Mandelbrot set rotation JS - javascript

There is a simple JS code that renders a very basic Mandelbrot fractal.
let canvas = document.getElementsByTagName("canvas")[0],
canvasWidth = canvas.width,
canvasHeight = canvas.height,
ctx = canvas.getContext("2d");
const maxIterations = 100,
magnificationFactor = 200,
panX = 2,
panY = 1.25;
let drawPoint = (x, y, color) => {
var pointSize = 1;
ctx.fillStyle = color;
ctx.beginPath();
ctx.arc(x, y, pointSize, 0, Math.PI * 2, true);
ctx.fill();
}
let mandelbrot = (c, z = 0) => z ^ 2 + c;
let BelongsToMandelbrotSet = (x, y) => {
let realComponentOfResult = x,
imaginaryComponentOfResult = y;
for (let i = 0; i < maxIterations; i++) {
let tempRealComponent = realComponentOfResult * realComponentOfResult - imaginaryComponentOfResult * imaginaryComponentOfResult + x,
tempImaginaryComponent = 2 * realComponentOfResult * imaginaryComponentOfResult + y;
realComponentOfResult = tempRealComponent;
imaginaryComponentOfResult = tempImaginaryComponent;
}
if (realComponentOfResult * imaginaryComponentOfResult < 5)
return true;
return false;
}
for (let x = 0; x < canvasWidth; x++) {
for (let y = 0; y < canvasHeight; y++) {
let belongsToSet =
BelongsToMandelbrotSet(x / magnificationFactor - panX,
y / magnificationFactor - panY);
if (belongsToSet)
drawPoint(x, y, '#000')
}
}
body {
margin: 0;
}
<canvas width="800" height="800"></canvas>
The task is to rotate this fractal by the random angle along its axis.
And it shouldn't be a canvas rotation or its image data, but I have to tweak the initial fractal formula to do that.
For example, if the angle is 45 degrees or PI / 4 in radians, the output should look like
I have tried to play with x = center.x + 500 * Math.cos(theta), y = center.y + 500 * Math.sin(theta) without any success.

You can try to transform the coordinates right in the main loop, where you do scaling and translation:
let x1 = x * Math.cos(theta) - y * Math.sin(theta)
let y1 = x * Math.sin(theta) + y * Math.cos(theta)
let belongsToSet = BelongsToMandelbrotSet(x1/magnificationFactor - panX, ...
...drawPoint(x, y, '#000')
To further simplify this, create an affine transformation matrix for all kinds of transforms and apply it once.

Related

Inward Circular Orbit - Canvas

I have a polygon that has circles on its vertices.
What I expect to accomplish is that every circle will be moving to the circle on its right. This is a physics concept which proves that if every circle is moving to the one on its right with a constant speed, soon they will reach the center. I'm trying to accomplish this animation, however I am able to move circles but not in the direction to the one next to it.
Here's my current code that draws the polygon with circles:
function particleGenerator(n){
const ctx = document.getElementById('poly').getContext('2d');
ctx.reset();
drawPolygon(ctx, 154, 71.25 , n, 50, 0, 5, 7.5);
}
const drawPolygon = (ctx, x, y, points, radius, rotation = 0, nodeSize = 0, nodeInset = 0) => {
ctx.beginPath();
ctx.moveTo(
x + radius * Math.cos(rotation),
y + radius * Math.sin(rotation)
);
for (let i = 1; i <= points; i += 1) {
const angle = (i * (2 * Math.PI / points)) + rotation;
ctx.lineTo(
x + radius * Math.cos(angle),
y + radius * Math.sin(angle)
);
}
ctx.fillStyle = "#00818A";
ctx.fill();
if (!nodeSize) return;
const dist = radius - nodeInset;
for (let i = 1; i <= points; i += 1) {
const angle = (i * (2 * Math.PI / points)) + rotation;
let x1 = x + dist * Math.cos(angle);
let y1 = y + dist * Math.sin(angle);
ctx.beginPath();
ctx.arc(x1, y1, nodeSize, 0, 2 * Math.PI);
ctx.fillStyle = "#DBEDF3"
ctx.fill();
}
};
<button onclick="particleGenerator(4)">Click Me!</button>
<canvas id="poly">
You can keep track of a list of corners. You generate them in order, so to get a corner's next neighbor you can do corners[i + 1] || corners[0].
To move the corner in the direction of the next one, you can calculate their differences in x and y coordinates and add a percentage of that difference to a corner's current location.
Here's a running example (I did remove some of the code so I could focus on just the updating problem:
function particleGenerator(n) {
const ctx = document.getElementById('poly').getContext('2d');
ctx.reset();
const originalCorners = createCorners(150, 70, n, 50);
const corners = createCorners(150, 70, n, 50);
const next = () => {
corners.forEach(([x0, y0], i) => {
const [x1, y1] = corners[i + 1] || corners[0];
const dx = x1 - x0;
const dy = y1 - y0;
const SPEED = 0.05;
corners[i][0] = x0 + dx * SPEED;
corners[i][1] = y0 + dy * SPEED;
});
}
const frame = () => {
ctx.clearRect(0, 0, ctx.canvas.width, ctx.canvas.height);
drawPolygon(ctx, originalCorners, "grey");
drawPolygon(ctx, corners);
drawDots(ctx, corners);
next();
requestAnimationFrame(frame);
};
frame();
}
const createCorners = (x, y, n, radius) => {
const corners = [];
for (let i = 1; i <= n; i += 1) {
const angle = (i * (2 * Math.PI / n));
corners.push([
x + radius * Math.cos(angle),
y + radius * Math.sin(angle)
]);
}
return corners;
}
const drawPolygon = (
ctx,
corners,
color = "#00818A"
) => {
// Draw fill
ctx.beginPath();
corners.forEach((c, i) => {
if (i === 0) ctx.moveTo(...c);
else ctx.lineTo(...c);
});
ctx.fillStyle = color
ctx.fill();
};
const drawDots = (
ctx,
corners,
) => {
// Draw dots
corners.forEach(([x, y], i, all) => {
ctx.beginPath();
ctx.arc(x, y, 5, 0, 2 * Math.PI);
ctx.fillStyle = "red"
ctx.fill();
});
};
<input type="number" value="6" min="3" max="100">
<button onclick="particleGenerator(document.querySelector('input').valueAsNumber)">Click Me!</button>
<canvas id="poly">

Fill in shape with lines at a specified angle

I need to create line segments within a shape and not just a visual pattern - I need to know start and end coordinates for those lines that are within a given boundary (shape). I'll go through what I have and explain the issues I'm facing
I have a closed irregular shape (can have dozens of sides) defined by [x, y] coordinates
shape = [
[150,10], // x, y
[10,300],
[150,200],
[300,300]
];
I calculate and draw the bounding box of this shape
I then draw my shape on the canvas
Next, I cast rays within the bounding box with a set spacing between each ray. The ray goes from left to right incrementing by 1 pixel.
Whenever a cast ray gets to a pixel with RGB values of 100, 255, 100 I then know it has entered the shape. I know when it exits the shape if the pixel value is not 100, 255, 100. Thus I know start and end coordinates for each line within my shape and if one ray enters and exits the shape multiple times - this will generate all line segments within that one ray cast.
For the most part it works but there are issues:
It's very slow. Perhaps there is a better way than casting rays? Or perhaps there is a way to optimize the ray logic? Perhaps something more intelligent than just checking for RGB color values?
How do I cast rays at a different angle within the bounding box? Now it's going left to right, but how would I fill my bounding box with rays cast at any specified angle? i.e.:
I don't care about holes or curves. The shapes will all be made of straight line segments and won't have any holes inside them.
Edit: made changes to the pixel RGB sampling that improve performance.
canvas = document.getElementById('canvas');
ctx = canvas.getContext('2d');
lineSpacing = 15;
shape = [
[150,10], // x, y
[10,300],
[150,200],
[300,300]
];
boundingBox = [
[Infinity,Infinity],
[-Infinity,-Infinity]
]
// get bounding box coords
for(var i in shape) {
if(shape[i][0] < boundingBox[0][0]) boundingBox[0][0] = shape[i][0];
if(shape[i][1] < boundingBox[0][1]) boundingBox[0][1] = shape[i][1];
if(shape[i][0] > boundingBox[1][0]) boundingBox[1][0] = shape[i][0];
if(shape[i][1] > boundingBox[1][1]) boundingBox[1][1] = shape[i][1];
}
// display bounding box
ctx.fillStyle = 'rgba(255,0,0,.2)';
ctx.fillRect(boundingBox[0][0], boundingBox[0][1], boundingBox[1][0]-boundingBox[0][0], boundingBox[1][1]-boundingBox[0][1]);
// display shape (boundary)
ctx.beginPath();
ctx.moveTo(shape[0][0], shape[0][1]);
for(var i = 1; i < shape.length; i++) {
ctx.lineTo(shape[i][0], shape[i][1]);
}
ctx.closePath();
ctx.fillStyle = 'rgba(100,255,100,1)';
ctx.fill();
canvasData = ctx.getImageData(0, 0, canvas.width, canvas.height).data;
// loop through the shape in vertical slices
for(var i = boundingBox[0][1]+lineSpacing; i <= boundingBox[1][1]; i += lineSpacing) {
// send ray from left to right
for(var j = boundingBox[0][0], start = false; j <= boundingBox[1][0]; j++) {
x = j, y = i;
pixel = y * (canvas.width * 4) + x * 4;
// if pixel is within boundary (shape)
if(canvasData[pixel] == 100 && canvasData[pixel+1] == 255 && canvasData[pixel+2] == 100) {
// arrived at start of boundary
if(start === false) {
start = [x,y]
}
} else {
// arrived at end of boundary
if(start !== false) {
ctx.strokeStyle = 'rgba(0,0,0,1)';
ctx.beginPath();
ctx.moveTo(start[0], start[1]);
ctx.lineTo(x, y);
ctx.closePath();
ctx.stroke();
start = false;
}
}
}
// show entire cast ray for debugging purposes
ctx.strokeStyle = 'rgba(0,0,0,.2)';
ctx.beginPath();
ctx.moveTo(boundingBox[0][0], i);
ctx.lineTo(boundingBox[1][0], i);
ctx.closePath();
ctx.stroke();
}
<canvas id="canvas" width="350" height="350"></canvas>
This is a pretty complex problem that I am trying to simplify as much as possible. Using the line intersection formula we can determin where the ray intersects with the shape at every edge. What we can do is loop through each side of the shape while check every rays intersection. If they intersect we push those coordinates to an array.
I have tried to make this as dynamic as possible. You can pass the shape and change the number of rays and the angle. As for the angle it doesn't take a specific degree (i.e. 45) but rather you change the start and stop y axis. I'm sure if you must have the ability to put in a degree we can do that.
It currently console logs the array of intersecting coordinates but you can output them however you see fit.
The mouse function is just to verify that the number match up. Also be aware I am using toFixed() to get rid of lots of decimals but it does convert to a string. If you need an integer you'll have to convert back.
let canvas = document.getElementById("canvas");
let ctx = canvas.getContext("2d")
canvas.width = 300;
canvas.height = 300;
ctx.fillStyle = "violet";
ctx.fillRect(0,0,canvas.width,canvas.height)
//Shapes
let triangleish = [
[150,10], // x, y
[10,300],
[150,200],
[300,300]
]
let star = [ [ 0, 85 ], [ 75, 75 ], [ 100, 10 ], [ 125, 75 ],
[ 200, 85 ], [ 150, 125 ], [ 160, 190 ], [ 100, 150 ],
[ 40, 190 ], [ 50, 125 ], [ 0, 85 ] ];
let coords = [];
//Class that draws the shape on canvas
function drawShape(arr) {
ctx.beginPath();
ctx.fillStyle = "rgb(0,255,0)";
ctx.moveTo(arr[0][0], arr[0][1]);
for (let i=1;i<arr.length;i++) {
ctx.lineTo(arr[i][0], arr[i][1]);
}
ctx.fill();
ctx.closePath();
}
//pass the shape in here to draw it
drawShape(star)
//Class to creat the rays.
class Rays {
constructor(x1, y1, x2, y2) {
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
this.w = canvas.width;
this.h = 1;
}
draw() {
ctx.beginPath();
ctx.strokeStyle = 'black';
ctx.moveTo(this.x1, this.y1)
ctx.lineTo(this.x2, this.y2)
ctx.stroke();
ctx.closePath();
}
}
let rays = [];
function createRays(angle) {
let degrees = angle * (Math.PI/180)
//I am currently creating an array every 10px on the Y axis
for (let i=0; i < angle + 45; i++) {
//The i will be your start and stop Y axis. This is where you can change the angle
let cx = canvas.width/2 + (angle*2);
let cy = i * 10;
let x1 = (cx - 1000 * Math.cos(degrees));
let y1 = (cy - 1000 * Math.sin(degrees));
let x2 = (cx + 1000 * Math.cos(degrees));
let y2 = (cy + 1000 * Math.sin(degrees));
rays.push(new Rays(x1, y1, x2, y2))
}
}
//enter angle here
createRays(40);
//function to draw the rays after crating them
function drawRays() {
for (let i=0;i<rays.length; i++) {
rays[i].draw();
}
}
drawRays();
//This is where the magic happens. Using the line intersect formula we can determine if the rays intersect with the objects sides
function intersectLines(coord1, coord2, rays) {
let x1 = coord1[0];
let x2 = coord2[0];
let y1 = coord1[1];
let y2 = coord2[1];
let x3 = rays.x1;
let x4 = rays.x2;
let y3 = rays.y1;
let y4 = rays.y2;
//All of this comes from Wikipedia on line intersect formulas
let d = (x1 - x2)*(y3 - y4) - (y1 - y2)*(x3 - x4);
if (d == 0) {
return
}
let t = ((x1 - x3)*(y3 - y4) - (y1 - y3)*(x3 - x4)) / d;
let u = ((x2 - x1)*(y1 - y3) - (y2 - y1)*(x1 - x3)) / d;
//if this statement is true then the lines intersect
if (t > 0 && t < 1 && u > 0) {
//I have currently set it to fixed but if a string does not work for you you can change it however you want.
//the first formula is the X coord of the interect the second is the Y
coords.push([(x1 + t*(x2 - x1)).toFixed(2),(y1 + t*(y2 - y1)).toFixed(2)])
}
return
}
//function to call the intersect function by passing in the shapes sides and each ray
function callIntersect(shape) {
for (let i=0;i<shape.length;i++) {
for (let j=0;j<rays.length;j++) {
if (i < shape.length - 1) {
intersectLines(shape[i], shape[i+1], rays[j]);
} else {
intersectLines(shape[0], shape[shape.length - 1], rays[j]);
}
}
}
}
callIntersect(star);
//just to sort them by the Y axis so they they show up as in-and-out
function sortCoords() {
coords.sort((a, b) => {
return a[1] - b[1];
});
}
sortCoords()
console.log(coords)
//This part is not needed only added to verify number matched the mouse posit
let mouse = {
x: undefined,
y: undefined
}
let canvasBounds = canvas.getBoundingClientRect();
addEventListener('mousemove', e => {
mouse.x = e.x - canvasBounds.left;
mouse.y = e.y - canvasBounds.top;
ctx.clearRect(0, 0, canvas.width, canvas.height)
drawCoordinates();
})
function drawCoordinates() {
ctx.font = '15px Arial';
ctx.fillStyle = 'black';
ctx.fillText('x: '+mouse.x+' y: '+mouse.y, mouse.x, mouse.y)
}
function animate() {
ctx.clearRect(0, 0, canvas.width, canvas.height)
ctx.fillStyle = "violet";
ctx.fillRect(0,0,canvas.width,canvas.height)
for (let i=0;i<rays.length; i++) {
rays[i].draw();
}
drawShape(star)
drawCoordinates();
requestAnimationFrame(animate)
}
animate()
<canvas id="canvas"></canvas>
I'm not an expert, but maybe you could do something like this:
Generate the points that constitute the borders.
Organize them in a convenient structure, e.g. an object with the y as key, and an array of x as values.
2.1. i.e. each item in the object would constitute all points of all borders in a single y.
Iterate over the object and generate the segments for each y.
3.1. e.g. if the array of y=12 contains [ 10, 20, 60, 80 ] then you would generate two segments: [ 10, 12 ] --> [ 20, 12 ] and [ 60, 12 ] --> [ 80, 12 ].
To generate the borders' points (and to answer your second question), you can use the line function y = a*x + b.
For example, to draw a line between [ 10, 30 ] and [ 60, 40 ], you would:
Solve a and b by substituting x and y for both points and combining these two formulas (with standard algebra):
For point #1: 30 = a*10 + b
For point #2: 40 = a*60 + b
b = 30 - a*10
40 = a*60 + (30 - a*10)
a*60 - a*10 = 40 - 30
50*a = 10
a = 0.2
30 = a*10 + b
30 = 0.2*10 + b
b = 30 - 2
b = 28
With a and b at hand, you get the function for your specific line:
y = 0.2*x + 28
With that, you can calculate the point of the line for any y. So, for example, the x of the point right under the first point ([ 10, 30 ]) would have a y of 31, and so: 31 = 0.2*x + 28, and so: x = 15. So you get: [ 15, 31 ].
You may need a bit of special handling for:
Vertical lines, because the slope is "infinite" and calculating it would cause division by zero.
Rounding issues. For some (probably most) pixels you will get real x values (i.e. non-integer). You can Math.round() them, but it can cause issues, like:
8.1. Diagonal rays may not actually hit a border point even when they go through a border. This will probably require additional handling (like checking points around and not just exactly the pixels the ray lies on).
8.2. The points your algorithm generate may (slightly) differ from the points that appear on the screen when you use libraries or built-in browser functionality to draw the shape (depending on the implementation of their drawing algorithms).
This is a mashup of Justin's answer and code from my proposed question.
One issue was generating rays at a set angle and a set distance from each other. To have rays be equal distances apart at any angle we can use a vector at a 90 degree angle and then place a new center point for the next line.
We can start at the exact midpoint of our boundary and then spread out on either side.
Red line is the center line, green dots are the vector offset points for the next line.
Next I modified Justin's intersect algorithm to iterate by ray and not side, that way I get interlaced coordinates where array[index] is the start point of a segment and array[index+1] is the end point.
And by connecting the lines we get a shape that is filled with lines inside its boundaries at set distances apart
Issues:
I had to inflate the boundary by 1 pixel otherwise certain shapes would fail to generate paths
I'd like rays to be some what aligned. It's hard to explain, but here's an example of 6 triangles rotated at 60 degree increments that form a hexagon with their inner lines also offset by 60 degree increments. The top and bottom triangle inner lines do not join those of the outside triangles. This is an issue with the cast rays. Ideally I'd like them to join and be aligned with the outer most edge if that makes sense. Surely there is a better way to cast rays than this...
canvas = document.getElementById('canvas');
ctx = canvas.getContext('2d');
lineSpacing = 12;
angle = 45;
shapes = [
[[143.7,134.2], [210.4,18.7], [77.1,18.7]],
[[143.7,134.2], [77.1,18.7], [10.4,134.2]],
[[143.7,134.2], [10.4,134.2], [77.1,249.7]],
[[143.7,134.2], [77.1,249.7], [210.4,249.7]],
[[143.7,134.2], [210.4,249.7], [277.1,134.2]],
[[143.7,134.2], [277.1,134.2], [210.4,18.7]]
];
for(var i in shapes) {
lines = getLineSegments(shapes[i], 90+(-60*i), lineSpacing);
for(var i = 0; i < lines.length; i += 2) {
start = lines[i];
end = lines[i+1];
ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'rgba(0,0,0,1)';
ctx.moveTo(start[0], start[1]);
ctx.lineTo(end[0], end[1]);
ctx.closePath();
ctx.stroke();
}
}
function getLineSegments(shape, angle, lineSpacing) {
boundingBox = [
[Infinity,Infinity],
[-Infinity,-Infinity]
]
// get bounding box coords
for(var i in shape) {
if(shape[i][0] < boundingBox[0][0]) boundingBox[0][0] = shape[i][0];
if(shape[i][1] < boundingBox[0][1]) boundingBox[0][1] = shape[i][1];
if(shape[i][0] > boundingBox[1][0]) boundingBox[1][0] = shape[i][0];
if(shape[i][1] > boundingBox[1][1]) boundingBox[1][1] = shape[i][1];
}
boundingBox[0][0] -= 1, boundingBox[0][1] -= 1;
boundingBox[1][0] += 1, boundingBox[1][1] += 1;
// display shape (boundary)
ctx.beginPath();
ctx.moveTo(shape[0][0], shape[0][1]);
for(var i = 1; i < shape.length; i++) {
ctx.lineTo(shape[i][0], shape[i][1]);
}
ctx.closePath();
ctx.fillStyle = 'rgba(100,255,100,1)';
ctx.fill();
boundingMidX = ((boundingBox[0][0]+boundingBox[1][0]) / 2);
boundingMidY = ((boundingBox[0][1]+boundingBox[1][1]) / 2);
rayPaths = [];
path = getPathCoords(boundingBox, 0, 0, angle);
rayPaths.push(path);
/*ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'red';
ctx.moveTo(path[0][0], path[0][1]);
ctx.lineTo(path[1][0], path[1][1]);
ctx.closePath();
ctx.stroke();*/
getPaths:
for(var i = 0, lastPaths = [path, path]; true; i++) {
for(var j = 0; j < 2; j++) {
pathMidX = (lastPaths[j][0][0] + lastPaths[j][1][0]) / 2;
pathMidY = (lastPaths[j][0][1] + lastPaths[j][1][1]) / 2;
pathVectorX = lastPaths[j][1][1] - lastPaths[j][0][1];
pathVectorY = lastPaths[j][1][0] - lastPaths[j][0][0];
pathLength = Math.sqrt(pathVectorX * pathVectorX + pathVectorY * pathVectorY);
pathOffsetPointX = pathMidX + ((j % 2 === 0 ? pathVectorX : -pathVectorX) / pathLength * lineSpacing);
pathOffsetPointY = pathMidY + ((j % 2 === 0 ? -pathVectorY : pathVectorY) / pathLength * lineSpacing);
offsetX = pathOffsetPointX-boundingMidX;
offsetY = pathOffsetPointY-boundingMidY;
path = getPathCoords(boundingBox, offsetX, offsetY, angle);
if(
path[0][0] < boundingBox[0][0] ||
path[1][0] > boundingBox[1][0] ||
path[0][0] > boundingBox[1][0] ||
path[1][0] < boundingBox[0][0]
) break getPaths;
/*ctx.fillStyle = 'green';
ctx.fillRect(pathOffsetPointX-2.5, pathOffsetPointY-2.5, 5, 5);
ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'black';
ctx.moveTo(path[0][0], path[0][1]);
ctx.lineTo(path[1][0], path[1][1]);
ctx.closePath();
ctx.stroke();*/
rayPaths.push(path);
lastPaths[j] = path;
}
}
coords = [];
function intersectLines(coord1, coord2, rays) {
x1 = coord1[0], x2 = coord2[0];
y1 = coord1[1], y2 = coord2[1];
x3 = rays[0][0], x4 = rays[1][0];
y3 = rays[0][1], y4 = rays[1][1];
d = (x1 - x2)*(y3 - y4) - (y1 - y2)*(x3 - x4);
if (d == 0) return;
t = ((x1 - x3)*(y3 - y4) - (y1 - y3)*(x3 - x4)) / d;
u = ((x2 - x1)*(y1 - y3) - (y2 - y1)*(x1 - x3)) / d;
if (t > 0 && t < 1 && u > 0) {
coords.push([(x1 + t*(x2 - x1)).toFixed(2),(y1 + t*(y2 - y1)).toFixed(2)])
}
return;
}
function callIntersect(shape) {
for (var i = 0; i < rayPaths.length; i++) {
for (var j = 0; j< shape.length; j++) {
if (j < shape.length - 1) {
intersectLines(shape[j], shape[j+1], rayPaths[i]);
} else {
intersectLines(shape[0], shape[shape.length - 1], rayPaths[i]);
}
}
}
}
callIntersect(shape);
return coords;
}
function getPathCoords(boundingBox, offsetX, offsetY, angle) {
coords = [];
// add decimal places otherwise can lead to Infinity, subtract 90 so 0 degrees is at the top
angle = angle + 0.0000000000001 - 90;
boundingBoxWidth = boundingBox[1][0] - boundingBox[0][0];
boundingBoxHeight = boundingBox[1][1] - boundingBox[0][1];
boundingMidX = ((boundingBox[0][0]+boundingBox[1][0]) / 2);
boundingMidY = ((boundingBox[0][1]+boundingBox[1][1]) / 2);
x = boundingMidX + offsetX, y = boundingMidY + offsetY;
dx = Math.cos(Math.PI * angle / 180);
dy = Math.sin(Math.PI * angle / 180);
for(var i = 0; i < 2; i++) {
bx = (dx > 0) ? boundingBoxWidth+boundingBox[0][0] : boundingBox[0][0];
by = (dy > 0) ? boundingBoxHeight+boundingBox[0][1] : boundingBox[0][1];
if(dx == 0) ix = x, iy = by;
if(dy == 0) iy = y, ix = bx;
tx = (bx - x) / dx;
ty = (by - y) / dy;
if(tx <= ty) {
ix = bx, iy = y + tx * dy;
} else {
iy = by, ix = x + ty * dx;
}
coords.push([ix, iy]);
dx = -dx;
dy = -dy;
}
return coords;
}
<canvas id="canvas" width="500" height="500"></canvas>
canvas = document.getElementById('canvas');
ctx = canvas.getContext('2d');
lineSpacing = 10;
angle = 45;
shape = [
[200,10], // x, y
[10,300],
[200,200],
[400,300]
];
lines = getLineSegments(shape, angle, lineSpacing);
for(var i = 0; i < lines.length; i += 2) {
start = lines[i];
end = lines[i+1];
ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'rgba(0,0,0,1)';
ctx.moveTo(start[0], start[1]);
ctx.lineTo(end[0], end[1]);
ctx.closePath();
ctx.stroke();
}
function getLineSegments(shape, angle, lineSpacing) {
boundingBox = [
[Infinity,Infinity],
[-Infinity,-Infinity]
]
// get bounding box coords
for(var i in shape) {
if(shape[i][0] < boundingBox[0][0]) boundingBox[0][0] = shape[i][0];
if(shape[i][1] < boundingBox[0][1]) boundingBox[0][1] = shape[i][1];
if(shape[i][0] > boundingBox[1][0]) boundingBox[1][0] = shape[i][0];
if(shape[i][1] > boundingBox[1][1]) boundingBox[1][1] = shape[i][1];
}
boundingBox[0][0] -= 1, boundingBox[0][1] -= 1;
boundingBox[1][0] += 1, boundingBox[1][1] += 1;
// display bounding box
ctx.fillStyle = 'rgba(255,0,0,.2)';
ctx.fillRect(boundingBox[0][0], boundingBox[0][1], boundingBox[1][0]-boundingBox[0][0], boundingBox[1][1]-boundingBox[0][1]);
// display shape (boundary)
ctx.beginPath();
ctx.moveTo(shape[0][0], shape[0][1]);
for(var i = 1; i < shape.length; i++) {
ctx.lineTo(shape[i][0], shape[i][1]);
}
ctx.closePath();
ctx.fillStyle = 'rgba(100,255,100,1)';
ctx.fill();
boundingMidX = ((boundingBox[0][0]+boundingBox[1][0]) / 2);
boundingMidY = ((boundingBox[0][1]+boundingBox[1][1]) / 2);
rayPaths = [];
path = getPathCoords(boundingBox, 0, 0, angle);
rayPaths.push(path);
/*ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'red';
ctx.moveTo(path[0][0], path[0][1]);
ctx.lineTo(path[1][0], path[1][1]);
ctx.closePath();
ctx.stroke();*/
getPaths:
for(var i = 0, lastPaths = [path, path]; true; i++) {
for(var j = 0; j < 2; j++) {
pathMidX = (lastPaths[j][0][0] + lastPaths[j][1][0]) / 2;
pathMidY = (lastPaths[j][0][1] + lastPaths[j][1][1]) / 2;
pathVectorX = lastPaths[j][1][1] - lastPaths[j][0][1];
pathVectorY = lastPaths[j][1][0] - lastPaths[j][0][0];
pathLength = Math.sqrt(pathVectorX * pathVectorX + pathVectorY * pathVectorY);
pathOffsetPointX = pathMidX + ((j % 2 === 0 ? pathVectorX : -pathVectorX) / pathLength * lineSpacing);
pathOffsetPointY = pathMidY + ((j % 2 === 0 ? -pathVectorY : pathVectorY) / pathLength * lineSpacing);
offsetX = pathOffsetPointX-boundingMidX;
offsetY = pathOffsetPointY-boundingMidY;
path = getPathCoords(boundingBox, offsetX, offsetY, angle);
if(
path[0][0] < boundingBox[0][0] ||
path[1][0] > boundingBox[1][0] ||
path[0][0] > boundingBox[1][0] ||
path[1][0] < boundingBox[0][0]
) break getPaths;
/*ctx.fillStyle = 'green';
ctx.fillRect(pathOffsetPointX-2.5, pathOffsetPointY-2.5, 5, 5);
ctx.beginPath();
ctx.lineWidth = 1;
ctx.strokeStyle = 'black';
ctx.moveTo(path[0][0], path[0][1]);
ctx.lineTo(path[1][0], path[1][1]);
ctx.closePath();
ctx.stroke();*/
rayPaths.push(path);
lastPaths[j] = path;
}
}
coords = [];
function intersectLines(coord1, coord2, rays) {
x1 = coord1[0], x2 = coord2[0];
y1 = coord1[1], y2 = coord2[1];
x3 = rays[0][0], x4 = rays[1][0];
y3 = rays[0][1], y4 = rays[1][1];
d = (x1 - x2)*(y3 - y4) - (y1 - y2)*(x3 - x4);
if (d == 0) return;
t = ((x1 - x3)*(y3 - y4) - (y1 - y3)*(x3 - x4)) / d;
u = ((x2 - x1)*(y1 - y3) - (y2 - y1)*(x1 - x3)) / d;
if (t > 0 && t < 1 && u > 0) {
coords.push([(x1 + t*(x2 - x1)).toFixed(2),(y1 + t*(y2 - y1)).toFixed(2)])
}
return;
}
function callIntersect(shape) {
for (var i = 0; i < rayPaths.length; i++) {
for (var j = 0; j< shape.length; j++) {
if (j < shape.length - 1) {
intersectLines(shape[j], shape[j+1], rayPaths[i]);
} else {
intersectLines(shape[0], shape[shape.length - 1], rayPaths[i]);
}
}
}
}
callIntersect(shape);
return coords;
}
function getPathCoords(boundingBox, offsetX, offsetY, angle) {
coords = [];
// add decimal places otherwise can lead to Infinity, subtract 90 so 0 degrees is at the top
angle = angle + 0.0000000000001 - 90;
boundingBoxWidth = boundingBox[1][0] - boundingBox[0][0];
boundingBoxHeight = boundingBox[1][1] - boundingBox[0][1];
boundingMidX = ((boundingBox[0][0]+boundingBox[1][0]) / 2);
boundingMidY = ((boundingBox[0][1]+boundingBox[1][1]) / 2);
x = boundingMidX + offsetX, y = boundingMidY + offsetY;
dx = Math.cos(Math.PI * angle / 180);
dy = Math.sin(Math.PI * angle / 180);
for(var i = 0; i < 2; i++) {
bx = (dx > 0) ? boundingBoxWidth+boundingBox[0][0] : boundingBox[0][0];
by = (dy > 0) ? boundingBoxHeight+boundingBox[0][1] : boundingBox[0][1];
if(dx == 0) ix = x, iy = by;
if(dy == 0) iy = y, ix = bx;
tx = (bx - x) / dx;
ty = (by - y) / dy;
if(tx <= ty) {
ix = bx, iy = y + tx * dy;
} else {
iy = by, ix = x + ty * dx;
}
coords.push([ix, iy]);
dx = -dx;
dy = -dy;
}
return coords;
}
<canvas id="canvas" width="500" height="500"></canvas>

Build a pyramid of balls using the canvas

I'm having difficulties replicating the pyramid below on the canvas.
I'm struggling with the math portion on how to draw a new ball on each new line. Here is my code so far.
<canvas id="testCanvas" width="300" height="300" style="border:1px solid #d3d3d3;"></canvas>
<script>
// Access canvas element and its context
const canvas = document.getElementById('testCanvas');
const context = canvas.getContext("2d");
const x = canvas.width;
const y = canvas.height;
const radius = 10;
const diamater = radius * 2;
const numOfRows = canvas.width / diamater;
function ball(x, y) {
context.arc(x, y, radius, 0, 2 * Math.PI, true);
context.fillStyle = "#FF0000"; // red
context.fill();
}
function draw() {
for (let i = 0; i < numOfRows; i++) {
for (let j = 0; j < i + 1; j++) {
ball(
//Pos X
(x / 2),
//Pos Y
diamater * (i + 1)
);
}
}
ball(x / 2, y);
context.restore();
}
draw();
</script>
I've been stuck on this problem for a while. I appreciate any assistance you can provide.
Thank you.
I noticed that the circle do not touch. I am not sure if you need or want them to but as this presented an interesting problem I create this answer.
Distance between stacked circles.
The distance between rows can be calculated using the right triangle as shown in the following image
Where R is the radius of the circle and D is the distance between rows.
D = ((R + R) ** 2 - R ** 2) ** 0.5;
With that we can get the number of rows we can fit given a radius as
S = (H - R * 2) / D;
Where H is the height of the canvas and S is the number of rows.
Example
Given a radius fits as many rows as possible into the give canvas height.
const ctx = canvas.getContext("2d");
const W = canvas.width, H = canvas.height, CENTER = W / 2;
const cols = ["#E80", "#0B0"];
draw();
function fillPath(path, x, y, color) {
ctx.fillStyle = color;
ctx.setTransform(1, 0, 0, 1, x, y);
ctx.fill(path);
}
function draw() {
const R = 10;
const D = ((R * 2) ** 2 - R ** 2) ** 0.5;
const S = (H - R * 2) / D | 0;
const TOP = R + (H - (R * 2 + D * S)) / 2; // center horizontal
const circle = new Path2D();
circle.arc(0, 0, R, 0, Math.PI * 2);
var y = 0, x;
while (y <= S) {
x = 0;
const LEFT = CENTER - (y * R);
while (x <= y) {
fillPath(circle, LEFT + (x++) * R * 2, TOP + y * D, cols[y % 2]);
}
y ++;
}
}
canvas {
border:1px solid #ddd;
}
<canvas id="canvas" width="300" height="180"></canvas>
Radius to fit n rows of stacked circles
Or if you have the height H and the number of rows S you want to fit. As shown in next image.
We want to find R given H and S we rearrange for H and solve the resulting quadratic with
ss = S * S - 2 * S + 1;
a = 4 / ss;
b = -4 * H / ss;
c = H * H / ss;
R = (-b-(b*b - 4 * a * c) ** 0.5) / (2 * a); // the radius
Example
Given the number of rows (number input) calculates the radius that will fit that number of rows
const ctx = canvas.getContext("2d");
const W = canvas.width, H = canvas.height, CENTER = W / 2;
rowsIn.addEventListener("input", draw)
const cols = ["#DD0", "#0A0"];
draw();
function fillPath(path, x, y, color) {
ctx.fillStyle = color;
ctx.setTransform(1, 0, 0, 1, x, y);
ctx.fill(path);
}
function draw() {
ctx.setTransform(1, 0, 0, 1, 0, 0);
ctx.clearRect(0,0,W,H);
const S = Number(rowsIn.value);
const ss = S * S - 2 * S + 1;
const a = 4 / ss - 3, b = -4 * H / ss, c = H * H / ss;
const R = (- b - ((b * b - 4 * a * c) ** 0.5)) / (2 * a); // the radius
const TOP = R;
const D = ((R * 2) ** 2 - R ** 2) ** 0.5;
//const S = (H - R * 2) / D;
const circle = new Path2D();
circle.arc(0, 0, R, 0, Math.PI * 2);
var y = 0, x;
while (y < S) {
x = 0;
const LEFT = CENTER - (y * R);
while (x <= y) {
fillPath(circle, LEFT + (x++) * R * 2, TOP + y * D, cols[y % 2]);
}
y ++;
}
}
canvas {
border:1px solid #ddd;
}
<canvas id="canvas" width="300" height="180"></canvas>
<input type="number" id="rowsIn" min="3" max="12" value="3">Rows
How you can approach this problem is by breaking it down into one step at a time.
On (1)st row draw 1 circle
On (2)nd row draw 2 circles
On (3)rd row draw 3 circles
And so on...
Then you have to figure out where to draw each circle. That also you can break down into steps.
1st-row 1st circle in the center (width)
2nd-row 1st circle in the center minus diameter
2nd-row 2nd circle in the center plus diameter
and so on.
Doing this way you will find a pattern to convert into 2 for loops.
Something like this:
//1st row 1st circle
ball(w/2,radius * 1, red);
//2nd row 1st circle
ball(w/2 - radius,radius * 3, blue);
//2nd row 2nd circle
ball(w/2 + radius,radius * 3, blue);
The code below shows each step how each ball is drawn. I have also done few corrections to take care of the numberOfRows.
const canvas = document.getElementById('testCanvas');
const context = canvas.getContext("2d");
const w = canvas.width;
const h = canvas.height;
const radius = 10;
const diamater = radius * 2;
const numOfRows = Math.min(h / diamater, w / diamater);
const red = "#FF0000";
const blue = "#0000FF";
var k = 1;
function ball(x, y, color) {
setTimeout(function() {
context.beginPath();
context.arc(x, y, radius, 0, 2 * Math.PI, true);
context.fillStyle = color;
context.fill();
}, (k++) * 250);
}
for (var i = 1; i <= numOfRows; i++) {
for (var j = 1; j <= i; j++) {
var y = (i * radius * 2) - radius;
var x = (w / 2) - ((i * radius) + radius) + (j * diamater);
ball(x, y, i % 2 ? red : blue);
}
}
<canvas id="testCanvas"
width="300" height="180"
style="border:1px solid #d3d3d3;"></canvas>

How to draw an irregular shaped polygon using the given angles

I am making a drawing application. I have created a class Polygon. Its constructor will receive three arguments and these will be its properties:
points(Number): Number of points the polygon will have.
rotation(Number): The angle the whole polygon will be rotated.
angles(Array Of number): The angles between two lines of the polygon.
I have been trying for the whole day, but I couldn't figure out the correct solution.
const canvas = document.querySelector('canvas');
const c = canvas.getContext('2d');
let isMouseDown = false;
let tool = 'polygon';
let savedImageData;
canvas.height = window.innerHeight;
canvas.width = window.innerWidth;
const mouse = {x:null,y:null}
let mousedown = {x:null,y:null}
const toDegree = val => val * 180 / Math.PI
class Polygon {
constructor(points, rotation, angles){
this.points = points;
this.rotation = rotation;
//if angles are given then convert them to radian
if(angles){
this.angles = angles.map(x => x * Math.PI/ 180);
}
//if angles array is not given
else{
/*get the angle for a regular polygon for given points.
3-points => 60
4-points => 90
5-points => 108
*/
let angle = (this.points - 2) * Math.PI/ this.points;
//fill the angles array with the same angle
this.angles = Array(points).fill(angle)
}
let sum = 0;
this.angles = this.angles.map(x => {
sum += x;
return sum;
})
}
draw(startx, starty, endx, endy){
c.beginPath();
let rx = (endx - startx) / 2;
let ry = (endy - starty) / 2;
let r = Math.max(rx, ry)
c.font = '35px cursive'
let cx = startx + r;
let cy = starty + r;
c.fillRect(cx - 2, cy - 2, 4, 4); //marking the center
c.moveTo(cx + r, cy);
c.strokeText(0, cx + r, cy);
for(let i = 1; i < this.points; i++){
//console.log(this.angles[i])
let dx = cx + r * Math.cos(this.angles[i] + this.rotation);
let dy = cy + r * Math.sin(this.angles[i] + this.rotation);
c.strokeStyle = 'red';
c.strokeText(i, dx, dy, 100);
c.strokeStyle ='black';
c.lineTo(dx, dy);
}
c.closePath();
c.stroke();
}
}
//update();
c.beginPath();
c.lineWidth = 1;
document.addEventListener('mousemove', function(e){
//Getting the mouse coords according to canvas
const canvasData = canvas.getBoundingClientRect();
mouse.x = (e.x - canvasData.left) * (canvas.width / canvasData.width);
mouse.y = (e.y - canvasData.top) * (canvas.height / canvasData.height);
if(tool === 'polygon' && isMouseDown){
drawImageData();
let pol = new Polygon(5, 0);
pol.draw(mousedown.x, mousedown.y, mouse.x, mouse.y);
}
})
function saveImageData(){
savedImageData = c.getImageData(0, 0, canvas.width, canvas.height);
}
function drawImageData(){
c.putImageData(savedImageData, 0, 0)
}
document.addEventListener('mousedown', () => {
isMouseDown = true;
mousedown = {...mouse};
if(tool === 'polygon'){
saveImageData();
}
});
document.addEventListener('mouseup', () => isMouseDown = false);
<canvas></canvas>
In the above code I am trying to make a pentagon but it doesn't work.
Unit polygon
The following snippet contains a function polygonFromSidesOrAngles that returns the set of points defining a unit polygon as defined by the input arguments. sides, or angles
Both arguments are optional but must have one argument
If only sides given then angles are calculated to make the complete polygon with all side lengths equal
If only angles given then the number of sides is assumed to be the number of angles. Angles are in degrees 0-360
If the arguments can not define a polygon then there are several exceptions throw.
The return is a set of points on a unit circle that define the points of the polygon. The first point is at coordinate {x : 1, y: 0} from the origin.
The returned points are not rotated as that is assumed to be a function of the rendering function.
All points on the polygon are 1 unit distance from the origin (0,0)
Points are in the form of an object containing x and y properties as defined by the function point and polarPoint
Method used
I did not lookup an algorithm, rather I worked it out from the assumption that a line from (1,0) on the unit circle at the desired angle will intercept the circle at the correct distance from (1,0). The intercept point is used to calculate the angle in radians from the origin. That angle is then used to calculate the ratio of the total angles that angle represents.
The function that does this is calcRatioOfAngle(angle, sides) returning the angle as a ratio (0-1) of Math.PI * 2
It is a rather long handed method and likely can be significantly reduced
As it is unclear in your question what should be done with invalid arguments the function will throw a range error if it can not proceed.
Polygon function
Math.PI2 = Math.PI * 2;
Math.TAU = Math.PI2;
Math.deg2Rad = Math.PI / 180;
const point = (x, y) => ({x, y});
const polarPoint = (ang, dist) => ({x: Math.cos(ang) * dist, y: Math.sin(ang) * dist});
function polygonFromSidesOrAngles(sides, angles) {
function calcRatioOfAngle(ang, sides) {
const v1 = point(Math.cos(ang) - 1, Math.sin(ang));
const len2 = v1.x * v1.x + v1.y * v1.y;
const u = -v1.x / len2;
const v2 = point(v1.x * u + 1, v1.y * u);
const d = (1 - (v2.y * v2.y + v2.x * v2.x)) ** 0.5 / (len2 ** 0.5);
return Math.atan2(v2.y + v1.y * d, v2.x + 1 + v1.x * d) / (Math.PI * (sides - 2) / 2);
}
const vetAngles = angles => angles.reduce((sum, ang) => sum += ang, 0) === (angles.length - 2) * 180;
var ratios = [];
if(angles === undefined) {
if (sides < 3) { throw new RangeError("Polygon must have more than 2 side") }
const rat = 1 / sides;
while (sides--) { ratios.push(rat) }
} else {
if (sides === undefined) { sides = angles.length }
else if (sides !== angles.length) { throw new RangeError("Numbers of sides does not match number of angles") }
if (sides < 3) { throw new RangeError("Polygon must have more than 2 side") }
if (!vetAngles(angles)) { throw new RangeError("Set of angles can not create a "+sides+" sided polygon") }
ratios = angles.map(ang => calcRatioOfAngle(ang * Math.deg2Rad, sides));
ratios.unshift(ratios.pop()); // rotate right to get first angle at start
}
var ang = 0;
const points = [];
for (const rat of ratios) {
ang += rat;
points.push(polarPoint(ang * Math.TAU, 1));
}
return points;
}
Render function
Function to render the polygon. It includes the rotation so you don't need to create a separate set of points for each angle you want to render the polygon at.
The radius is the distance from the center point x,y to any of the polygons vertices.
function drawPolygon(ctx, poly, x, y, radius, rotate) {
ctx.setTransform(radius, 0, 0, radius, x, y);
ctx.rotate(rotate);
ctx.beginPath();
for(const p of poly.points) { ctx.lineTo(p.x, p.y) }
ctx.closePath();
ctx.setTransform(1, 0, 0, 1, 0, 0);
ctx.stroke();
}
Example
The following renders a set of test polygons to ensure that the code is working as expected.
Polygons are rotated to start at the top and then rendered clock wise.
The example has had the vetting of input arguments removed.
const ctx = can.getContext("2d");
can.height = can.width = 512;
Math.PI2 = Math.PI * 2;
Math.TAU = Math.PI2;
Math.deg2Rad = Math.PI / 180;
const point = (x, y) => ({x, y});
const polarPoint = (ang, dist) => ({x: Math.cos(ang) * dist, y: Math.sin(ang) * dist});
function polygonFromAngles(sides, angles) {
function calcRatioOfAngle(ang, sides) {
const x = Math.cos(ang) - 1, y = Math.sin(ang);
const len2 = x * x + y * y;
const u = -x / len2;
const x1 = x * u + 1, y1 = y * u;
const d = (1 - (y1 * y1 + x1 * x1)) ** 0.5 / (len2 ** 0.5);
return Math.atan2(y1 + y * d, x1 + 1 + x * d) / (Math.PI * (sides - 2) / 2);
}
var ratios = [];
if (angles === undefined) {
const rat = 1 / sides;
while (sides--) { ratios.push(rat) }
} else {
ratios = angles.map(ang => calcRatioOfAngle(ang * Math.deg2Rad, angles.length));
ratios.unshift(ratios.pop());
}
var ang = 0;
const points = [];
for(const rat of ratios) {
ang += rat;
points.push(polarPoint(ang * Math.TAU, 1));
}
return points;
}
function drawPolygon(poly, x, y, radius, rot) {
const xdx = Math.cos(rot) * radius;
const xdy = Math.sin(rot) * radius;
ctx.setTransform(xdx, xdy, -xdy, xdx, x, y);
ctx.beginPath();
for (const p of poly) { ctx.lineTo(p.x, p.y) }
ctx.closePath();
ctx.setTransform(1, 0, 0, 1, 0, 0);
ctx.stroke();
}
const segs = 4;
const tests = [
[3], [, [45, 90, 45]], [, [90, 10, 80]], [, [60, 50, 70]], [, [40, 90, 50]],
[4], [, [90, 90, 90, 90]], [, [90, 60, 90, 120]],
[5], [, [108, 108, 108, 108, 108]], [, [58, 100, 166, 100, 116]],
[6], [, [120, 120, 120, 120, 120, 120]], [, [140, 100, 180, 100, 100, 100]],
[7], [8],
];
var angOffset = -Math.PI / 2; // rotation of poly
const w = ctx.canvas.width;
const h = ctx.canvas.height;
const wStep = w / segs;
const hStep = h / segs;
const radius = Math.min(w / segs, h / segs) / 2.2;
var x,y, idx = 0;
for (y = 0; y < segs && idx < tests.length; y ++) {
for (x = 0; x < segs && idx < tests.length; x ++) {
drawPolygon(polygonFromAngles(...tests[idx++]), (x + 0.5) * wStep , (y + 0.5) * hStep, radius, angOffset);
}
}
canvas {
border: 1px solid black;
}
<canvas id="can"></canvas>
I do just a few modification.
Constructor take angles on degree
When map angles to radian complement 180 because canvas use angles like counterclockwise. We wan to be clockwise
First point start using the passed rotation
const canvas = document.querySelector('canvas');
const c = canvas.getContext('2d');
let isMouseDown = false;
let tool = 'polygon';
let savedImageData;
canvas.height = window.innerHeight;
canvas.width = window.innerWidth;
const mouse = {x:null,y:null}
let mousedown = {x:null,y:null}
const toDegree = val => val * 180 / Math.PI;
const toRadian = val => val * Math.PI / 180;
class Polygon {
constructor(points, rotation, angles){
this.points = points;
this.rotation = toRadian(rotation);
//if angles array is not given
if(!angles){
/*get the angle for a regular polygon for given points.
3-points => 60
4-points => 90
5-points => 108
*/
let angle = (this.points - 2) * 180 / this.points;
//fill the angles array with the same angle
angles = Array(points).fill(angle);
}
this.angles = angles;
let sum = 0;
console.clear();
// To radians
this.angles = this.angles.map(x => {
x = 180 - x;
x = toRadian(x);
return x;
})
}
draw(startx, starty, endx, endy){
c.beginPath();
let rx = (endx - startx) / 2;
let ry = (endy - starty) / 2;
let r = Math.max(rx, ry)
c.font = '35px cursive'
let cx = startx + r;
let cy = starty + r;
c.fillRect(cx - 2, cy - 2, 4, 4); //marking the center
c.moveTo(cx + r, cy);
let sumAngle = 0;
let dx = cx + r * Math.cos(this.rotation);
let dy = cy + r * Math.sin(this.rotation);
c.moveTo(dx, dy);
for(let i = 0; i < this.points; i++){
sumAngle += this.angles[i];
dx = dx + r * Math.cos((sumAngle + this.rotation));
dy = dy + r * Math.sin((sumAngle + this.rotation));
c.strokeStyle = 'red';
c.strokeText(i, dx, dy, 100);
c.strokeStyle ='black';
c.lineTo(dx, dy);
}
c.closePath();
c.stroke();
}
}
//update();
c.beginPath();
c.lineWidth = 1;
document.addEventListener('mousemove', function(e){
//Getting the mouse coords according to canvas
const canvasData = canvas.getBoundingClientRect();
mouse.x = (e.x - canvasData.left) * (canvas.width / canvasData.width);
mouse.y = (e.y - canvasData.top) * (canvas.height / canvasData.height);
if(tool === 'polygon' && isMouseDown){
drawImageData();
let elRotation = document.getElementById("elRotation").value;
let rotation = elRotation.length == 0 ? 0 : parseInt(elRotation);
let elPoints = document.getElementById("elPoints").value;
let points = elPoints.length == 0 ? 3 : parseInt(elPoints);
let elAngles = document.getElementById("elAngles").value;
let angles = elAngles.length == 0 ? null : JSON.parse(elAngles);
let pol = new Polygon(points, rotation, angles);
pol.draw(mousedown.x, mousedown.y, mouse.x, mouse.y);
}
})
function saveImageData(){
savedImageData = c.getImageData(0, 0, canvas.width, canvas.height);
}
function drawImageData(){
c.putImageData(savedImageData, 0, 0)
}
document.addEventListener('mousedown', () => {
isMouseDown = true;
mousedown = {...mouse};
if(tool === 'polygon'){
saveImageData();
}
});
document.addEventListener('mouseup', () => isMouseDown = false);
<!DOCTYPE html>
<html lang="en">
<body>
Points: <input id="elPoints" style="width:30px" type="text" value="3" />
Rotation: <input id="elRotation" style="width:30px" type="text" value="0" />
Angles: <input id="elAngles" style="width:100px" type="text" value="[45, 45, 90]" />
<canvas></canvas>
</body>
</html>

Drawing parallel equidistant lines inside a circle

I'm trying to draw parallel equidistant lines inside a circle. I've got to the stage that if i connect points from their opposite angles on the circumference I get parallel lines... but they're not equidistant...
Here's some code:
var num_lines = 8;
var num_points = num_lines * 2;
var start_angle = 100;
var points = [];
var radius = 200;
ctx.strokeCircle(w/2, h/2, radius, radius); // shorthand for ctx.arc( x, y, 5, 0, Math.PI * 2, true );
for (var i = 0; i < num_points; i++) {
var angle = 360/num_points * i;
ctx.fillStyle = "red";
if (i %2 == 0 ) ctx.fillStyle = "blue";
var x = w/2 + Math.cos(angle) * radius/2;
var y = h/2 + Math.sin(angle) * radius/2;
ctx.circle(x, y, 10, 10); // shorthand for ctx.arc( x, y, 5, 0, Math.PI * 2, true );
points.push({x: x, y: y});
}
for (var i = 0; i < num_lines; i++) {
ctx.line(points[i].x, points[i].y, points[points.length-i-1].x, points[points.length-i-1].y)
}
Use Pythagoras' theorem.
The ...
y: vertical position of the line relative to the center
x: horizontal distance of its endpoints from the center
r: radius of the circle
... must satisfy y^2 + x^2 = r^2.
Code:
var radius = 200;
var num_lines = 8;
// vertical spacing
var delta_y = (2.0 * radius) / (num_lines + 1);
ctx.strokeCircle(w/2, h/2, radius, radius);
for (var i = 0; i < num_lines; i++)
{
// applying pythagoras
var y = delta_y * (i + 1) - radius / 2;
var x = Math.sqrt(radius * radius - y * y);
// calculating endpoints
var left_x = w / 2 - x;
var right_x = w / 2 + x;
var end_y = h / 2 + y;
ctx.fillStyle = (i % 2 == 0) ? "blue" : "red";
ctx.circle(left_x, end_y, 10, 10);
ctx.circle(right_x, end_y, 10, 10);
ctx.line(left_x, end_y, right_x, end_y);
}
EDIT: rotation
To rotate a vector by angle a clockwise:
x' = x * cos(a) + y * sin(a)
y' = y * cos(a) - x * sin(a)
Code:
var radius = 200;
var num_lines = 50;
var angle = 60;
// temporary variables
var delta_y = (2.0 * radius) / (num_lines);
var cos_a = Math.cos(angle * Math.PI / 180.0);
var sin_a = Math.sin(angle * Math.PI / 180.0);
ctx.strokeCircle(w / 2, h / 2, radius * 2, radius * 2);
for (var i = 0; i < num_lines; i++)
{
// applying pythagoras
var y = delta_y * i - radius;
var x = Math.sqrt(radius * radius - y * y);
// rotating the displacement vector
var left_x = y * sin_a + x * cos_a;
var right_x = y * sin_a - x * cos_a;
var left_y = y * cos_a - x * sin_a;
var right_y = y * cos_a + x * sin_a;
ctx.fillStyle = (i % 2 == 0) ? "blue" : "red";
ctx.line(w / 2 + left_x , h / 2 + left_y ,
w / 2 + right_x, h / 2 + right_y);
}
got it to work like so... wondering how I can rotate the lines at an angle (mathematically, not using ctx.translate and ctx.rotate ):
var radius = 200;
var num_lines = 50;
// vertical spacing
var delta_y = (2.0 * radius) / (num_lines);
ctx.strokeCircle(w/2, h/2, radius * 2, radius * 2);
for (var i = 0; i < num_lines; i++)
{
// applying pythagoras
var y = delta_y * (i) - radius;
var x = Math.sqrt(radius * radius - y * y);
// calculating endpoints
var left_x = w / 2 - x;
var right_x = w / 2 + x;
var end_y = h / 2 + y;
ctx.fillStyle = (i % 2 == 0) ? "blue" : "red";
ctx.line(left_x, end_y, right_x, end_y);
}

Categories