My CSV data looks like this:
heading1,heading2,heading3,heading4,heading5
value1_1,value2_1,value3_1,value4_1,value5_1
value1_2,value2_2,value3_2,value4_2,value5_2
...
How do you read this data and convert to an array like this using JavaScript?:
[
heading1: value1_1,
heading2: value2_1,
heading3: value3_1,
heading4: value4_1
heading5: value5_1
],[
heading1: value1_2,
heading2: value2_2,
heading3: value3_2,
heading4: value4_2,
heading5: value5_2
]
....
I've tried this code but no luck!:
<script type="text/javascript">
var allText =[];
var allTextLines = [];
var Lines = [];
var txtFile = new XMLHttpRequest();
txtFile.open("GET", "file://d:/data.txt", true);
txtFile.onreadystatechange = function()
{
allText = txtFile.responseText;
allTextLines = allText.split(/\r\n|\n/);
};
document.write(allTextLines);
document.write(allText);
document.write(txtFile);
</script>
No need to write your own...
The jQuery-CSV library has a function called $.csv.toObjects(csv) that does the mapping automatically.
Note: The library is designed to handle any CSV data that is RFC 4180 compliant, including all of the nasty edge cases that most 'simple' solutions overlook.
Like #Blazemonger already stated, first you need to add line breaks to make the data valid CSV.
Using the following dataset:
heading1,heading2,heading3,heading4,heading5
value1_1,value2_1,value3_1,value4_1,value5_1
value1_2,value2_2,value3_2,value4_2,value5_2
Use the code:
var data = $.csv.toObjects(csv):
The output saved in 'data' will be:
[
{ heading1:"value1_1",heading2:"value2_1",heading3:"value3_1",heading4:"value4_1",heading5:"value5_1" }
{ heading1:"value1_2",heading2:"value2_2",heading3:"value3_2",heading4:"value4_2",heading5:"value5_2" }
]
Note: Technically, the way you wrote the key-value mapping is invalid JavaScript. The objects containing the key-value pairs should be wrapped in brackets.
If you want to try it out for yourself, I suggest you take a look at the Basic Usage Demonstration under the 'toObjects()' tab.
Disclaimer: I'm the original author of jQuery-CSV.
Update:
Edited to use the dataset that the op provided and included a link to the demo where the data can be tested for validity.
Update2:
Due to the shuttering of Google Code. jquery-csv has moved to GitHub
NOTE: I concocted this solution before I was reminded about all the "special cases" that can occur in a valid CSV file, like escaped quotes. I'm leaving my answer for those who want something quick and dirty, but I recommend Evan's answer for accuracy.
This code will work when your data.txt file is one long string of comma-separated entries, with no newlines:
data.txt:
heading1,heading2,heading3,heading4,heading5,value1_1,...,value5_2
javascript:
$(document).ready(function() {
$.ajax({
type: "GET",
url: "data.txt",
dataType: "text",
success: function(data) {processData(data);}
});
});
function processData(allText) {
var record_num = 5; // or however many elements there are in each row
var allTextLines = allText.split(/\r\n|\n/);
var entries = allTextLines[0].split(',');
var lines = [];
var headings = entries.splice(0,record_num);
while (entries.length>0) {
var tarr = [];
for (var j=0; j<record_num; j++) {
tarr.push(headings[j]+":"+entries.shift());
}
lines.push(tarr);
}
// alert(lines);
}
The following code will work on a "true" CSV file with linebreaks between each set of records:
data.txt:
heading1,heading2,heading3,heading4,heading5
value1_1,value2_1,value3_1,value4_1,value5_1
value1_2,value2_2,value3_2,value4_2,value5_2
javascript:
$(document).ready(function() {
$.ajax({
type: "GET",
url: "data.txt",
dataType: "text",
success: function(data) {processData(data);}
});
});
function processData(allText) {
var allTextLines = allText.split(/\r\n|\n/);
var headers = allTextLines[0].split(',');
var lines = [];
for (var i=1; i<allTextLines.length; i++) {
var data = allTextLines[i].split(',');
if (data.length == headers.length) {
var tarr = [];
for (var j=0; j<headers.length; j++) {
tarr.push(headers[j]+":"+data[j]);
}
lines.push(tarr);
}
}
// alert(lines);
}
http://jsfiddle.net/mblase75/dcqxr/
Don't split on commas -- it won't work for most CSV files, and this question has wayyyy too many views for the asker's kind of input data to apply to everyone. Parsing CSV is kind of scary since there's no truly official standard, and lots of delimited text writers don't consider edge cases.
This question is old, but I believe there's a better solution now that Papa Parse is available. It's a library I wrote, with help from contributors, that parses CSV text or files. It's the only JS library I know of that supports files gigabytes in size. It also handles malformed input gracefully.
1 GB file parsed in 1 minute:
(Update: With Papa Parse 4, the same file took only about 30 seconds in Firefox. Papa Parse 4 is now the fastest known CSV parser for the browser.)
Parsing text is very easy:
var data = Papa.parse(csvString);
Parsing files is also easy:
Papa.parse(file, {
complete: function(results) {
console.log(results);
}
});
Streaming files is similar (here's an example that streams a remote file):
Papa.parse("http://example.com/bigfoo.csv", {
download: true,
step: function(row) {
console.log("Row:", row.data);
},
complete: function() {
console.log("All done!");
}
});
If your web page locks up during parsing, Papa can use web workers to keep your web site reactive.
Papa can auto-detect delimiters and match values up with header columns, if a header row is present. It can also turn numeric values into actual number types. It appropriately parses line breaks and quotes and other weird situations, and even handles malformed input as robustly as possible. I've drawn on inspiration from existing libraries to make Papa, so props to other JS implementations.
I am using d3.js for parsing csv file. Very easy to use.
Here is the docs.
Steps:
npm install d3-request
Using Es6;
import { csv } from 'd3-request';
import url from 'path/to/data.csv';
csv(url, function(err, data) {
console.log(data);
})
Please see docs for more.
Update -
d3-request is deprecated. you can use d3-fetch
Here's a JavaScript function that parses CSV data, accounting for commas found inside quotes.
// Parse a CSV row, accounting for commas inside quotes
function parse(row){
var insideQuote = false,
entries = [],
entry = [];
row.split('').forEach(function (character) {
if(character === '"') {
insideQuote = !insideQuote;
} else {
if(character == "," && !insideQuote) {
entries.push(entry.join(''));
entry = [];
} else {
entry.push(character);
}
}
});
entries.push(entry.join(''));
return entries;
}
Example use of the function to parse a CSV file that looks like this:
"foo, the column",bar
2,3
"4, the value",5
into arrays:
// csv could contain the content read from a csv file
var csv = '"foo, the column",bar\n2,3\n"4, the value",5',
// Split the input into lines
lines = csv.split('\n'),
// Extract column names from the first line
columnNamesLine = lines[0],
columnNames = parse(columnNamesLine),
// Extract data from subsequent lines
dataLines = lines.slice(1),
data = dataLines.map(parse);
// Prints ["foo, the column","bar"]
console.log(JSON.stringify(columnNames));
// Prints [["2","3"],["4, the value","5"]]
console.log(JSON.stringify(data));
Here's how you can transform the data into objects, like D3's csv parser (which is a solid third party solution):
var dataObjects = data.map(function (arr) {
var dataObject = {};
columnNames.forEach(function(columnName, i){
dataObject[columnName] = arr[i];
});
return dataObject;
});
// Prints [{"foo":"2","bar":"3"},{"foo":"4","bar":"5"}]
console.log(JSON.stringify(dataObjects));
Here's a working fiddle of this code.
Enjoy! --Curran
You can use PapaParse to help.
https://www.papaparse.com/
Here is a CodePen.
https://codepen.io/sandro-wiggers/pen/VxrxNJ
Papa.parse(e, {
header:true,
before: function(file, inputElem){ console.log('Attempting to Parse...')},
error: function(err, file, inputElem, reason){ console.log(err); },
complete: function(results, file){ $.PAYLOAD = results; }
});
If you want to solve this without using Ajax, use the FileReader() Web API.
Example implementation:
Select .csv file
See output
function readSingleFile(e) {
var file = e.target.files[0];
if (!file) {
return;
}
var reader = new FileReader();
reader.onload = function(e) {
var contents = e.target.result;
displayContents(contents);
displayParsed(contents);
};
reader.readAsText(file);
}
function displayContents(contents) {
var element = document.getElementById('file-content');
element.textContent = contents;
}
function displayParsed(contents) {
const element = document.getElementById('file-parsed');
const json = contents.split(',');
element.textContent = JSON.stringify(json);
}
document.getElementById('file-input').addEventListener('change', readSingleFile, false);
<input type="file" id="file-input" />
<h3>Raw contents of the file:</h3>
<pre id="file-content">No data yet.</pre>
<h3>Parsed file contents:</h3>
<pre id="file-parsed">No data yet.</pre>
function CSVParse(csvFile)
{
this.rows = [];
var fieldRegEx = new RegExp('(?:\s*"((?:""|[^"])*)"\s*|\s*((?:""|[^",\r\n])*(?:""|[^"\s,\r\n]))?\s*)(,|[\r\n]+|$)', "g");
var row = [];
var currMatch = null;
while (currMatch = fieldRegEx.exec(this.csvFile))
{
row.push([currMatch[1], currMatch[2]].join('')); // concatenate with potential nulls
if (currMatch[3] != ',')
{
this.rows.push(row);
row = [];
}
if (currMatch[3].length == 0)
break;
}
}
I like to have the regex do as much as possible. This regex treats all items as either quoted or unquoted, followed by either a column delimiter, or a row delimiter. Or the end of text.
Which is why that last condition -- without it it would be an infinite loop since the pattern can match a zero length field (totally valid in csv). But since $ is a zero length assertion, it won't progress to a non match and end the loop.
And FYI, I had to make the second alternative exclude quotes surrounding the value; seems like it was executing before the first alternative on my javascript engine and considering the quotes as part of the unquoted value. I won't ask -- just got it to work.
Per the accepted answer,
I got this to work by changing the 1 to a 0 here:
for (var i=1; i<allTextLines.length; i++) {
changed to
for (var i=0; i<allTextLines.length; i++) {
It will compute the a file with one continuous line as having an allTextLines.length of 1. So if the loop starts at 1 and runs as long as it's less than 1, it never runs. Hence the blank alert box.
$(function() {
$("#upload").bind("click", function() {
var regex = /^([a-zA-Z0-9\s_\\.\-:])+(.csv|.xlsx)$/;
if (regex.test($("#fileUpload").val().toLowerCase())) {
if (typeof(FileReader) != "undefined") {
var reader = new FileReader();
reader.onload = function(e) {
var customers = new Array();
var rows = e.target.result.split("\r\n");
for (var i = 0; i < rows.length - 1; i++) {
var cells = rows[i].split(",");
if (cells[0] == "" || cells[0] == undefined) {
var s = customers[customers.length - 1];
s.Ord.push(cells[2]);
} else {
var dt = customers.find(x => x.Number === cells[0]);
if (dt == undefined) {
if (cells.length > 1) {
var customer = {};
customer.Number = cells[0];
customer.Name = cells[1];
customer.Ord = new Array();
customer.Ord.push(cells[2]);
customer.Point_ID = cells[3];
customer.Point_Name = cells[4];
customer.Point_Type = cells[5];
customer.Set_ORD = cells[6];
customers.push(customer);
}
} else {
var dtt = dt;
dtt.Ord.push(cells[2]);
}
}
}
Actually you can use a light-weight library called any-text.
install dependencies
npm i -D any-text
use custom command to read files
var reader = require('any-text');
reader.getText(`path-to-file`).then(function (data) {
console.log(data);
});
or use async-await :
var reader = require('any-text');
const chai = require('chai');
const expect = chai.expect;
describe('file reader checks', () => {
it('check csv file content', async () => {
expect(
await reader.getText(`${process.cwd()}/test/files/dummy.csv`)
).to.contains('Lorem ipsum');
});
});
This is an old question and in 2022 there are many ways to achieve this. First, I think D3 is one of the best alternatives for data manipulation. It's open sourced and free to use, but also it's modular so we can import just the fetch module.
Here is a basic example. We will use the legacy mode so I will import the entire D3 library. Now, let's call d3.csv function and it's done. This function internally calls the fetch method therefore, it can open dataURL, url, files, blob, and so on.
const fileInput = document.getElementById('csv')
const outElement = document.getElementById('out')
const previewCSVData = async dataurl => {
const d = await d3.csv(dataurl)
console.log({
d
})
outElement.textContent = d.columns
}
const readFile = e => {
const file = fileInput.files[0]
const reader = new FileReader()
reader.onload = () => {
const dataUrl = reader.result;
previewCSVData(dataUrl)
}
reader.readAsDataURL(file)
}
fileInput.onchange = readFile
<script type="text/javascript" src="https://unpkg.com/d3#7.6.1/dist/d3.min.js"></script>
<div>
<p>Select local CSV File:</p>
<input id="csv" type="file" accept=".csv">
</div>
<pre id="out"><p>File headers will appear here</p></pre>
If we don't want to use any library and we just want to use pain JavaScrip (Vanilla JS) and we managed to get the text content of a file as data and we don't want to use d3 we can implement a simple function that will split the data into a text array then we will extract the first line and split into a headers array and the rest of the text will be the lines we will process. After, we map each line and extract its values and create a row object from an array created from mapping each header to its correspondent value from values[index].
NOTE:
We also we going to use a little trick array objects in JavaScript can also have attributes. Yes so we will define an attribute rows.headers and assign the headers to it.
const data = `heading_1,heading_2,heading_3,heading_4,heading_5
value_1_1,value_2_1,value_3_1,value_4_1,value_5_1
value_1_2,value_2_2,value_3_2,value_4_2,value_5_2
value_1_3,value_2_3,value_3_3,value_4_3,value_5_3`
const csvParser = data => {
const text = data.split(/\r\n|\n/)
const [first, ...lines] = text
const headers = first.split(',')
const rows = []
rows.headers = headers
lines.map(line => {
const values = line.split(',')
const row = Object.fromEntries(headers.map((header, i) => [header, values[i]]))
rows.push(row)
})
return rows
}
const d = csvParser(data)
// Accessing to the theaders attribute
const headers = d.headers
console.log({headers})
console.log({d})
Finally, let's implement a vanilla JS file loader using fetch and parsing the csv file.
const fetchFile = async dataURL => {
return await fetch(dataURL).then(response => response.text())
}
const csvParser = data => {
const text = data.split(/\r\n|\n/)
const [first, ...lines] = text
const headers = first.split(',')
const rows = []
rows.headers = headers
lines.map(line => {
const values = line.split(',')
const row = Object.fromEntries(headers.map((header, i) => [header, values[i]]))
rows.push(row)
})
return rows
}
const fileInput = document.getElementById('csv')
const outElement = document.getElementById('out')
const previewCSVData = async dataURL => {
const data = await fetchFile(dataURL)
const d = csvParser(data)
console.log({ d })
outElement.textContent = d.headers
}
const readFile = e => {
const file = fileInput.files[0]
const reader = new FileReader()
reader.onload = () => {
const dataURL = reader.result;
previewCSVData(dataURL)
}
reader.readAsDataURL(file)
}
fileInput.onchange = readFile
<script type="text/javascript" src="https://unpkg.com/d3#7.6.1/dist/d3.min.js"></script>
<div>
<p>Select local CSV File:</p>
<input id="csv" type="file" accept=".csv">
</div>
<pre id="out"><p>File contents will appear here</p></pre>
I used this file to test it
Here is another way to read an external CSV into Javascript (using jQuery).
It's a little bit more long winded, but I feel by reading the data into arrays you can exactly follow the process and makes for easy troubleshooting.
Might help someone else.
The data file example:
Time,data1,data2,data2
08/11/2015 07:30:16,602,0.009,321
And here is the code:
$(document).ready(function() {
// AJAX in the data file
$.ajax({
type: "GET",
url: "data.csv",
dataType: "text",
success: function(data) {processData(data);}
});
// Let's process the data from the data file
function processData(data) {
var lines = data.split(/\r\n|\n/);
//Set up the data arrays
var time = [];
var data1 = [];
var data2 = [];
var data3 = [];
var headings = lines[0].split(','); // Splice up the first row to get the headings
for (var j=1; j<lines.length; j++) {
var values = lines[j].split(','); // Split up the comma seperated values
// We read the key,1st, 2nd and 3rd rows
time.push(values[0]); // Read in as string
// Recommended to read in as float, since we'll be doing some operations on this later.
data1.push(parseFloat(values[1]));
data2.push(parseFloat(values[2]));
data3.push(parseFloat(values[3]));
}
// For display
var x= 0;
console.log(headings[0]+" : "+time[x]+headings[1]+" : "+data1[x]+headings[2]+" : "+data2[x]+headings[4]+" : "+data2[x]);
}
})
Hope this helps someone in the future!
A bit late but I hope it helps someone.
Some time ago even I faced a problem where the string data contained \n in between and while reading the file it used to read as different lines.
Eg.
"Harry\nPotter","21","Gryffindor"
While-Reading:
Harry
Potter,21,Gryffindor
I had used a library csvtojson in my angular project to solve this problem.
You can read the CSV file as a string using the following code and then pass that string to the csvtojson library and it will give you a list of JSON.
Sample Code:
const csv = require('csvtojson');
if (files && files.length > 0) {
const file: File = files.item(0);
const reader: FileReader = new FileReader();
reader.readAsText(file);
reader.onload = (e) => {
const csvs: string = reader.result as string;
csv({
output: "json",
noheader: false
}).fromString(csvs)
.preFileLine((fileLine, idx) => {
//Convert csv header row to lowercase before parse csv file to json
if (idx === 0) { return fileLine.toLowerCase() }
return fileLine;
})
.then((result) => {
// list of json in result
});
}
}
I use the jquery-csv to do this.
and I provide two examples as below
async function ReadFile(file) {
return await file.text()
}
function removeExtraSpace(stringData) {
stringData = stringData.replace(/,( *)/gm, ",") // remove extra space
stringData = stringData.replace(/^ *| *$/gm, "") // remove space on the beginning and end.
return stringData
}
function simpleTest() {
let data = `Name, Age, msg
foo, 25, hello world
bar, 18, "!! 🐬 !!"
`
data = removeExtraSpace(data)
console.log(data)
const options = {
separator: ",", // default "," . (You may want to Tab "\t" or somethings.
delimiter: '"', // default "
headers: true // default true
}
// const myObj = $.csv.toObjects(data, options)
const myObj = $.csv.toObjects(data) // If you want to use default options, then you can omit them.
console.log(myObj)
}
window.onload = () => {
const inputFile = document.getElementById("uploadFile")
inputFile.onchange = () => {
const inputValue = inputFile.value
if (inputValue === "") {
return
}
const selectedFile = document.getElementById('uploadFile').files[0]
const promise = new Promise(resolve => {
const fileContent = ReadFile(selectedFile)
resolve(fileContent)
})
promise.then(fileContent => {
// Use promise to wait for the file reading to finish.
console.log(fileContent)
fileContent = removeExtraSpace(fileContent)
const myObj = $.csv.toObjects(fileContent)
console.log(myObj)
})
}
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery-csv/1.0.11/jquery.csv.min.js"></script>
<label for="uploadFile">Demo 1</label>
<input type="file" id="uploadFile" accept=".csv"/>
<button onclick="simpleTest()">Demo 2</button>
With this function csvToObjs you can transform data-entries from format CSV to an array of objects.
function csvToObjs(string) {
const lines = data.split(/\r\n|\n/);
let [headings, ...entries] = lines;
headings = headings.split(',');
const objs = [];
entries.map(entry=>{
obj = entry.split(',');
objs.push(Object.fromEntries(headings.map((head, i)=>[head, obj[i]])));
})
return objs;
}
data = `heading1,heading2,heading3,heading4,heading5
value1_1,value2_1,value3_1,value4_1,value5_1
value1_2,value2_2,value3_2,value4_2,value5_2`
console.log(csvToObjs(data));
I was able to allow other users to add a new SKU to a sheet without unprotecting it (Original post). Now I am trying to do the inverse, to allow users to delete an SKU without unprotecting the sheet.
I started with the following, which works as expected:
function deleteEachRow(){
const ss = SpreadsheetApp.getActive();
var SHEET = ss.getSheetByName("Ordering");
var RANGE = SHEET.getDataRange();
const ui = SpreadsheetApp.getUi();
const response = ui.prompt('WARNING: \r\n \r\n Ensure the following sheets DO NOT contain data before proceeding: \r\n \r\n Accessory INV \r\n Apparel INV \r\n Pending TOs \r\n \r\n Enter New SKU:', ui.ButtonSet.OK_CANCEL);
if (response.getSelectedButton() === ui.Button.OK) {
const text = response.getResponseText();
var rangeVals = RANGE.getValues();
//Reverse the 'for' loop.
for(var i = rangeVals.length-1; i >= 0; i--){
if(rangeVals[i][0] === text){
SHEET.deleteRow(i+1);
};
};
};
};
I tried to Frankenstein the above code into the answer I was provided. Now the script runs without error but fails to delete the entered SKU as expected. This is the script I am running:
function deleteEachRow1(){
const ss = SpreadsheetApp.getActive();
var SHEET = ss.getSheetByName("Ordering");
var RANGE = SHEET.getDataRange();
const ui = SpreadsheetApp.getUi();
const response = ui.prompt('WARNING: \r\n \r\n Ensure the following sheets DO NOT contain data before proceeding: \r\n \r\n Accessory INV \r\n Apparel INV \r\n Pending TOs \r\n \r\n Delete Which SKU?:', ui.ButtonSet.OK_CANCEL);
if (response.getSelectedButton() === ui.Button.OK) {
const text = response.getResponseText();
const webAppsUrl = "WEB APP URL"; // Pleas set your Web Apps URL.
const url = webAppsUrl + "?text=" + text;
const res = UrlFetchApp.fetch(url, {muteHttpExceptions: true});
// ui.alert(res.getContentText()); // You can see the response value using this line.
}
}
function doGet(e) {
const text = e.parameter.text;
const sheet = SpreadsheetApp.getActive().getSheetByName('Ordering');
var rangeVals = RANGE.getValues();
//Reverse the 'for' loop.
for(var i = rangeVals.length-1; i >= 0; i--){
if(rangeVals[i][0] === text){
SHEET.deleteRow(i+1);
};
};
myFunction();
return ContentService.createTextOutput(text);
}
// This script is from https://tanaikech.github.io/2017/07/31/converting-a1notation-to-gridrange-for-google-sheets-api/
function a1notation2gridrange1(a1notation) {
var data = a1notation.match(/(^.+)!(.+):(.+$)/);
var ss = SpreadsheetApp.getActiveSpreadsheet().getSheetByName(data[1]);
var range = ss.getRange(data[2] + ":" + data[3]);
var gridRange = {
sheetId: ss.getSheetId(),
startRowIndex: range.getRow() - 1,
endRowIndex: range.getRow() - 1 + range.getNumRows(),
startColumnIndex: range.getColumn() - 1,
endColumnIndex: range.getColumn() - 1 + range.getNumColumns(),
};
if (!data[2].match(/[0-9]/)) delete gridRange.startRowIndex;
if (!data[3].match(/[0-9]/)) delete gridRange.endRowIndex;
return gridRange;
}
// Please run this function.
function myFunction() {
const email = "MY EMAIL"; // <--- Please set your email address.
// Please set your sheet names and unprotected ranges you want to use.
const obj = [
{ sheetName: "Ordering", unprotectedRanges: ["O5:P", "C2:E2"] },
{ sheetName: "Accessory INV", unprotectedRanges: ["E5:H"] },
{ sheetName: "Apparel INV", unprotectedRanges: ["E5:F"] },
{sheetName: "Pending TOs", unprotectedRanges: ["E6:H"] },
{sheetName: "INV REF", unprotectedRanges: ["C6:C"] },
];
// 1. Retrieve sheet IDs and protected range IDs.
const spreadsheetId = SpreadsheetApp.getActiveSpreadsheet().getId();
const sheets = Sheets.Spreadsheets.get(spreadsheetId, { ranges: obj.map(({ sheetName }) => sheetName), fields: "sheets(protectedRanges(protectedRangeId),properties(sheetId))" }).sheets;
const { protectedRangeIds, sheetIds } = sheets.reduce((o, { protectedRanges, properties: { sheetId } }) => {
if (protectedRanges && protectedRanges.length > 0) o.protectedRangeIds.push(protectedRanges.map(({ protectedRangeId }) => protectedRangeId));
o.sheetIds.push(sheetId);
return o;
}, { protectedRangeIds: [], sheetIds: [] });
// 2. Convert A1Notation to Gridrange.
const gridranges = obj.map(({ sheetName, unprotectedRanges }, i) => unprotectedRanges.map(f => a1notation2gridrange1(`${sheetName}!${f}`)));
// 3. Create request body.
const deleteProptectedRanges = protectedRangeIds.flatMap(e => e.map(id => ({ deleteProtectedRange: { protectedRangeId: id } })));
const protects = sheetIds.map((sheetId, i) => ({ addProtectedRange: { protectedRange: { editors: {users: [email]}, range: { sheetId }, unprotectedRanges: gridranges[i] } } }));
// 4. Request to Sheets API with the created request body.
Sheets.Spreadsheets.batchUpdate({ requests: [...deleteProptectedRanges, ...protects] }, spreadsheetId);
}
Probably the easiest way to do this would be to avoid using a button and using a checkbox with a installable edit trigger, which also has a great side effect of mobile support.
Proposed solution:
Using a checkbox
Hook it to a installable edit trigger, which runs as the user who installed the trigger. Therefore, if the owner installs the trigger, no matter who edits the sheet, the trigger runs as the owner, giving access to privileged resources including protected ranges.
The installable version runs with the authorization of the user who created the trigger, even if another user with edit access opens the spreadsheet.
Notes:
Advantage:
Code simplicity and maintainabilty. No need for webapp or any complicated setup.
Disadvantage: Security (with possible workaround)
If the code is bound to the sheet, editors of the sheet get direct access to the script of the sheet. So, any editor with malicious intentions would be able to modify the code. If the function with installable trigger has gmail permissions, any editor would be able to log all the emails of the owner. So,special attention needs to be paid to permissions requested. Note that, this is already the case with your web app setup. Any editor maybe able to modify doGet to access protected data. If the webapp is in a separate standalone script, this isn't a issue. You may also be able to fix this issue by setting the trigger at a predetermined version instead of Head version. See this answer for more information.