This will generate a random string of 4 or 5 characters, always diferent. Example output is like 30jzm or 1r591 or 4su1a
In both ways the first part generate a random number. The .toString(36) part cast the number to a base36 (alphadecimal) representation of it.
Here are some easy one liners. Change new Array(5) to set the length.
Including 0-9a-z
new Array(5).join().replace(/(.|$)/g, function(){return ((Math.random()*36)|0).toString(36);})
Including 0-9a-zA-Z
new Array(5).join().replace(/(.|$)/g, function(){return ((Math.random()*36)|0).toString(36)[Math.random()<.5?"toString":"toUpperCase"]();});
Codegolfed for ES6 (0-9a-z)
Array(5).fill().map(n=>(Math.random()*36|0).toString(36)).join('')
I know everyone has got it right already, but i felt like having a go at this one in the most lightweight way possible(light on code, not CPU):
function rand(length, current) {
current = current ? current : '';
return length ? rand(--length, "0123456789ABCDEFGHIJKLMNOPQRSTUVWXTZabcdefghiklmnopqrstuvwxyz".charAt(Math.floor(Math.random() * 60)) + current) : current;
}
console.log(rand(5));
It takes a bit of time to wrap your head around, but I think it really shows how awesome javascript's syntax is.
Generate a secure random alphanumeric Base-62 string:
function generateUID(length)
{
return window.btoa(String.fromCharCode(...window.crypto.getRandomValues(new Uint8Array(length * 2)))).replace(/[+/]/g, "").substring(0, length);
}
console.log(generateUID(22)); // "yFg3Upv2cE9cKOXd7hHwWp"
console.log(generateUID(5)); // "YQGzP"
There is no best way to do this. You can do it any way you prefer, as long as the result suits your requirements. To illustrate, I've created many different examples, all which should provide the same end-result
Most other answers on this page ignore the upper-case character requirement.
Here is my fastest solution and most readable. It basically does the same as the accepted solution, except it is a bit faster.
function readableRandomStringMaker(length) {
for (var s=''; s.length < length; s += 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'.charAt(Math.random()*62|0));
return s;
}
console.log(readableRandomStringMaker(length));
// e3cbN
Here is a compact, recursive version which is much less readable:
const compactRandomStringMaker = (length) => length-- && "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789".charAt(Math.random()*62|0) + (compactRandomStringMaker(length)||"");
console.log(compactRandomStringMaker(5));
// DVudj
A more compact one-liner:
Array(5).fill().map(()=>"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789".charAt(Math.random()*62)).join("")
// 12oEZ
A variation of the above:
" ".replaceAll(" ",()=>"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789".charAt(Math.random()*62))
The most compact one-liner, but inefficient and unreadable - it adds random characters and removes illegal characters until length is l:
((l,f=(p='')=>p.length<l?f(p+String.fromCharCode(Math.random()*123).replace(/[^a-z0-9]/i,'')):p)=>f())(5)
A cryptographically secure version, which is wasting entropy for compactness, and is a waste regardless because the generated string is so short:
[...crypto.getRandomValues(new Uint8Array(999))].map((c)=>String.fromCharCode(c).replace(/[^a-z0-9]/i,'')).join("").substr(0,5)
// 8fzPq
Or, without the length-argument it is even shorter:
((f=(p='')=>p.length<5?f(p+String.fromCharCode(Math.random()*123).replace(/[^a-z0-9]/i,'')):p)=>f())()
// EV6c9
Then a bit more challenging - using a nameless recursive arrow function:
((l,s=((l)=>l--&&"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789".charAt(Math.random()*62|0)+(s(l)||""))) => s(l))(5);
// qzal4
This is a "magic" variable which provides a random character every time you access it:
const c = new class { [Symbol.toPrimitive]() { return "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789".charAt(Math.random()*62|0) } };
console.log(c+c+c+c+c);
// AgMnz
A simpler variant of the above:
const c=()=>"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789".charAt(Math.random()*62|0);
c()+c()+c()+c()+c();
// 6Qadw
In case anyone is interested in a one-liner (although not formatted as such for your convenience) that allocates the memory at once (but note that for small strings it really does not matter) here is how to do it:
Array.apply(0, Array(5)).map(function() {
return (function(charset){
return charset.charAt(Math.floor(Math.random() * charset.length))
}('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'));
}).join('')
You can replace 5 by the length of the string you want. Thanks to #AriyaHidayat in this post for the solution to the map function not working on the sparse array created by Array(5).
If you are using Lodash or Underscore, then it so simple:
var randomVal = _.sample('ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789', 5).join('');
const c = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'
const s = [...Array(5)].map(_ => c[~~(Math.random()*c.length)]).join('')
Here's the method I created.
It will create a string containing both uppercase and lowercase characters.
In addition I've included the function that will created an alphanumeric string too.
Working examples:
http://jsfiddle.net/greatbigmassive/vhsxs/ (alpha only)
http://jsfiddle.net/greatbigmassive/PJwg8/ (alphanumeric)
function randString(x){
var s = "";
while(s.length<x&&x>0){
var r = Math.random();
s+= String.fromCharCode(Math.floor(r*26) + (r>0.5?97:65));
}
return s;
}
Upgrade July 2015
This does the same thing but makes more sense and includes all letters.
var s = "";
while(s.length<x&&x>0){
v = Math.random()<0.5?32:0;
s += String.fromCharCode(Math.round(Math.random()*((122-v)-(97-v))+(97-v)));
}
One liner:
Array(15).fill(null).map(() => Math.random().toString(36).substr(2)).join('')
// Outputs: 0h61cbpw96y83qtnunwme5lxk1i70a6o5r5lckfcyh1dl9fffydcfxddd69ada9tu9jvqdx864xj1ul3wtfztmh2oz2vs3mv6ej0fe58ho1cftkjcuyl2lfkmxlwua83ibotxqc4guyuvrvtf60naob26t6swzpil
Improved #Andrew's answer above :
Array.from({ length : 1 }, () => Math.random().toString(36)[2]).join('');
Base 36 conversion of the random number is inconsistent, so selecting a single indice fixes that. You can change the length for a string with the exact length desired.
Assuming you use underscorejs it's possible to elegantly generate random string in just two lines:
var possible = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';
var random = _.sample(possible, 5).join('');
function randomString (strLength, charSet) {
var result = [];
strLength = strLength || 5;
charSet = charSet || 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';
while (strLength--) { // (note, fixed typo)
result.push(charSet.charAt(Math.floor(Math.random() * charSet.length)));
}
return result.join('');
}
This is as clean as it will get. It is fast too, http://jsperf.com/ay-random-string.
Fast and improved algorithm. Does not guarantee uniform (see comments).
function getRandomId(length) {
if (!length) {
return '';
}
const possible =
'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';
let array;
if ('Uint8Array' in self && 'crypto' in self && length <= 65536) {
array = new Uint8Array(length);
self.crypto.getRandomValues(array);
} else {
array = new Array(length);
for (let i = 0; i < length; i++) {
array[i] = Math.floor(Math.random() * 62);
}
}
let result = '';
for (let i = 0; i < length; i++) {
result += possible.charAt(array[i] % 62);
}
return result;
}
How about this compact little trick?
var possible = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';
var stringLength = 5;
function pickRandom() {
return possible[Math.floor(Math.random() * possible.length)];
}
var randomString = Array.apply(null, Array(stringLength)).map(pickRandom).join('');
You need the Array.apply there to trick the empty array into being an array of undefineds.
If you're coding for ES2015, then building the array is a little simpler:
var randomString = Array.from({ length: stringLength }, pickRandom).join('');
You can loop through an array of items and recursively add them to a string variable, for instance if you wanted a random DNA sequence:
function randomDNA(len) {
len = len || 100
var nuc = new Array("A", "T", "C", "G")
var i = 0
var n = 0
s = ''
while (i <= len - 1) {
n = Math.floor(Math.random() * 4)
s += nuc[n]
i++
}
return s
}
console.log(randomDNA(5));
Case Insensitive Alphanumeric Chars:
function randStr(len) {
let s = '';
while (s.length < len) s += Math.random().toString(36).substr(2, len - s.length);
return s;
}
// usage
console.log(randStr(50));
The benefit of this function is that you can get different length random string and it ensures the length of the string.
Case Sensitive All Chars:
function randStr(len) {
let s = '';
while (len--) s += String.fromCodePoint(Math.floor(Math.random() * (126 - 33) + 33));
return s;
}
// usage
console.log(randStr(50));
Custom Chars
function randStr(len, chars='abc123') {
let s = '';
while (len--) s += chars[Math.floor(Math.random() * chars.length)];
return s;
}
// usage
console.log(randStr(50));
console.log(randStr(50, 'abc'));
console.log(randStr(50, 'aab')); // more a than b
The problem with responses to "I need random strings" questions (in whatever language) is practically every solution uses a flawed primary specification of string length. The questions themselves rarely reveal why the random strings are needed, but I would challenge you rarely need random strings of length, say 8. What you invariably need is some number of unique strings, for example, to use as identifiers for some purpose.
There are two leading ways to get strictly unique strings: deterministically (which is not random) and store/compare (which is onerous). What do we do? We give up the ghost. We go with probabilistic uniqueness instead. That is, we accept that there is some (however small) risk that our strings won't be unique. This is where understanding collision probability and entropy are helpful.
So I'll rephrase the invariable need as needing some number of strings with a small risk of repeat. As a concrete example, let's say you want to generate a potential of 5 million IDs. You don't want to store and compare each new string, and you want them to be random, so you accept some risk of repeat. As example, let's say a risk of less than 1 in a trillion chance of repeat. So what length of string do you need? Well, that question is underspecified as it depends on the characters used. But more importantly, it's misguided. What you need is a specification of the entropy of the strings, not their length. Entropy can be directly related to the probability of a repeat in some number of strings. String length can't.
And this is where a library like EntropyString can help. To generate random IDs that have less than 1 in a trillion chance of repeat in 5 million strings using entropy-string:
import {Random, Entropy} from 'entropy-string'
const random = new Random()
const bits = Entropy.bits(5e6, 1e12)
const string = random.string(bits)
"44hTNghjNHGGRHqH9"
entropy-string uses a character set with 32 characters by default. There are other predefined characters sets, and you can specify your own characters as well. For example, generating IDs with the same entropy as above but using hex characters:
import {Random, Entropy, charSet16} from './entropy-string'
const random = new Random(charSet16)
const bits = Entropy.bits(5e6, 1e12)
const string = random.string(bits)
"27b33372ade513715481f"
Note the difference in string length due to the difference in total number of characters in the character set used. The risk of repeat in the specified number of potential strings is the same. The string lengths are not. And best of all, the risk of repeat and the potential number of strings is explicit. No more guessing with string length.
One-liner using map that gives you full control on the length and characters.
const rnd = (len, chars='ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789') => [...Array(len)].map(() => chars.charAt(Math.floor(Math.random() * chars.length))).join('')
console.log(rnd(12))