JavaScript script to detect Gibberish - javascript

I built an application to suggest email addresses fixes, and I need to detect email addresses that are basically not real existing email addresses, like the following:
14370afcdc17429f9e418d5ffbd0334a#magic.com
ce06e817-2149-6cfd-dd24-51b31e93ea1a#stackoverflow.org.il
87c0d782-e09f-056f-f544-c6ec9d17943c#microsoft.org.il
root#ns3160176.ip-151-106-35.eu
ds4-f1g-54-h5-dfg-yk-4gd-htr5-fdg5h#outlook.com
h-rt-dfg4-sv6-fg32-dsv5-vfd5-ds312#gmail.com
test#454-fs-ns-dff4-xhh-43d-frfs.com
I could do multi regex checks, but I don't think I will hit the good rate % of the suspected 'not-real' email addresses, as I go to a specific regex pattern each time.
I looked in:
Javascript script to find gibberish words in form inputs
Translate this JavaScript Gibberish please?
Detect keyboard mashed email addresses
Finally I looked over this:
Unable to detect gibberish names using Python
And It seems to fit my needs, I think. A script that will give me some score about the possibility of the each part of the email address to be a Gibberish (or not real) email address.
So what I want is the output to be:
const strings = ["14370afcdc17429f9e418d5ffbd0334a", "gmail", "ce06e817-2149-6cfd-dd24-51b31e93ea1a",
"87c0d782-e09f-056f-f544-c6ec9d17943c", "space-max", "ns3160176.ip-151-106-35",
"ds4-f1g-54-h5-dfg-yk-4gd-htr5-fdg5h", "outlook", "h-rt-dfg4-sv6-fg32-dsv5-vfd5-
ds312", "system-analytics", "454-fs-ns-dff4-xhh-43d-frfs"];
for (let i = 0; i < strings.length; i++) {
validateGibbrish(strings[i]);
}
And this validateGibberish function logic will be similar to this python code:
from nltk.corpus import brown
from collections import Counter
import numpy as np
text = '\n'.join([' '.join([w for w in s]) for s in brown.sents()])
unigrams = Counter(text)
bigrams = Counter(text[i:(i+2)] for i in range(len(text)-2))
trigrams = Counter(text[i:(i+3)] for i in range(len(text)-3))
weights = [0.001, 0.01, 0.989]
def strangeness(text):
r = 0
text = ' ' + text + '\n'
for i in range(2, len(text)):
char = text[i]
context1 = text[(i-1):i]
context2 = text[(i-2):i]
num = unigrams[char] * weights[0] + bigrams[context1+char] * weights[1] + trigrams[context2+char] * weights[2]
den = sum(unigrams.values()) * weights[0] + unigrams[char] + weights[1] + bigrams[context1] * weights[2]
r -= np.log(num / den)
return r / (len(text) - 2)
So in the end I will loop on all the strings and get something like this:
"14370afcdc17429f9e418d5ffbd0334a" -> 8.9073
"gmail" -> 1.0044
"ce06e817-2149-6cfd-dd24-51b31e93ea1a" -> 7.4261
"87c0d782-e09f-056f-f544-c6ec9d17943c" -> 8.3916
"space-max" -> 1.3553
"ns3160176.ip-151-106-35" -> 6.2584
"ds4-f1g-54-h5-dfg-yk-4gd-htr5-fdg5h" -> 7.1796
"outlook" -> 1.6694
"h-rt-dfg4-sv6-fg32-dsv5-vfd5-ds312" -> 8.5734
"system-analytics" -> 1.9489
"454-fs-ns-dff4-xhh-43d-frfs" -> 7.7058
Does anybody have a hint how to do it and can help?
Thanks a lot :)
UPDATE (12-22-2020)
I manage to write some code based on #Konstantin Pribluda answer, the Shannon entropy calculation:
const getFrequencies = str => {
let dict = new Set(str);
return [...dict].map(chr => {
return str.match(new RegExp(chr, 'g')).length;
});
};
// Measure the entropy of a string in bits per symbol.
const entropy = str => getFrequencies(str)
.reduce((sum, frequency) => {
let p = frequency / str.length;
return sum - (p * Math.log(p) / Math.log(2));
}, 0);
const strings = ['14370afcdc17429f9e418d5ffbd0334a', 'or', 'sdf', 'test', 'dave coperfield', 'gmail', 'ce06e817-2149-6cfd-dd24-51b31e93ea1a',
'87c0d782-e09f-056f-f544-c6ec9d17943c', 'space-max', 'ns3160176.ip-151-106-35',
'ds4-f1g-54-h5-dfg-yk-4gd-htr5-fdg5h', 'outlook', 'h-rt-dfg4-sv6-fg32-dsv5-vfd5-ds312', 'system-analytics', '454-fs-ns-dff4-xhh-43d-frfs'];
for (let i = 0; i < strings.length; i++) {
const str = strings[i];
let result = 0;
try {
result = entropy(str);
}
catch (error) { result = 0; }
console.log(`Entropy of '${str}' in bits per symbol:`, result);
}
The output is:
Entropy of '14370afcdc17429f9e418d5ffbd0334a' in bits per symbol: 3.7417292966721747
Entropy of 'or' in bits per symbol: 1
Entropy of 'sdf' in bits per symbol: 1.584962500721156
Entropy of 'test' in bits per symbol: 1.5
Entropy of 'dave coperfield' in bits per symbol: 3.4565647621309536
Entropy of 'gmail' in bits per symbol: 2.3219280948873626
Entropy of 'ce06e817-2149-6cfd-dd24-51b31e93ea1a' in bits per symbol: 3.882021446536749
Entropy of '87c0d782-e09f-056f-f544-c6ec9d17943c' in bits per symbol: 3.787301737252941
Entropy of 'space-max' in bits per symbol: 2.94770277922009
Entropy of 'ns3160176.ip-151-106-35' in bits per symbol: 3.1477803284561103
Entropy of 'ds4-f1g-54-h5-dfg-yk-4gd-htr5-fdg5h' in bits per symbol: 3.3502926596166693
Entropy of 'outlook' in bits per symbol: 2.1280852788913944
Entropy of 'h-rt-dfg4-sv6-fg32-dsv5-vfd5-ds312' in bits per symbol: 3.619340871812292
Entropy of 'system-analytics' in bits per symbol: 3.327819531114783
Entropy of '454-fs-ns-dff4-xhh-43d-frfs' in bits per symbol: 3.1299133176846836
It's still not working as expected, as 'dave coperfield' gets about the same points as other gibberish results.
Anyone else have better logic or ideas on how to do it?

This is what I come up with:
// gibberish detector js
(function (h) {
function e(c, b, a) { return c < b ? (a = b - c, Math.log(b) / Math.log(a) * 100) : c > a ? (b = c - a, Math.log(100 - a) / Math.log(b) * 100) : 0 } function k(c) { for (var b = {}, a = "", d = 0; d < c.length; ++d)c[d] in b || (b[c[d]] = 1, a += c[d]); return a } h.detect = function (c) {
if (0 === c.length || !c.trim()) return 0; for (var b = c, a = []; a.length < b.length / 35;)a.push(b.substring(0, 35)), b = b.substring(36); 1 <= a.length && 10 > a[a.length - 1].length && (a[a.length - 2] += a[a.length - 1], a.pop()); for (var b = [], d = 0; d < a.length; d++)b.push(k(a[d]).length); a = 100 * b; for (d = b =
0; d < a.length; d++)b += parseFloat(a[d], 10); a = b / a.length; for (var f = d = b = 0; f < c.length; f++) { var g = c.charAt(f); g.match(/^[a-zA-Z]+$/) && (g.match(/^(a|e|i|o|u)$/i) && b++, d++) } b = 0 !== d ? b / d * 100 : 0; c = c.split(/[\W_]/).length / c.length * 100; a = Math.max(1, e(a, 45, 50)); b = Math.max(1, e(b, 35, 45)); c = Math.max(1, e(c, 15, 20)); return Math.max(1, (Math.log10(a) + Math.log10(b) + Math.log10(c)) / 6 * 100)
}
})("undefined" === typeof exports ? this.gibberish = {} : exports)
// email syntax validator
function validateSyntax(email) {
return /^(([^<>()[\]\\.,;:\s#"]+(\.[^<>()[\]\\.,;:\s#"]+)*)|(".+"))#((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\])|(([a-zA-Z\-0-9]+\.)+[a-zA-Z]{2,}))$/.test(email.toLowerCase());
}
// shannon entropy
function entropy(str) {
return Object.values(Array.from(str).reduce((freq, c) => (freq[c] = (freq[c] || 0) + 1) && freq, {})).reduce((sum, f) => sum - f / str.length * Math.log2(f / str.length), 0)
}
// vowel counter
function countVowels(word) {
var m = word.match(/[aeiou]/gi);
return m === null ? 0 : m.length;
}
// dummy function
function isTrue(value){
return value
}
// validate string by multiple tests
function detectGibberish(str){
var strWithoutPunct = str.replace(/[.,\/#!$%\^&\*;:{}=\-_`~()]/g,"");
var entropyValue = entropy(str) < 3.5;
var gibberishValue = gibberish.detect(str) < 50;
var vovelValue = 30 < 100 / strWithoutPunct.length * countVowels(strWithoutPunct) && 100 / strWithoutPunct.length * countVowels(str) < 35;
return [entropyValue, gibberishValue, vovelValue].filter(isTrue).length > 1
}
// main function
function validateEmail(email) {
return validateSyntax(email) ? detectGibberish(email.split("#")[0]) : false
}
// tests
document.write(validateEmail("dsfghjdhjs#gmail.com") + "<br/>")
document.write(validateEmail("jhon.smith#gmail.com"))
I have combined multiple tests: gibberish-detector.js, Shannon entropy and counting vowels (between 30% and 35%). You can adjust some values for more accurate result.

A thing you may consider doing is checking each time how random each string is, then sort the results according to their score and given a threshold exclude the ones with high randomness. It is inevitable that you will miss some.
There are some implementations for checking the randomness of strings, for example:
https://en.wikipedia.org/wiki/Diehard_tests
http://www.cacert.at/random/
You may have to create a hash (to map chars and symbols to sequences of integers) before you apply some of these because some work only with integers, since they test properties of random numbers generators.
Also a stack exchange link that can be of help is this:
https://stats.stackexchange.com/questions/371150/check-if-a-character-string-is-not-random
PS. I am having a similar problem in a service since robots create accounts with these type of fake emails. After years of dealing with this issue (basically deleting manually from the DB the fake emails) I am now considering introducing a visual check (captcha) in the signup page to avoid the frustration.

Related

Diffie Hellman Key Exhange not working (Javascript)

I tried to create the Diffie Hellman key exchange system in javascript without plugins. My code unfortunately doesn't work and often creates 2 different secret keys.
Code:
var g = next_Prime_num(Math.ceil(Math.random() * 50));
var n = next_Prime_num(Math.ceil(Math.random() * 50) + 50);
var a = Math.ceil(Math.random() * (n - 1));
var b = Math.ceil(Math.random() * (n - 1));
var A = mod(Math.pow(g, a), n);
var B = mod(Math.pow(g, b), n);
var Ka = mod(Math.pow(B, a), n);
var Kb = mod(Math.pow(A, b), n);
function next_Prime_num(num) {
for (var i = num + 1;; i++) {
var isPrime = true;
for (var d = 2; d * d <= i; d++) {
if (i % d === 0) {
isPrime = false;
break;
}
}
if (isPrime) {
return i;
}
}
}
function mod(n, m) {
return n%m;
}
n: must be a prime number yes, but
g: must be a primitive root of n, and not a just prime number
this is your mistake, you have to add another function to get a primitive root from the givin prim number
The Math.pow() in there is definitely going to have integer overflows every now and then. In javascript the maximum integer you can have without loosing precision or maximum safe integer is (253 - 1) or 9007199254740991 .
What you can do is create a power function which uses modular exponentiation.
Check out this similar question - Diffie-Hellman Key Exchange with Javascript sometimes wrong

How to generate trillions of random IDs quickly [duplicate]

How do I create GUIDs (globally-unique identifiers) in JavaScript? The GUID / UUID should be at least 32 characters and should stay in the ASCII range to avoid trouble when passing them around.
I'm not sure what routines are available on all browsers, how "random" and seeded the built-in random number generator is, etc.
[Edited 2021-10-16 to reflect latest best-practices for producing RFC4122-compliant UUIDs]
Most readers here will want to use the uuid module. It is well-tested and supported.
The crypto.randomUUID() function is an emerging standard that is supported in Node.js and an increasing number of browsers. However because new browser APIs are restricted to secure contexts this method is only available to pages served locally (localhost or 127.0.0.1) or over HTTPS. If you're interested in seeing this restriction lifted for crypto.randomUUID() you can follow this GitHub issue.
If neither of those work for you, there is this method (based on the original answer to this question):
function uuidv4() {
return ([1e7]+-1e3+-4e3+-8e3+-1e11).replace(/[018]/g, c =>
(c ^ crypto.getRandomValues(new Uint8Array(1))[0] & 15 >> c / 4).toString(16)
);
}
console.log(uuidv4());
Note: The use of any UUID generator that relies on Math.random() is strongly discouraged (including snippets featured in previous versions of this answer) for reasons best explained here. TL;DR: solutions based on Math.random() do not provide good uniqueness guarantees.
UUIDs (Universally Unique IDentifier), also known as GUIDs (Globally Unique IDentifier), according to RFC 4122, are identifiers designed to provide certain uniqueness guarantees.
While it is possible to implement RFC-compliant UUIDs in a few lines of JavaScript code (e.g., see #broofa's answer, below) there are several common pitfalls:
Invalid id format (UUIDs must be of the form "xxxxxxxx-xxxx-Mxxx-Nxxx-xxxxxxxxxxxx", where x is one of [0-9, a-f] M is one of [1-5], and N is [8, 9, a, or b]
Use of a low-quality source of randomness (such as Math.random)
Thus, developers writing code for production environments are encouraged to use a rigorous, well-maintained implementation such as the uuid module.
I really like how clean Broofa's answer is, but it's unfortunate that poor implementations of Math.random leave the chance for collision.
Here's a similar RFC4122 version 4 compliant solution that solves that issue by offsetting the first 13 hex numbers by a hex portion of the timestamp, and once depleted offsets by a hex portion of the microseconds since pageload. That way, even if Math.random is on the same seed, both clients would have to generate the UUID the exact same number of microseconds since pageload (if high-perfomance time is supported) AND at the exact same millisecond (or 10,000+ years later) to get the same UUID:
function generateUUID() { // Public Domain/MIT
var d = new Date().getTime();//Timestamp
var d2 = ((typeof performance !== 'undefined') && performance.now && (performance.now()*1000)) || 0;//Time in microseconds since page-load or 0 if unsupported
return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(c) {
var r = Math.random() * 16;//random number between 0 and 16
if(d > 0){//Use timestamp until depleted
r = (d + r)%16 | 0;
d = Math.floor(d/16);
} else {//Use microseconds since page-load if supported
r = (d2 + r)%16 | 0;
d2 = Math.floor(d2/16);
}
return (c === 'x' ? r : (r & 0x3 | 0x8)).toString(16);
});
}
var onClick = function(){
document.getElementById('uuid').textContent = generateUUID();
}
onClick();
#uuid { font-family: monospace; font-size: 1.5em; }
<p id="uuid"></p>
<button id="generateUUID" onclick="onClick();">Generate UUID</button>
Here's a fiddle to test.
Modernized snippet for ES6
const generateUUID = () => {
let
d = new Date().getTime(),
d2 = ((typeof performance !== 'undefined') && performance.now && (performance.now() * 1000)) || 0;
return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, c => {
let r = Math.random() * 16;
if (d > 0) {
r = (d + r) % 16 | 0;
d = Math.floor(d / 16);
} else {
r = (d2 + r) % 16 | 0;
d2 = Math.floor(d2 / 16);
}
return (c == 'x' ? r : (r & 0x7 | 0x8)).toString(16);
});
};
const onClick = (e) => document.getElementById('uuid').textContent = generateUUID();
document.getElementById('generateUUID').addEventListener('click', onClick);
onClick();
#uuid { font-family: monospace; font-size: 1.5em; }
<p id="uuid"></p>
<button id="generateUUID">Generate UUID</button>
broofa's answer is pretty slick, indeed - impressively clever, really... RFC4122 compliant, somewhat readable, and compact. Awesome!
But if you're looking at that regular expression, those many replace() callbacks, toString()'s and Math.random() function calls (where he's only using four bits of the result and wasting the rest), you may start to wonder about performance. Indeed, joelpt even decided to toss out an RFC for generic GUID speed with generateQuickGUID.
But, can we get speed and RFC compliance? I say, YES! Can we maintain readability? Well... Not really, but it's easy if you follow along.
But first, my results, compared to broofa, guid (the accepted answer), and the non-rfc-compliant generateQuickGuid:
Desktop Android
broofa: 1617ms 12869ms
e1: 636ms 5778ms
e2: 606ms 4754ms
e3: 364ms 3003ms
e4: 329ms 2015ms
e5: 147ms 1156ms
e6: 146ms 1035ms
e7: 105ms 726ms
guid: 962ms 10762ms
generateQuickGuid: 292ms 2961ms
- Note: 500k iterations, results will vary by browser/CPU.
So by my 6th iteration of optimizations, I beat the most popular answer by over 12 times, the accepted answer by over 9 times, and the fast-non-compliant answer by 2-3 times. And I'm still RFC 4122 compliant.
Interested in how? I've put the full source on http://jsfiddle.net/jcward/7hyaC/3/ and on https://jsben.ch/xczxS
For an explanation, let's start with broofa's code:
function broofa() {
return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(c) {
var r = Math.random()*16|0, v = c == 'x' ? r : (r&0x3|0x8);
return v.toString(16);
});
}
console.log(broofa())
So it replaces x with any random hexadecimal digit, y with random data (except forcing the top two bits to 10 per the RFC spec), and the regex doesn't match the - or 4 characters, so he doesn't have to deal with them. Very, very slick.
The first thing to know is that function calls are expensive, as are regular expressions (though he only uses 1, it has 32 callbacks, one for each match, and in each of the 32 callbacks it calls Math.random() and v.toString(16)).
The first step toward performance is to eliminate the RegEx and its callback functions and use a simple loop instead. This means we have to deal with the - and 4 characters whereas broofa did not. Also, note that we can use String Array indexing to keep his slick String template architecture:
function e1() {
var u='',i=0;
while(i++<36) {
var c='xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'[i-1],r=Math.random()*16|0,v=c=='x'?r:(r&0x3|0x8);
u+=(c=='-'||c=='4')?c:v.toString(16)
}
return u;
}
console.log(e1())
Basically, the same inner logic, except we check for - or 4, and using a while loop (instead of replace() callbacks) gets us an almost 3X improvement!
The next step is a small one on the desktop but makes a decent difference on mobile. Let's make fewer Math.random() calls and utilize all those random bits instead of throwing 87% of them away with a random buffer that gets shifted out each iteration. Let's also move that template definition out of the loop, just in case it helps:
function e2() {
var u='',m='xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx',i=0,rb=Math.random()*0xffffffff|0;
while(i++<36) {
var c=m[i-1],r=rb&0xf,v=c=='x'?r:(r&0x3|0x8);
u+=(c=='-'||c=='4')?c:v.toString(16);rb=i%8==0?Math.random()*0xffffffff|0:rb>>4
}
return u
}
console.log(e2())
This saves us 10-30% depending on platform. Not bad. But the next big step gets rid of the toString function calls altogether with an optimization classic - the look-up table. A simple 16-element lookup table will perform the job of toString(16) in much less time:
function e3() {
var h='0123456789abcdef';
var k='xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx';
/* same as e4() below */
}
function e4() {
var h=['0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f'];
var k=['x','x','x','x','x','x','x','x','-','x','x','x','x','-','4','x','x','x','-','y','x','x','x','-','x','x','x','x','x','x','x','x','x','x','x','x'];
var u='',i=0,rb=Math.random()*0xffffffff|0;
while(i++<36) {
var c=k[i-1],r=rb&0xf,v=c=='x'?r:(r&0x3|0x8);
u+=(c=='-'||c=='4')?c:h[v];rb=i%8==0?Math.random()*0xffffffff|0:rb>>4
}
return u
}
console.log(e4())
The next optimization is another classic. Since we're only handling four bits of output in each loop iteration, let's cut the number of loops in half and process eight bits in each iteration. This is tricky since we still have to handle the RFC compliant bit positions, but it's not too hard. We then have to make a larger lookup table (16x16, or 256) to store 0x00 - 0xFF, and we build it only once, outside the e5() function.
var lut = []; for (var i=0; i<256; i++) { lut[i] = (i<16?'0':'')+(i).toString(16); }
function e5() {
var k=['x','x','x','x','-','x','x','-','4','x','-','y','x','-','x','x','x','x','x','x'];
var u='',i=0,rb=Math.random()*0xffffffff|0;
while(i++<20) {
var c=k[i-1],r=rb&0xff,v=c=='x'?r:(c=='y'?(r&0x3f|0x80):(r&0xf|0x40));
u+=(c=='-')?c:lut[v];rb=i%4==0?Math.random()*0xffffffff|0:rb>>8
}
return u
}
console.log(e5())
I tried an e6() that processes 16-bits at a time, still using the 256-element LUT, and it showed the diminishing returns of optimization. Though it had fewer iterations, the inner logic was complicated by the increased processing, and it performed the same on desktop, and only ~10% faster on mobile.
The final optimization technique to apply - unroll the loop. Since we're looping a fixed number of times, we can technically write this all out by hand. I tried this once with a single random variable, r, that I kept reassigning, and performance tanked. But with four variables assigned random data up front, then using the lookup table, and applying the proper RFC bits, this version smokes them all:
var lut = []; for (var i=0; i<256; i++) { lut[i] = (i<16?'0':'')+(i).toString(16); }
function e7()
{
var d0 = Math.random()*0xffffffff|0;
var d1 = Math.random()*0xffffffff|0;
var d2 = Math.random()*0xffffffff|0;
var d3 = Math.random()*0xffffffff|0;
return lut[d0&0xff]+lut[d0>>8&0xff]+lut[d0>>16&0xff]+lut[d0>>24&0xff]+'-'+
lut[d1&0xff]+lut[d1>>8&0xff]+'-'+lut[d1>>16&0x0f|0x40]+lut[d1>>24&0xff]+'-'+
lut[d2&0x3f|0x80]+lut[d2>>8&0xff]+'-'+lut[d2>>16&0xff]+lut[d2>>24&0xff]+
lut[d3&0xff]+lut[d3>>8&0xff]+lut[d3>>16&0xff]+lut[d3>>24&0xff];
}
console.log(e7())
Modualized: http://jcward.com/UUID.js - UUID.generate()
The funny thing is, generating 16 bytes of random data is the easy part. The whole trick is expressing it in string format with RFC compliance, and it's most tightly accomplished with 16 bytes of random data, an unrolled loop and lookup table.
I hope my logic is correct -- it's very easy to make a mistake in this kind of tedious bit work. But the outputs look good to me. I hope you enjoyed this mad ride through code optimization!
Be advised: my primary goal was to show and teach potential optimization strategies. Other answers cover important topics such as collisions and truly random numbers, which are important for generating good UUIDs.
Use:
let uniqueId = Date.now().toString(36) + Math.random().toString(36).substring(2);
document.getElementById("unique").innerHTML =
Math.random().toString(36).substring(2) + (new Date()).getTime().toString(36);
<div id="unique">
</div>
If IDs are generated more than 1 millisecond apart, they are 100% unique.
If two IDs are generated at shorter intervals, and assuming that the random method is truly random, this would generate IDs that are 99.99999999999999% likely to be globally unique (collision in 1 of 10^15).
You can increase this number by adding more digits, but to generate 100% unique IDs you will need to use a global counter.
If you need RFC compatibility, this formatting will pass as a valid version 4 GUID:
let u = Date.now().toString(16) + Math.random().toString(16) + '0'.repeat(16);
let guid = [u.substr(0,8), u.substr(8,4), '4000-8' + u.substr(13,3), u.substr(16,12)].join('-');
let u = Date.now().toString(16)+Math.random().toString(16)+'0'.repeat(16);
let guid = [u.substr(0,8), u.substr(8,4), '4000-8' + u.substr(13,3), u.substr(16,12)].join('-');
document.getElementById("unique").innerHTML = guid;
<div id="unique">
</div>
The above code follow the intention, but not the letter of the RFC. Among other discrepancies it's a few random digits short. (Add more random digits if you need it) The upside is that this is really fast :)
You can test validity of your GUID here
Here's some code based on RFC 4122, section 4.4 (Algorithms for Creating a UUID from Truly Random or Pseudo-Random Number).
function createUUID() {
// http://www.ietf.org/rfc/rfc4122.txt
var s = [];
var hexDigits = "0123456789abcdef";
for (var i = 0; i < 36; i++) {
s[i] = hexDigits.substr(Math.floor(Math.random() * 0x10), 1);
}
s[14] = "4"; // bits 12-15 of the time_hi_and_version field to 0010
s[19] = hexDigits.substr((s[19] & 0x3) | 0x8, 1); // bits 6-7 of the clock_seq_hi_and_reserved to 01
s[8] = s[13] = s[18] = s[23] = "-";
var uuid = s.join("");
return uuid;
}
This is the fastest GUID-like string generator method in the format XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX. It does not generate a standard-compliant GUID.
Ten million executions of this implementation take just 32.5 seconds, which is the fastest I've ever seen in a browser (the only solution without loops/iterations).
The function is as simple as:
/**
* Generates a GUID string.
* #returns {string} The generated GUID.
* #example af8a8416-6e18-a307-bd9c-f2c947bbb3aa
* #author Slavik Meltser.
* #link http://slavik.meltser.info/?p=142
*/
function guid() {
function _p8(s) {
var p = (Math.random().toString(16)+"000000000").substr(2,8);
return s ? "-" + p.substr(0,4) + "-" + p.substr(4,4) : p ;
}
return _p8() + _p8(true) + _p8(true) + _p8();
}
To test the performance, you can run this code:
console.time('t');
for (var i = 0; i < 10000000; i++) {
guid();
};
console.timeEnd('t');
I'm sure most of you will understand what I did there, but maybe there is at least one person that will need an explanation:
The algorithm:
The Math.random() function returns a decimal number between 0 and 1 with 16 digits after the decimal fraction point (for
example 0.4363923368509859).
Then we take this number and convert
it to a string with base 16 (from the example above we'll get
0.6fb7687f).
Math.random().toString(16).
Then we cut off the 0. prefix (0.6fb7687f =>
6fb7687f) and get a string with eight hexadecimal
characters long.
(Math.random().toString(16).substr(2,8).
Sometimes the Math.random() function will return
shorter number (for example 0.4363), due to zeros at the end (from the example above, actually the number is 0.4363000000000000). That's why I'm appending to this string "000000000" (a string with nine zeros) and then cutting it off with substr() function to make it nine characters exactly (filling zeros to the right).
The reason for adding exactly nine zeros is because of the worse case scenario, which is when the Math.random() function will return exactly 0 or 1 (probability of 1/10^16 for each one of them). That's why we needed to add nine zeros to it ("0"+"000000000" or "1"+"000000000"), and then cutting it off from the second index (third character) with a length of eight characters. For the rest of the cases, the addition of zeros will not harm the result because it is cutting it off anyway.
Math.random().toString(16)+"000000000").substr(2,8).
The assembly:
The GUID is in the following format XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX.
I divided the GUID into four pieces, each piece divided into two types (or formats): XXXXXXXX and -XXXX-XXXX.
Now I'm building the GUID using these two types to assemble the GUID with call four pieces, as follows: XXXXXXXX -XXXX-XXXX -XXXX-XXXX XXXXXXXX.
To differ between these two types, I added a flag parameter to a pair creator function _p8(s), the s parameter tells the function whether to add dashes or not.
Eventually we build the GUID with the following chaining: _p8() + _p8(true) + _p8(true) + _p8(), and return it.
Link to this post on my blog
Enjoy! :-)
Here is a totally non-compliant but very performant implementation to generate an ASCII-safe GUID-like unique identifier.
function generateQuickGuid() {
return Math.random().toString(36).substring(2, 15) +
Math.random().toString(36).substring(2, 15);
}
Generates 26 [a-z0-9] characters, yielding a UID that is both shorter and more unique than RFC compliant GUIDs. Dashes can be trivially added if human-readability matters.
Here are usage examples and timings for this function and several of this question's other answers. The timing was performed under Chrome m25, 10 million iterations each.
>>> generateQuickGuid()
"nvcjf1hs7tf8yyk4lmlijqkuo9"
"yq6gipxqta4kui8z05tgh9qeel"
"36dh5sec7zdj90sk2rx7pjswi2"
runtime: 32.5s
>>> GUID() // John Millikin
"7a342ca2-e79f-528e-6302-8f901b0b6888"
runtime: 57.8s
>>> regexGuid() // broofa
"396e0c46-09e4-4b19-97db-bd423774a4b3"
runtime: 91.2s
>>> createUUID() // Kevin Hakanson
"403aa1ab-9f70-44ec-bc08-5d5ac56bd8a5"
runtime: 65.9s
>>> UUIDv4() // Jed Schmidt
"f4d7d31f-fa83-431a-b30c-3e6cc37cc6ee"
runtime: 282.4s
>>> Math.uuid() // broofa
"5BD52F55-E68F-40FC-93C2-90EE069CE545"
runtime: 225.8s
>>> Math.uuidFast() // broofa
"6CB97A68-23A2-473E-B75B-11263781BBE6"
runtime: 92.0s
>>> Math.uuidCompact() // broofa
"3d7b7a06-0a67-4b67-825c-e5c43ff8c1e8"
runtime: 229.0s
>>> bitwiseGUID() // jablko
"baeaa2f-7587-4ff1-af23-eeab3e92"
runtime: 79.6s
>>>> betterWayGUID() // Andrea Turri
"383585b0-9753-498d-99c3-416582e9662c"
runtime: 60.0s
>>>> UUID() // John Fowler
"855f997b-4369-4cdb-b7c9-7142ceaf39e8"
runtime: 62.2s
Here is the timing code.
var r;
console.time('t');
for (var i = 0; i < 10000000; i++) {
r = FuncToTest();
};
console.timeEnd('t');
From sagi shkedy's technical blog:
function generateGuid() {
var result, i, j;
result = '';
for(j=0; j<32; j++) {
if( j == 8 || j == 12 || j == 16 || j == 20)
result = result + '-';
i = Math.floor(Math.random()*16).toString(16).toUpperCase();
result = result + i;
}
return result;
}
There are other methods that involve using an ActiveX control, but stay away from these!
I thought it was worth pointing out that no GUID generator can guarantee unique keys (check the Wikipedia article). There is always a chance of collisions. A GUID simply offers a large enough universe of keys to reduce the change of collisions to almost nil.
Here is a combination of the top voted answer, with a workaround for Chrome's collisions:
generateGUID = (typeof(window.crypto) != 'undefined' &&
typeof(window.crypto.getRandomValues) != 'undefined') ?
function() {
// If we have a cryptographically secure PRNG, use that
// https://stackoverflow.com/questions/6906916/collisions-when-generating-uuids-in-javascript
var buf = new Uint16Array(8);
window.crypto.getRandomValues(buf);
var S4 = function(num) {
var ret = num.toString(16);
while(ret.length < 4){
ret = "0"+ret;
}
return ret;
};
return (S4(buf[0])+S4(buf[1])+"-"+S4(buf[2])+"-"+S4(buf[3])+"-"+S4(buf[4])+"-"+S4(buf[5])+S4(buf[6])+S4(buf[7]));
}
:
function() {
// Otherwise, just use Math.random
// https://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/2117523#2117523
return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(c) {
var r = Math.random()*16|0, v = c == 'x' ? r : (r&0x3|0x8);
return v.toString(16);
});
};
It is on jsbin if you want to test it.
Here's a solution dated Oct. 9, 2011 from a comment by user jed at https://gist.github.com/982883:
UUIDv4 = function b(a){return a?(a^Math.random()*16>>a/4).toString(16):([1e7]+-1e3+-4e3+-8e3+-1e11).replace(/[018]/g,b)}
This accomplishes the same goal as the current highest-rated answer, but in 50+ fewer bytes by exploiting coercion, recursion, and exponential notation. For those curious how it works, here's the annotated form of an older version of the function:
UUIDv4 =
function b(
a // placeholder
){
return a // if the placeholder was passed, return
? ( // a random number from 0 to 15
a ^ // unless b is 8,
Math.random() // in which case
* 16 // a random number from
>> a/4 // 8 to 11
).toString(16) // in hexadecimal
: ( // or otherwise a concatenated string:
[1e7] + // 10000000 +
-1e3 + // -1000 +
-4e3 + // -4000 +
-8e3 + // -80000000 +
-1e11 // -100000000000,
).replace( // replacing
/[018]/g, // zeroes, ones, and eights with
b // random hex digits
)
}
You can use node-uuid. It provides simple, fast generation of RFC4122 UUIDS.
Features:
Generate RFC4122 version 1 or version 4 UUIDs
Runs in Node.js and browsers.
Cryptographically strong random # generation on supporting platforms.
Small footprint (Want something smaller? Check this out!)
Install Using NPM:
npm install uuid
Or using uuid via a browser:
Download Raw File (uuid v1): https://raw.githubusercontent.com/kelektiv/node-uuid/master/v1.js
Download Raw File (uuid v4): https://raw.githubusercontent.com/kelektiv/node-uuid/master/v4.js
Want even smaller? Check this out: https://gist.github.com/jed/982883
Usage:
// Generate a v1 UUID (time-based)
const uuidV1 = require('uuid/v1');
uuidV1(); // -> '6c84fb90-12c4-11e1-840d-7b25c5ee775a'
// Generate a v4 UUID (random)
const uuidV4 = require('uuid/v4');
uuidV4(); // -> '110ec58a-a0f2-4ac4-8393-c866d813b8d1'
// Generate a v5 UUID (namespace)
const uuidV5 = require('uuid/v5');
// ... using predefined DNS namespace (for domain names)
uuidV5('hello.example.com', v5.DNS)); // -> 'fdda765f-fc57-5604-a269-52a7df8164ec'
// ... using predefined URL namespace (for, well, URLs)
uuidV5('http://example.com/hello', v5.URL); // -> '3bbcee75-cecc-5b56-8031-b6641c1ed1f1'
// ... using a custom namespace
const MY_NAMESPACE = '(previously generated unique uuid string)';
uuidV5('hello', MY_NAMESPACE); // -> '90123e1c-7512-523e-bb28-76fab9f2f73d'
ECMAScript 2015 (ES6):
import uuid from 'uuid/v4';
const id = uuid();
var uuid = function() {
var buf = new Uint32Array(4);
window.crypto.getRandomValues(buf);
var idx = -1;
return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(c) {
idx++;
var r = (buf[idx>>3] >> ((idx%8)*4))&15;
var v = c == 'x' ? r : (r&0x3|0x8);
return v.toString(16);
});
};
This version is based on Briguy37's answer and some bitwise operators to extract nibble sized windows from the buffer.
It should adhere to the RFC Type 4 (random) schema, since I had problems last time parsing non-compliant UUIDs with Java's UUID.
This creates a version 4 UUID (created from pseudo random numbers):
function uuid()
{
var chars = '0123456789abcdef'.split('');
var uuid = [], rnd = Math.random, r;
uuid[8] = uuid[13] = uuid[18] = uuid[23] = '-';
uuid[14] = '4'; // version 4
for (var i = 0; i < 36; i++)
{
if (!uuid[i])
{
r = 0 | rnd()*16;
uuid[i] = chars[(i == 19) ? (r & 0x3) | 0x8 : r & 0xf];
}
}
return uuid.join('');
}
Here is a sample of the UUIDs generated:
682db637-0f31-4847-9cdf-25ba9613a75c
97d19478-3ab2-4aa1-b8cc-a1c3540f54aa
2eed04c9-2692-456d-a0fd-51012f947136
One line solution using Blobs.
window.URL.createObjectURL(new Blob([])).substring(31);
The value at the end (31) depends on the length of the URL.
EDIT:
A more compact and universal solution, as suggested by rinogo:
URL.createObjectURL(new Blob([])).substr(-36);
Simple JavaScript module as a combination of best answers in this question.
var crypto = window.crypto || window.msCrypto || null; // IE11 fix
var Guid = Guid || (function() {
var EMPTY = '00000000-0000-0000-0000-000000000000';
var _padLeft = function(paddingString, width, replacementChar) {
return paddingString.length >= width ? paddingString : _padLeft(replacementChar + paddingString, width, replacementChar || ' ');
};
var _s4 = function(number) {
var hexadecimalResult = number.toString(16);
return _padLeft(hexadecimalResult, 4, '0');
};
var _cryptoGuid = function() {
var buffer = new window.Uint16Array(8);
crypto.getRandomValues(buffer);
return [_s4(buffer[0]) + _s4(buffer[1]), _s4(buffer[2]), _s4(buffer[3]), _s4(buffer[4]), _s4(buffer[5]) + _s4(buffer[6]) + _s4(buffer[7])].join('-');
};
var _guid = function() {
var currentDateMilliseconds = new Date().getTime();
return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(currentChar) {
var randomChar = (currentDateMilliseconds + Math.random() * 16) % 16 | 0;
currentDateMilliseconds = Math.floor(currentDateMilliseconds / 16);
return (currentChar === 'x' ? randomChar : (randomChar & 0x7 | 0x8)).toString(16);
});
};
var create = function() {
var hasCrypto = crypto != 'undefined' && crypto !== null,
hasRandomValues = typeof(window.crypto.getRandomValues) != 'undefined';
return (hasCrypto && hasRandomValues) ? _cryptoGuid() : _guid();
};
return {
newGuid: create,
empty: EMPTY
};
})();
// DEMO: Create and show GUID
console.log('1. New Guid: ' + Guid.newGuid());
// DEMO: Show empty GUID
console.log('2. Empty Guid: ' + Guid.empty);
Usage:
Guid.newGuid()
"c6c2d12f-d76b-5739-e551-07e6de5b0807"
Guid.empty
"00000000-0000-0000-0000-000000000000"
The version below is an adaptation of broofa's answer, but updated to include a "true" random function that uses crypto libraries where available, and the Alea() function as a fallback.
Math.log2 = Math.log2 || function(n){ return Math.log(n) / Math.log(2); }
Math.trueRandom = (function() {
var crypt = window.crypto || window.msCrypto;
if (crypt && crypt.getRandomValues) {
// If we have a crypto library, use it
var random = function(min, max) {
var rval = 0;
var range = max - min;
if (range < 2) {
return min;
}
var bits_needed = Math.ceil(Math.log2(range));
if (bits_needed > 53) {
throw new Exception("We cannot generate numbers larger than 53 bits.");
}
var bytes_needed = Math.ceil(bits_needed / 8);
var mask = Math.pow(2, bits_needed) - 1;
// 7776 -> (2^13 = 8192) -1 == 8191 or 0x00001111 11111111
// Create byte array and fill with N random numbers
var byteArray = new Uint8Array(bytes_needed);
crypt.getRandomValues(byteArray);
var p = (bytes_needed - 1) * 8;
for(var i = 0; i < bytes_needed; i++ ) {
rval += byteArray[i] * Math.pow(2, p);
p -= 8;
}
// Use & to apply the mask and reduce the number of recursive lookups
rval = rval & mask;
if (rval >= range) {
// Integer out of acceptable range
return random(min, max);
}
// Return an integer that falls within the range
return min + rval;
}
return function() {
var r = random(0, 1000000000) / 1000000000;
return r;
};
} else {
// From https://web.archive.org/web/20120502223108/http://baagoe.com/en/RandomMusings/javascript/
// Johannes Baagøe <baagoe#baagoe.com>, 2010
function Mash() {
var n = 0xefc8249d;
var mash = function(data) {
data = data.toString();
for (var i = 0; i < data.length; i++) {
n += data.charCodeAt(i);
var h = 0.02519603282416938 * n;
n = h >>> 0;
h -= n;
h *= n;
n = h >>> 0;
h -= n;
n += h * 0x100000000; // 2^32
}
return (n >>> 0) * 2.3283064365386963e-10; // 2^-32
};
mash.version = 'Mash 0.9';
return mash;
}
// From http://baagoe.com/en/RandomMusings/javascript/
function Alea() {
return (function(args) {
// Johannes Baagøe <baagoe#baagoe.com>, 2010
var s0 = 0;
var s1 = 0;
var s2 = 0;
var c = 1;
if (args.length == 0) {
args = [+new Date()];
}
var mash = Mash();
s0 = mash(' ');
s1 = mash(' ');
s2 = mash(' ');
for (var i = 0; i < args.length; i++) {
s0 -= mash(args[i]);
if (s0 < 0) {
s0 += 1;
}
s1 -= mash(args[i]);
if (s1 < 0) {
s1 += 1;
}
s2 -= mash(args[i]);
if (s2 < 0) {
s2 += 1;
}
}
mash = null;
var random = function() {
var t = 2091639 * s0 + c * 2.3283064365386963e-10; // 2^-32
s0 = s1;
s1 = s2;
return s2 = t - (c = t | 0);
};
random.uint32 = function() {
return random() * 0x100000000; // 2^32
};
random.fract53 = function() {
return random() +
(random() * 0x200000 | 0) * 1.1102230246251565e-16; // 2^-53
};
random.version = 'Alea 0.9';
random.args = args;
return random;
}(Array.prototype.slice.call(arguments)));
};
return Alea();
}
}());
Math.guid = function() {
return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(c) {
var r = Math.trueRandom() * 16 | 0,
v = c == 'x' ? r : (r & 0x3 | 0x8);
return v.toString(16);
});
};
JavaScript project on GitHub - https://github.com/LiosK/UUID.js
UUID.js The RFC-compliant UUID generator for JavaScript.
See RFC 4122 http://www.ietf.org/rfc/rfc4122.txt.
Features Generates RFC 4122 compliant UUIDs.
Version 4 UUIDs (UUIDs from random numbers) and version 1 UUIDs
(time-based UUIDs) are available.
UUID object allows a variety of access to the UUID including access to
the UUID fields.
Low timestamp resolution of JavaScript is compensated by random
numbers.
// RFC 4122
//
// A UUID is 128 bits long
//
// String representation is five fields of 4, 2, 2, 2, and 6 bytes.
// Fields represented as lowercase, zero-filled, hexadecimal strings, and
// are separated by dash characters
//
// A version 4 UUID is generated by setting all but six bits to randomly
// chosen values
var uuid = [
Math.random().toString(16).slice(2, 10),
Math.random().toString(16).slice(2, 6),
// Set the four most significant bits (bits 12 through 15) of the
// time_hi_and_version field to the 4-bit version number from Section
// 4.1.3
(Math.random() * .0625 /* 0x.1 */ + .25 /* 0x.4 */).toString(16).slice(2, 6),
// Set the two most significant bits (bits 6 and 7) of the
// clock_seq_hi_and_reserved to zero and one, respectively
(Math.random() * .25 /* 0x.4 */ + .5 /* 0x.8 */).toString(16).slice(2, 6),
Math.random().toString(16).slice(2, 14)].join('-');
Added in: v15.6.0, v14.17.0 there is a built-in crypto.randomUUID() function.
import * as crypto from "crypto";
const uuid = crypto.randomUUID();
In the browser, crypto.randomUUID() is currently supported in Chromium 92+ and Firefox 95+.
For those wanting an RFC 4122 version 4 compliant solution with speed considerations (few calls to Math.random()):
var rand = Math.random;
function UUID() {
var nbr, randStr = "";
do {
randStr += (nbr = rand()).toString(16).substr(3, 6);
} while (randStr.length < 30);
return (
randStr.substr(0, 8) + "-" +
randStr.substr(8, 4) + "-4" +
randStr.substr(12, 3) + "-" +
((nbr*4|0)+8).toString(16) + // [89ab]
randStr.substr(15, 3) + "-" +
randStr.substr(18, 12)
);
}
console.log( UUID() );
The above function should have a decent balance between speed and randomness.
I wanted to understand broofa's answer, so I expanded it and added comments:
var uuid = function () {
return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(
/[xy]/g,
function (match) {
/*
* Create a random nibble. The two clever bits of this code:
*
* - Bitwise operations will truncate floating point numbers
* - For a bitwise OR of any x, x | 0 = x
*
* So:
*
* Math.random * 16
*
* creates a random floating point number
* between 0 (inclusive) and 16 (exclusive) and
*
* | 0
*
* truncates the floating point number into an integer.
*/
var randomNibble = Math.random() * 16 | 0;
/*
* Resolves the variant field. If the variant field (delineated
* as y in the initial string) is matched, the nibble must
* match the mask (where x is a do-not-care bit):
*
* 10xx
*
* This is achieved by performing the following operations in
* sequence (where x is an intermediate result):
*
* - x & 0x3, which is equivalent to x % 3
* - x | 0x8, which is equivalent to x + 8
*
* This results in a nibble between 8 inclusive and 11 exclusive,
* (or 1000 and 1011 in binary), all of which satisfy the variant
* field mask above.
*/
var nibble = (match == 'y') ?
(randomNibble & 0x3 | 0x8) :
randomNibble;
/*
* Ensure the nibble integer is encoded as base 16 (hexadecimal).
*/
return nibble.toString(16);
}
);
};
ES6 sample
const guid=()=> {
const s4=()=> Math.floor((1 + Math.random()) * 0x10000).toString(16).substring(1);
return `${s4() + s4()}-${s4()}-${s4()}-${s4()}-${s4() + s4() + s4()}`;
}
I adjusted my own UUID/GUID generator with some extras here.
I'm using the following Kybos random number generator to be a bit more cryptographically sound.
Below is my script with the Mash and Kybos methods from baagoe.com excluded.
//UUID/Guid Generator
// use: UUID.create() or UUID.createSequential()
// convenience: UUID.empty, UUID.tryParse(string)
(function(w){
// From http://baagoe.com/en/RandomMusings/javascript/
// Johannes Baagøe <baagoe#baagoe.com>, 2010
//function Mash() {...};
// From http://baagoe.com/en/RandomMusings/javascript/
//function Kybos() {...};
var rnd = Kybos();
//UUID/GUID Implementation from http://frugalcoder.us/post/2012/01/13/javascript-guid-uuid-generator.aspx
var UUID = {
"empty": "00000000-0000-0000-0000-000000000000"
,"parse": function(input) {
var ret = input.toString().trim().toLowerCase().replace(/^[\s\r\n]+|[\{\}]|[\s\r\n]+$/g, "");
if ((/[a-f0-9]{8}\-[a-f0-9]{4}\-[a-f0-9]{4}\-[a-f0-9]{4}\-[a-f0-9]{12}/).test(ret))
return ret;
else
throw new Error("Unable to parse UUID");
}
,"createSequential": function() {
var ret = new Date().valueOf().toString(16).replace("-","")
for (;ret.length < 12; ret = "0" + ret);
ret = ret.substr(ret.length-12,12); //only least significant part
for (;ret.length < 32;ret += Math.floor(rnd() * 0xffffffff).toString(16));
return [ret.substr(0,8), ret.substr(8,4), "4" + ret.substr(12,3), "89AB"[Math.floor(Math.random()*4)] + ret.substr(16,3), ret.substr(20,12)].join("-");
}
,"create": function() {
var ret = "";
for (;ret.length < 32;ret += Math.floor(rnd() * 0xffffffff).toString(16));
return [ret.substr(0,8), ret.substr(8,4), "4" + ret.substr(12,3), "89AB"[Math.floor(Math.random()*4)] + ret.substr(16,3), ret.substr(20,12)].join("-");
}
,"random": function() {
return rnd();
}
,"tryParse": function(input) {
try {
return UUID.parse(input);
} catch(ex) {
return UUID.empty;
}
}
};
UUID["new"] = UUID.create;
w.UUID = w.Guid = UUID;
}(window || this));
The native URL.createObjectURL is generating an UUID. You can take advantage of this.
function uuid() {
const url = URL.createObjectURL(new Blob())
const [id] = url.toString().split('/').reverse()
URL.revokeObjectURL(url)
return id
}
The better way:
function(
a, b // Placeholders
){
for( // Loop :)
b = a = ''; // b - result , a - numeric variable
a++ < 36; //
b += a*51&52 // If "a" is not 9 or 14 or 19 or 24
? // return a random number or 4
(
a^15 // If "a" is not 15,
? // generate a random number from 0 to 15
8^Math.random() *
(a^20 ? 16 : 4) // unless "a" is 20, in which case a random number from 8 to 11,
:
4 // otherwise 4
).toString(16)
:
'-' // In other cases, (if "a" is 9,14,19,24) insert "-"
);
return b
}
Minimized:
function(a,b){for(b=a='';a++<36;b+=a*51&52?(a^15?8^Math.random()*(a^20?16:4):4).toString(16):'-');return b}
The following is simple code that uses crypto.getRandomValues(a) on supported browsers (Internet Explorer 11+, iOS 7+, Firefox 21+, Chrome, and Android Chrome).
It avoids using Math.random(), because that can cause collisions (for example 20 collisions for 4000 generated UUIDs in a real situation by Muxa).
function uuid() {
function randomDigit() {
if (crypto && crypto.getRandomValues) {
var rands = new Uint8Array(1);
crypto.getRandomValues(rands);
return (rands[0] % 16).toString(16);
} else {
return ((Math.random() * 16) | 0).toString(16);
}
}
var crypto = window.crypto || window.msCrypto;
return 'xxxxxxxx-xxxx-4xxx-8xxx-xxxxxxxxxxxx'.replace(/x/g, randomDigit);
}
Notes:
Optimised for code readability, not speed, so it is suitable for, say, a few hundred UUIDs per second. It generates about 10000 uuid() per second in Chromium on my laptop using http://jsbin.com/fuwigo/1 to measure performance.
It only uses 8 for "y" because that simplifies code readability (y is allowed to be 8, 9, A, or B).
If you just need a random 128 bit string in no particular format, you can use:
function uuid() {
return crypto.getRandomValues(new Uint32Array(4)).join('-');
}
Which will return something like 2350143528-4164020887-938913176-2513998651.
I couldn't find any answer that uses a single 16-octet TypedArray and a DataView, so I think the following solution for generating a version 4 UUID per the RFC will stand on its own here:
const uuid4 = () => {
const ho = (n, p) => n.toString(16).padStart(p, 0); /// Return the hexadecimal text representation of number `n`, padded with zeroes to be of length `p`
const data = crypto.getRandomValues(new Uint8Array(16)); /// Fill the buffer with random data
data[6] = (data[6] & 0xf) | 0x40; /// Patch the 6th byte to reflect a version 4 UUID
data[8] = (data[8] & 0x3f) | 0x80; /// Patch the 8th byte to reflect a variant 1 UUID (version 4 UUIDs are)
const view = new DataView(data.buffer); /// Create a view backed by a 16-byte buffer
return `${ho(view.getUint32(0), 8)}-${ho(view.getUint16(4), 4)}-${ho(view.getUint16(6), 4)}-${ho(view.getUint16(8), 4)}-${ho(view.getUint32(10), 8)}${ho(view.getUint16(14), 4)}`; /// Compile the canonical textual form from the array data
};
I prefer it because:
it only relies on functions available to the standard ECMAScript platform, where possible -- which is all but one procedure
it only uses a single buffer, minimizing copying of data, which should in theory yield performance advantages
At the time of writing this, getRandomValues is not something implemented for the crypto object in Node.js. However, it has the equivalent randomBytes function which may be used instead.
Just another more readable variant with just two mutations.
function uuid4()
{
function hex (s, b)
{
return s +
(b >>> 4 ).toString (16) + // high nibble
(b & 0b1111).toString (16); // low nibble
}
let r = crypto.getRandomValues (new Uint8Array (16));
r[6] = r[6] >>> 4 | 0b01000000; // Set type 4: 0100
r[8] = r[8] >>> 3 | 0b10000000; // Set variant: 100
return r.slice ( 0, 4).reduce (hex, '' ) +
r.slice ( 4, 6).reduce (hex, '-') +
r.slice ( 6, 8).reduce (hex, '-') +
r.slice ( 8, 10).reduce (hex, '-') +
r.slice (10, 16).reduce (hex, '-');
}

Is there a way to create a unique ID using Node.js without additional modules? [duplicate]

How do I create GUIDs (globally-unique identifiers) in JavaScript? The GUID / UUID should be at least 32 characters and should stay in the ASCII range to avoid trouble when passing them around.
I'm not sure what routines are available on all browsers, how "random" and seeded the built-in random number generator is, etc.
[Edited 2021-10-16 to reflect latest best-practices for producing RFC4122-compliant UUIDs]
Most readers here will want to use the uuid module. It is well-tested and supported.
The crypto.randomUUID() function is an emerging standard that is supported in Node.js and an increasing number of browsers. However because new browser APIs are restricted to secure contexts this method is only available to pages served locally (localhost or 127.0.0.1) or over HTTPS. If you're interested in seeing this restriction lifted for crypto.randomUUID() you can follow this GitHub issue.
If neither of those work for you, there is this method (based on the original answer to this question):
function uuidv4() {
return ([1e7]+-1e3+-4e3+-8e3+-1e11).replace(/[018]/g, c =>
(c ^ crypto.getRandomValues(new Uint8Array(1))[0] & 15 >> c / 4).toString(16)
);
}
console.log(uuidv4());
Note: The use of any UUID generator that relies on Math.random() is strongly discouraged (including snippets featured in previous versions of this answer) for reasons best explained here. TL;DR: solutions based on Math.random() do not provide good uniqueness guarantees.
UUIDs (Universally Unique IDentifier), also known as GUIDs (Globally Unique IDentifier), according to RFC 4122, are identifiers designed to provide certain uniqueness guarantees.
While it is possible to implement RFC-compliant UUIDs in a few lines of JavaScript code (e.g., see #broofa's answer, below) there are several common pitfalls:
Invalid id format (UUIDs must be of the form "xxxxxxxx-xxxx-Mxxx-Nxxx-xxxxxxxxxxxx", where x is one of [0-9, a-f] M is one of [1-5], and N is [8, 9, a, or b]
Use of a low-quality source of randomness (such as Math.random)
Thus, developers writing code for production environments are encouraged to use a rigorous, well-maintained implementation such as the uuid module.
I really like how clean Broofa's answer is, but it's unfortunate that poor implementations of Math.random leave the chance for collision.
Here's a similar RFC4122 version 4 compliant solution that solves that issue by offsetting the first 13 hex numbers by a hex portion of the timestamp, and once depleted offsets by a hex portion of the microseconds since pageload. That way, even if Math.random is on the same seed, both clients would have to generate the UUID the exact same number of microseconds since pageload (if high-perfomance time is supported) AND at the exact same millisecond (or 10,000+ years later) to get the same UUID:
function generateUUID() { // Public Domain/MIT
var d = new Date().getTime();//Timestamp
var d2 = ((typeof performance !== 'undefined') && performance.now && (performance.now()*1000)) || 0;//Time in microseconds since page-load or 0 if unsupported
return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(c) {
var r = Math.random() * 16;//random number between 0 and 16
if(d > 0){//Use timestamp until depleted
r = (d + r)%16 | 0;
d = Math.floor(d/16);
} else {//Use microseconds since page-load if supported
r = (d2 + r)%16 | 0;
d2 = Math.floor(d2/16);
}
return (c === 'x' ? r : (r & 0x3 | 0x8)).toString(16);
});
}
var onClick = function(){
document.getElementById('uuid').textContent = generateUUID();
}
onClick();
#uuid { font-family: monospace; font-size: 1.5em; }
<p id="uuid"></p>
<button id="generateUUID" onclick="onClick();">Generate UUID</button>
Here's a fiddle to test.
Modernized snippet for ES6
const generateUUID = () => {
let
d = new Date().getTime(),
d2 = ((typeof performance !== 'undefined') && performance.now && (performance.now() * 1000)) || 0;
return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, c => {
let r = Math.random() * 16;
if (d > 0) {
r = (d + r) % 16 | 0;
d = Math.floor(d / 16);
} else {
r = (d2 + r) % 16 | 0;
d2 = Math.floor(d2 / 16);
}
return (c == 'x' ? r : (r & 0x7 | 0x8)).toString(16);
});
};
const onClick = (e) => document.getElementById('uuid').textContent = generateUUID();
document.getElementById('generateUUID').addEventListener('click', onClick);
onClick();
#uuid { font-family: monospace; font-size: 1.5em; }
<p id="uuid"></p>
<button id="generateUUID">Generate UUID</button>
broofa's answer is pretty slick, indeed - impressively clever, really... RFC4122 compliant, somewhat readable, and compact. Awesome!
But if you're looking at that regular expression, those many replace() callbacks, toString()'s and Math.random() function calls (where he's only using four bits of the result and wasting the rest), you may start to wonder about performance. Indeed, joelpt even decided to toss out an RFC for generic GUID speed with generateQuickGUID.
But, can we get speed and RFC compliance? I say, YES! Can we maintain readability? Well... Not really, but it's easy if you follow along.
But first, my results, compared to broofa, guid (the accepted answer), and the non-rfc-compliant generateQuickGuid:
Desktop Android
broofa: 1617ms 12869ms
e1: 636ms 5778ms
e2: 606ms 4754ms
e3: 364ms 3003ms
e4: 329ms 2015ms
e5: 147ms 1156ms
e6: 146ms 1035ms
e7: 105ms 726ms
guid: 962ms 10762ms
generateQuickGuid: 292ms 2961ms
- Note: 500k iterations, results will vary by browser/CPU.
So by my 6th iteration of optimizations, I beat the most popular answer by over 12 times, the accepted answer by over 9 times, and the fast-non-compliant answer by 2-3 times. And I'm still RFC 4122 compliant.
Interested in how? I've put the full source on http://jsfiddle.net/jcward/7hyaC/3/ and on https://jsben.ch/xczxS
For an explanation, let's start with broofa's code:
function broofa() {
return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(c) {
var r = Math.random()*16|0, v = c == 'x' ? r : (r&0x3|0x8);
return v.toString(16);
});
}
console.log(broofa())
So it replaces x with any random hexadecimal digit, y with random data (except forcing the top two bits to 10 per the RFC spec), and the regex doesn't match the - or 4 characters, so he doesn't have to deal with them. Very, very slick.
The first thing to know is that function calls are expensive, as are regular expressions (though he only uses 1, it has 32 callbacks, one for each match, and in each of the 32 callbacks it calls Math.random() and v.toString(16)).
The first step toward performance is to eliminate the RegEx and its callback functions and use a simple loop instead. This means we have to deal with the - and 4 characters whereas broofa did not. Also, note that we can use String Array indexing to keep his slick String template architecture:
function e1() {
var u='',i=0;
while(i++<36) {
var c='xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'[i-1],r=Math.random()*16|0,v=c=='x'?r:(r&0x3|0x8);
u+=(c=='-'||c=='4')?c:v.toString(16)
}
return u;
}
console.log(e1())
Basically, the same inner logic, except we check for - or 4, and using a while loop (instead of replace() callbacks) gets us an almost 3X improvement!
The next step is a small one on the desktop but makes a decent difference on mobile. Let's make fewer Math.random() calls and utilize all those random bits instead of throwing 87% of them away with a random buffer that gets shifted out each iteration. Let's also move that template definition out of the loop, just in case it helps:
function e2() {
var u='',m='xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx',i=0,rb=Math.random()*0xffffffff|0;
while(i++<36) {
var c=m[i-1],r=rb&0xf,v=c=='x'?r:(r&0x3|0x8);
u+=(c=='-'||c=='4')?c:v.toString(16);rb=i%8==0?Math.random()*0xffffffff|0:rb>>4
}
return u
}
console.log(e2())
This saves us 10-30% depending on platform. Not bad. But the next big step gets rid of the toString function calls altogether with an optimization classic - the look-up table. A simple 16-element lookup table will perform the job of toString(16) in much less time:
function e3() {
var h='0123456789abcdef';
var k='xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx';
/* same as e4() below */
}
function e4() {
var h=['0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f'];
var k=['x','x','x','x','x','x','x','x','-','x','x','x','x','-','4','x','x','x','-','y','x','x','x','-','x','x','x','x','x','x','x','x','x','x','x','x'];
var u='',i=0,rb=Math.random()*0xffffffff|0;
while(i++<36) {
var c=k[i-1],r=rb&0xf,v=c=='x'?r:(r&0x3|0x8);
u+=(c=='-'||c=='4')?c:h[v];rb=i%8==0?Math.random()*0xffffffff|0:rb>>4
}
return u
}
console.log(e4())
The next optimization is another classic. Since we're only handling four bits of output in each loop iteration, let's cut the number of loops in half and process eight bits in each iteration. This is tricky since we still have to handle the RFC compliant bit positions, but it's not too hard. We then have to make a larger lookup table (16x16, or 256) to store 0x00 - 0xFF, and we build it only once, outside the e5() function.
var lut = []; for (var i=0; i<256; i++) { lut[i] = (i<16?'0':'')+(i).toString(16); }
function e5() {
var k=['x','x','x','x','-','x','x','-','4','x','-','y','x','-','x','x','x','x','x','x'];
var u='',i=0,rb=Math.random()*0xffffffff|0;
while(i++<20) {
var c=k[i-1],r=rb&0xff,v=c=='x'?r:(c=='y'?(r&0x3f|0x80):(r&0xf|0x40));
u+=(c=='-')?c:lut[v];rb=i%4==0?Math.random()*0xffffffff|0:rb>>8
}
return u
}
console.log(e5())
I tried an e6() that processes 16-bits at a time, still using the 256-element LUT, and it showed the diminishing returns of optimization. Though it had fewer iterations, the inner logic was complicated by the increased processing, and it performed the same on desktop, and only ~10% faster on mobile.
The final optimization technique to apply - unroll the loop. Since we're looping a fixed number of times, we can technically write this all out by hand. I tried this once with a single random variable, r, that I kept reassigning, and performance tanked. But with four variables assigned random data up front, then using the lookup table, and applying the proper RFC bits, this version smokes them all:
var lut = []; for (var i=0; i<256; i++) { lut[i] = (i<16?'0':'')+(i).toString(16); }
function e7()
{
var d0 = Math.random()*0xffffffff|0;
var d1 = Math.random()*0xffffffff|0;
var d2 = Math.random()*0xffffffff|0;
var d3 = Math.random()*0xffffffff|0;
return lut[d0&0xff]+lut[d0>>8&0xff]+lut[d0>>16&0xff]+lut[d0>>24&0xff]+'-'+
lut[d1&0xff]+lut[d1>>8&0xff]+'-'+lut[d1>>16&0x0f|0x40]+lut[d1>>24&0xff]+'-'+
lut[d2&0x3f|0x80]+lut[d2>>8&0xff]+'-'+lut[d2>>16&0xff]+lut[d2>>24&0xff]+
lut[d3&0xff]+lut[d3>>8&0xff]+lut[d3>>16&0xff]+lut[d3>>24&0xff];
}
console.log(e7())
Modualized: http://jcward.com/UUID.js - UUID.generate()
The funny thing is, generating 16 bytes of random data is the easy part. The whole trick is expressing it in string format with RFC compliance, and it's most tightly accomplished with 16 bytes of random data, an unrolled loop and lookup table.
I hope my logic is correct -- it's very easy to make a mistake in this kind of tedious bit work. But the outputs look good to me. I hope you enjoyed this mad ride through code optimization!
Be advised: my primary goal was to show and teach potential optimization strategies. Other answers cover important topics such as collisions and truly random numbers, which are important for generating good UUIDs.
Use:
let uniqueId = Date.now().toString(36) + Math.random().toString(36).substring(2);
document.getElementById("unique").innerHTML =
Math.random().toString(36).substring(2) + (new Date()).getTime().toString(36);
<div id="unique">
</div>
If IDs are generated more than 1 millisecond apart, they are 100% unique.
If two IDs are generated at shorter intervals, and assuming that the random method is truly random, this would generate IDs that are 99.99999999999999% likely to be globally unique (collision in 1 of 10^15).
You can increase this number by adding more digits, but to generate 100% unique IDs you will need to use a global counter.
If you need RFC compatibility, this formatting will pass as a valid version 4 GUID:
let u = Date.now().toString(16) + Math.random().toString(16) + '0'.repeat(16);
let guid = [u.substr(0,8), u.substr(8,4), '4000-8' + u.substr(13,3), u.substr(16,12)].join('-');
let u = Date.now().toString(16)+Math.random().toString(16)+'0'.repeat(16);
let guid = [u.substr(0,8), u.substr(8,4), '4000-8' + u.substr(13,3), u.substr(16,12)].join('-');
document.getElementById("unique").innerHTML = guid;
<div id="unique">
</div>
The above code follow the intention, but not the letter of the RFC. Among other discrepancies it's a few random digits short. (Add more random digits if you need it) The upside is that this is really fast :)
You can test validity of your GUID here
Here's some code based on RFC 4122, section 4.4 (Algorithms for Creating a UUID from Truly Random or Pseudo-Random Number).
function createUUID() {
// http://www.ietf.org/rfc/rfc4122.txt
var s = [];
var hexDigits = "0123456789abcdef";
for (var i = 0; i < 36; i++) {
s[i] = hexDigits.substr(Math.floor(Math.random() * 0x10), 1);
}
s[14] = "4"; // bits 12-15 of the time_hi_and_version field to 0010
s[19] = hexDigits.substr((s[19] & 0x3) | 0x8, 1); // bits 6-7 of the clock_seq_hi_and_reserved to 01
s[8] = s[13] = s[18] = s[23] = "-";
var uuid = s.join("");
return uuid;
}
This is the fastest GUID-like string generator method in the format XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX. It does not generate a standard-compliant GUID.
Ten million executions of this implementation take just 32.5 seconds, which is the fastest I've ever seen in a browser (the only solution without loops/iterations).
The function is as simple as:
/**
* Generates a GUID string.
* #returns {string} The generated GUID.
* #example af8a8416-6e18-a307-bd9c-f2c947bbb3aa
* #author Slavik Meltser.
* #link http://slavik.meltser.info/?p=142
*/
function guid() {
function _p8(s) {
var p = (Math.random().toString(16)+"000000000").substr(2,8);
return s ? "-" + p.substr(0,4) + "-" + p.substr(4,4) : p ;
}
return _p8() + _p8(true) + _p8(true) + _p8();
}
To test the performance, you can run this code:
console.time('t');
for (var i = 0; i < 10000000; i++) {
guid();
};
console.timeEnd('t');
I'm sure most of you will understand what I did there, but maybe there is at least one person that will need an explanation:
The algorithm:
The Math.random() function returns a decimal number between 0 and 1 with 16 digits after the decimal fraction point (for
example 0.4363923368509859).
Then we take this number and convert
it to a string with base 16 (from the example above we'll get
0.6fb7687f).
Math.random().toString(16).
Then we cut off the 0. prefix (0.6fb7687f =>
6fb7687f) and get a string with eight hexadecimal
characters long.
(Math.random().toString(16).substr(2,8).
Sometimes the Math.random() function will return
shorter number (for example 0.4363), due to zeros at the end (from the example above, actually the number is 0.4363000000000000). That's why I'm appending to this string "000000000" (a string with nine zeros) and then cutting it off with substr() function to make it nine characters exactly (filling zeros to the right).
The reason for adding exactly nine zeros is because of the worse case scenario, which is when the Math.random() function will return exactly 0 or 1 (probability of 1/10^16 for each one of them). That's why we needed to add nine zeros to it ("0"+"000000000" or "1"+"000000000"), and then cutting it off from the second index (third character) with a length of eight characters. For the rest of the cases, the addition of zeros will not harm the result because it is cutting it off anyway.
Math.random().toString(16)+"000000000").substr(2,8).
The assembly:
The GUID is in the following format XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX.
I divided the GUID into four pieces, each piece divided into two types (or formats): XXXXXXXX and -XXXX-XXXX.
Now I'm building the GUID using these two types to assemble the GUID with call four pieces, as follows: XXXXXXXX -XXXX-XXXX -XXXX-XXXX XXXXXXXX.
To differ between these two types, I added a flag parameter to a pair creator function _p8(s), the s parameter tells the function whether to add dashes or not.
Eventually we build the GUID with the following chaining: _p8() + _p8(true) + _p8(true) + _p8(), and return it.
Link to this post on my blog
Enjoy! :-)
Here is a totally non-compliant but very performant implementation to generate an ASCII-safe GUID-like unique identifier.
function generateQuickGuid() {
return Math.random().toString(36).substring(2, 15) +
Math.random().toString(36).substring(2, 15);
}
Generates 26 [a-z0-9] characters, yielding a UID that is both shorter and more unique than RFC compliant GUIDs. Dashes can be trivially added if human-readability matters.
Here are usage examples and timings for this function and several of this question's other answers. The timing was performed under Chrome m25, 10 million iterations each.
>>> generateQuickGuid()
"nvcjf1hs7tf8yyk4lmlijqkuo9"
"yq6gipxqta4kui8z05tgh9qeel"
"36dh5sec7zdj90sk2rx7pjswi2"
runtime: 32.5s
>>> GUID() // John Millikin
"7a342ca2-e79f-528e-6302-8f901b0b6888"
runtime: 57.8s
>>> regexGuid() // broofa
"396e0c46-09e4-4b19-97db-bd423774a4b3"
runtime: 91.2s
>>> createUUID() // Kevin Hakanson
"403aa1ab-9f70-44ec-bc08-5d5ac56bd8a5"
runtime: 65.9s
>>> UUIDv4() // Jed Schmidt
"f4d7d31f-fa83-431a-b30c-3e6cc37cc6ee"
runtime: 282.4s
>>> Math.uuid() // broofa
"5BD52F55-E68F-40FC-93C2-90EE069CE545"
runtime: 225.8s
>>> Math.uuidFast() // broofa
"6CB97A68-23A2-473E-B75B-11263781BBE6"
runtime: 92.0s
>>> Math.uuidCompact() // broofa
"3d7b7a06-0a67-4b67-825c-e5c43ff8c1e8"
runtime: 229.0s
>>> bitwiseGUID() // jablko
"baeaa2f-7587-4ff1-af23-eeab3e92"
runtime: 79.6s
>>>> betterWayGUID() // Andrea Turri
"383585b0-9753-498d-99c3-416582e9662c"
runtime: 60.0s
>>>> UUID() // John Fowler
"855f997b-4369-4cdb-b7c9-7142ceaf39e8"
runtime: 62.2s
Here is the timing code.
var r;
console.time('t');
for (var i = 0; i < 10000000; i++) {
r = FuncToTest();
};
console.timeEnd('t');
From sagi shkedy's technical blog:
function generateGuid() {
var result, i, j;
result = '';
for(j=0; j<32; j++) {
if( j == 8 || j == 12 || j == 16 || j == 20)
result = result + '-';
i = Math.floor(Math.random()*16).toString(16).toUpperCase();
result = result + i;
}
return result;
}
There are other methods that involve using an ActiveX control, but stay away from these!
I thought it was worth pointing out that no GUID generator can guarantee unique keys (check the Wikipedia article). There is always a chance of collisions. A GUID simply offers a large enough universe of keys to reduce the change of collisions to almost nil.
Here is a combination of the top voted answer, with a workaround for Chrome's collisions:
generateGUID = (typeof(window.crypto) != 'undefined' &&
typeof(window.crypto.getRandomValues) != 'undefined') ?
function() {
// If we have a cryptographically secure PRNG, use that
// https://stackoverflow.com/questions/6906916/collisions-when-generating-uuids-in-javascript
var buf = new Uint16Array(8);
window.crypto.getRandomValues(buf);
var S4 = function(num) {
var ret = num.toString(16);
while(ret.length < 4){
ret = "0"+ret;
}
return ret;
};
return (S4(buf[0])+S4(buf[1])+"-"+S4(buf[2])+"-"+S4(buf[3])+"-"+S4(buf[4])+"-"+S4(buf[5])+S4(buf[6])+S4(buf[7]));
}
:
function() {
// Otherwise, just use Math.random
// https://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/2117523#2117523
return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(c) {
var r = Math.random()*16|0, v = c == 'x' ? r : (r&0x3|0x8);
return v.toString(16);
});
};
It is on jsbin if you want to test it.
Here's a solution dated Oct. 9, 2011 from a comment by user jed at https://gist.github.com/982883:
UUIDv4 = function b(a){return a?(a^Math.random()*16>>a/4).toString(16):([1e7]+-1e3+-4e3+-8e3+-1e11).replace(/[018]/g,b)}
This accomplishes the same goal as the current highest-rated answer, but in 50+ fewer bytes by exploiting coercion, recursion, and exponential notation. For those curious how it works, here's the annotated form of an older version of the function:
UUIDv4 =
function b(
a // placeholder
){
return a // if the placeholder was passed, return
? ( // a random number from 0 to 15
a ^ // unless b is 8,
Math.random() // in which case
* 16 // a random number from
>> a/4 // 8 to 11
).toString(16) // in hexadecimal
: ( // or otherwise a concatenated string:
[1e7] + // 10000000 +
-1e3 + // -1000 +
-4e3 + // -4000 +
-8e3 + // -80000000 +
-1e11 // -100000000000,
).replace( // replacing
/[018]/g, // zeroes, ones, and eights with
b // random hex digits
)
}
You can use node-uuid. It provides simple, fast generation of RFC4122 UUIDS.
Features:
Generate RFC4122 version 1 or version 4 UUIDs
Runs in Node.js and browsers.
Cryptographically strong random # generation on supporting platforms.
Small footprint (Want something smaller? Check this out!)
Install Using NPM:
npm install uuid
Or using uuid via a browser:
Download Raw File (uuid v1): https://raw.githubusercontent.com/kelektiv/node-uuid/master/v1.js
Download Raw File (uuid v4): https://raw.githubusercontent.com/kelektiv/node-uuid/master/v4.js
Want even smaller? Check this out: https://gist.github.com/jed/982883
Usage:
// Generate a v1 UUID (time-based)
const uuidV1 = require('uuid/v1');
uuidV1(); // -> '6c84fb90-12c4-11e1-840d-7b25c5ee775a'
// Generate a v4 UUID (random)
const uuidV4 = require('uuid/v4');
uuidV4(); // -> '110ec58a-a0f2-4ac4-8393-c866d813b8d1'
// Generate a v5 UUID (namespace)
const uuidV5 = require('uuid/v5');
// ... using predefined DNS namespace (for domain names)
uuidV5('hello.example.com', v5.DNS)); // -> 'fdda765f-fc57-5604-a269-52a7df8164ec'
// ... using predefined URL namespace (for, well, URLs)
uuidV5('http://example.com/hello', v5.URL); // -> '3bbcee75-cecc-5b56-8031-b6641c1ed1f1'
// ... using a custom namespace
const MY_NAMESPACE = '(previously generated unique uuid string)';
uuidV5('hello', MY_NAMESPACE); // -> '90123e1c-7512-523e-bb28-76fab9f2f73d'
ECMAScript 2015 (ES6):
import uuid from 'uuid/v4';
const id = uuid();
var uuid = function() {
var buf = new Uint32Array(4);
window.crypto.getRandomValues(buf);
var idx = -1;
return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(c) {
idx++;
var r = (buf[idx>>3] >> ((idx%8)*4))&15;
var v = c == 'x' ? r : (r&0x3|0x8);
return v.toString(16);
});
};
This version is based on Briguy37's answer and some bitwise operators to extract nibble sized windows from the buffer.
It should adhere to the RFC Type 4 (random) schema, since I had problems last time parsing non-compliant UUIDs with Java's UUID.
This creates a version 4 UUID (created from pseudo random numbers):
function uuid()
{
var chars = '0123456789abcdef'.split('');
var uuid = [], rnd = Math.random, r;
uuid[8] = uuid[13] = uuid[18] = uuid[23] = '-';
uuid[14] = '4'; // version 4
for (var i = 0; i < 36; i++)
{
if (!uuid[i])
{
r = 0 | rnd()*16;
uuid[i] = chars[(i == 19) ? (r & 0x3) | 0x8 : r & 0xf];
}
}
return uuid.join('');
}
Here is a sample of the UUIDs generated:
682db637-0f31-4847-9cdf-25ba9613a75c
97d19478-3ab2-4aa1-b8cc-a1c3540f54aa
2eed04c9-2692-456d-a0fd-51012f947136
One line solution using Blobs.
window.URL.createObjectURL(new Blob([])).substring(31);
The value at the end (31) depends on the length of the URL.
EDIT:
A more compact and universal solution, as suggested by rinogo:
URL.createObjectURL(new Blob([])).substr(-36);
Simple JavaScript module as a combination of best answers in this question.
var crypto = window.crypto || window.msCrypto || null; // IE11 fix
var Guid = Guid || (function() {
var EMPTY = '00000000-0000-0000-0000-000000000000';
var _padLeft = function(paddingString, width, replacementChar) {
return paddingString.length >= width ? paddingString : _padLeft(replacementChar + paddingString, width, replacementChar || ' ');
};
var _s4 = function(number) {
var hexadecimalResult = number.toString(16);
return _padLeft(hexadecimalResult, 4, '0');
};
var _cryptoGuid = function() {
var buffer = new window.Uint16Array(8);
crypto.getRandomValues(buffer);
return [_s4(buffer[0]) + _s4(buffer[1]), _s4(buffer[2]), _s4(buffer[3]), _s4(buffer[4]), _s4(buffer[5]) + _s4(buffer[6]) + _s4(buffer[7])].join('-');
};
var _guid = function() {
var currentDateMilliseconds = new Date().getTime();
return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(currentChar) {
var randomChar = (currentDateMilliseconds + Math.random() * 16) % 16 | 0;
currentDateMilliseconds = Math.floor(currentDateMilliseconds / 16);
return (currentChar === 'x' ? randomChar : (randomChar & 0x7 | 0x8)).toString(16);
});
};
var create = function() {
var hasCrypto = crypto != 'undefined' && crypto !== null,
hasRandomValues = typeof(window.crypto.getRandomValues) != 'undefined';
return (hasCrypto && hasRandomValues) ? _cryptoGuid() : _guid();
};
return {
newGuid: create,
empty: EMPTY
};
})();
// DEMO: Create and show GUID
console.log('1. New Guid: ' + Guid.newGuid());
// DEMO: Show empty GUID
console.log('2. Empty Guid: ' + Guid.empty);
Usage:
Guid.newGuid()
"c6c2d12f-d76b-5739-e551-07e6de5b0807"
Guid.empty
"00000000-0000-0000-0000-000000000000"
The version below is an adaptation of broofa's answer, but updated to include a "true" random function that uses crypto libraries where available, and the Alea() function as a fallback.
Math.log2 = Math.log2 || function(n){ return Math.log(n) / Math.log(2); }
Math.trueRandom = (function() {
var crypt = window.crypto || window.msCrypto;
if (crypt && crypt.getRandomValues) {
// If we have a crypto library, use it
var random = function(min, max) {
var rval = 0;
var range = max - min;
if (range < 2) {
return min;
}
var bits_needed = Math.ceil(Math.log2(range));
if (bits_needed > 53) {
throw new Exception("We cannot generate numbers larger than 53 bits.");
}
var bytes_needed = Math.ceil(bits_needed / 8);
var mask = Math.pow(2, bits_needed) - 1;
// 7776 -> (2^13 = 8192) -1 == 8191 or 0x00001111 11111111
// Create byte array and fill with N random numbers
var byteArray = new Uint8Array(bytes_needed);
crypt.getRandomValues(byteArray);
var p = (bytes_needed - 1) * 8;
for(var i = 0; i < bytes_needed; i++ ) {
rval += byteArray[i] * Math.pow(2, p);
p -= 8;
}
// Use & to apply the mask and reduce the number of recursive lookups
rval = rval & mask;
if (rval >= range) {
// Integer out of acceptable range
return random(min, max);
}
// Return an integer that falls within the range
return min + rval;
}
return function() {
var r = random(0, 1000000000) / 1000000000;
return r;
};
} else {
// From https://web.archive.org/web/20120502223108/http://baagoe.com/en/RandomMusings/javascript/
// Johannes Baagøe <baagoe#baagoe.com>, 2010
function Mash() {
var n = 0xefc8249d;
var mash = function(data) {
data = data.toString();
for (var i = 0; i < data.length; i++) {
n += data.charCodeAt(i);
var h = 0.02519603282416938 * n;
n = h >>> 0;
h -= n;
h *= n;
n = h >>> 0;
h -= n;
n += h * 0x100000000; // 2^32
}
return (n >>> 0) * 2.3283064365386963e-10; // 2^-32
};
mash.version = 'Mash 0.9';
return mash;
}
// From http://baagoe.com/en/RandomMusings/javascript/
function Alea() {
return (function(args) {
// Johannes Baagøe <baagoe#baagoe.com>, 2010
var s0 = 0;
var s1 = 0;
var s2 = 0;
var c = 1;
if (args.length == 0) {
args = [+new Date()];
}
var mash = Mash();
s0 = mash(' ');
s1 = mash(' ');
s2 = mash(' ');
for (var i = 0; i < args.length; i++) {
s0 -= mash(args[i]);
if (s0 < 0) {
s0 += 1;
}
s1 -= mash(args[i]);
if (s1 < 0) {
s1 += 1;
}
s2 -= mash(args[i]);
if (s2 < 0) {
s2 += 1;
}
}
mash = null;
var random = function() {
var t = 2091639 * s0 + c * 2.3283064365386963e-10; // 2^-32
s0 = s1;
s1 = s2;
return s2 = t - (c = t | 0);
};
random.uint32 = function() {
return random() * 0x100000000; // 2^32
};
random.fract53 = function() {
return random() +
(random() * 0x200000 | 0) * 1.1102230246251565e-16; // 2^-53
};
random.version = 'Alea 0.9';
random.args = args;
return random;
}(Array.prototype.slice.call(arguments)));
};
return Alea();
}
}());
Math.guid = function() {
return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(c) {
var r = Math.trueRandom() * 16 | 0,
v = c == 'x' ? r : (r & 0x3 | 0x8);
return v.toString(16);
});
};
JavaScript project on GitHub - https://github.com/LiosK/UUID.js
UUID.js The RFC-compliant UUID generator for JavaScript.
See RFC 4122 http://www.ietf.org/rfc/rfc4122.txt.
Features Generates RFC 4122 compliant UUIDs.
Version 4 UUIDs (UUIDs from random numbers) and version 1 UUIDs
(time-based UUIDs) are available.
UUID object allows a variety of access to the UUID including access to
the UUID fields.
Low timestamp resolution of JavaScript is compensated by random
numbers.
// RFC 4122
//
// A UUID is 128 bits long
//
// String representation is five fields of 4, 2, 2, 2, and 6 bytes.
// Fields represented as lowercase, zero-filled, hexadecimal strings, and
// are separated by dash characters
//
// A version 4 UUID is generated by setting all but six bits to randomly
// chosen values
var uuid = [
Math.random().toString(16).slice(2, 10),
Math.random().toString(16).slice(2, 6),
// Set the four most significant bits (bits 12 through 15) of the
// time_hi_and_version field to the 4-bit version number from Section
// 4.1.3
(Math.random() * .0625 /* 0x.1 */ + .25 /* 0x.4 */).toString(16).slice(2, 6),
// Set the two most significant bits (bits 6 and 7) of the
// clock_seq_hi_and_reserved to zero and one, respectively
(Math.random() * .25 /* 0x.4 */ + .5 /* 0x.8 */).toString(16).slice(2, 6),
Math.random().toString(16).slice(2, 14)].join('-');
Added in: v15.6.0, v14.17.0 there is a built-in crypto.randomUUID() function.
import * as crypto from "crypto";
const uuid = crypto.randomUUID();
In the browser, crypto.randomUUID() is currently supported in Chromium 92+ and Firefox 95+.
For those wanting an RFC 4122 version 4 compliant solution with speed considerations (few calls to Math.random()):
var rand = Math.random;
function UUID() {
var nbr, randStr = "";
do {
randStr += (nbr = rand()).toString(16).substr(3, 6);
} while (randStr.length < 30);
return (
randStr.substr(0, 8) + "-" +
randStr.substr(8, 4) + "-4" +
randStr.substr(12, 3) + "-" +
((nbr*4|0)+8).toString(16) + // [89ab]
randStr.substr(15, 3) + "-" +
randStr.substr(18, 12)
);
}
console.log( UUID() );
The above function should have a decent balance between speed and randomness.
I wanted to understand broofa's answer, so I expanded it and added comments:
var uuid = function () {
return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(
/[xy]/g,
function (match) {
/*
* Create a random nibble. The two clever bits of this code:
*
* - Bitwise operations will truncate floating point numbers
* - For a bitwise OR of any x, x | 0 = x
*
* So:
*
* Math.random * 16
*
* creates a random floating point number
* between 0 (inclusive) and 16 (exclusive) and
*
* | 0
*
* truncates the floating point number into an integer.
*/
var randomNibble = Math.random() * 16 | 0;
/*
* Resolves the variant field. If the variant field (delineated
* as y in the initial string) is matched, the nibble must
* match the mask (where x is a do-not-care bit):
*
* 10xx
*
* This is achieved by performing the following operations in
* sequence (where x is an intermediate result):
*
* - x & 0x3, which is equivalent to x % 3
* - x | 0x8, which is equivalent to x + 8
*
* This results in a nibble between 8 inclusive and 11 exclusive,
* (or 1000 and 1011 in binary), all of which satisfy the variant
* field mask above.
*/
var nibble = (match == 'y') ?
(randomNibble & 0x3 | 0x8) :
randomNibble;
/*
* Ensure the nibble integer is encoded as base 16 (hexadecimal).
*/
return nibble.toString(16);
}
);
};
ES6 sample
const guid=()=> {
const s4=()=> Math.floor((1 + Math.random()) * 0x10000).toString(16).substring(1);
return `${s4() + s4()}-${s4()}-${s4()}-${s4()}-${s4() + s4() + s4()}`;
}
I adjusted my own UUID/GUID generator with some extras here.
I'm using the following Kybos random number generator to be a bit more cryptographically sound.
Below is my script with the Mash and Kybos methods from baagoe.com excluded.
//UUID/Guid Generator
// use: UUID.create() or UUID.createSequential()
// convenience: UUID.empty, UUID.tryParse(string)
(function(w){
// From http://baagoe.com/en/RandomMusings/javascript/
// Johannes Baagøe <baagoe#baagoe.com>, 2010
//function Mash() {...};
// From http://baagoe.com/en/RandomMusings/javascript/
//function Kybos() {...};
var rnd = Kybos();
//UUID/GUID Implementation from http://frugalcoder.us/post/2012/01/13/javascript-guid-uuid-generator.aspx
var UUID = {
"empty": "00000000-0000-0000-0000-000000000000"
,"parse": function(input) {
var ret = input.toString().trim().toLowerCase().replace(/^[\s\r\n]+|[\{\}]|[\s\r\n]+$/g, "");
if ((/[a-f0-9]{8}\-[a-f0-9]{4}\-[a-f0-9]{4}\-[a-f0-9]{4}\-[a-f0-9]{12}/).test(ret))
return ret;
else
throw new Error("Unable to parse UUID");
}
,"createSequential": function() {
var ret = new Date().valueOf().toString(16).replace("-","")
for (;ret.length < 12; ret = "0" + ret);
ret = ret.substr(ret.length-12,12); //only least significant part
for (;ret.length < 32;ret += Math.floor(rnd() * 0xffffffff).toString(16));
return [ret.substr(0,8), ret.substr(8,4), "4" + ret.substr(12,3), "89AB"[Math.floor(Math.random()*4)] + ret.substr(16,3), ret.substr(20,12)].join("-");
}
,"create": function() {
var ret = "";
for (;ret.length < 32;ret += Math.floor(rnd() * 0xffffffff).toString(16));
return [ret.substr(0,8), ret.substr(8,4), "4" + ret.substr(12,3), "89AB"[Math.floor(Math.random()*4)] + ret.substr(16,3), ret.substr(20,12)].join("-");
}
,"random": function() {
return rnd();
}
,"tryParse": function(input) {
try {
return UUID.parse(input);
} catch(ex) {
return UUID.empty;
}
}
};
UUID["new"] = UUID.create;
w.UUID = w.Guid = UUID;
}(window || this));
The native URL.createObjectURL is generating an UUID. You can take advantage of this.
function uuid() {
const url = URL.createObjectURL(new Blob())
const [id] = url.toString().split('/').reverse()
URL.revokeObjectURL(url)
return id
}
The better way:
function(
a, b // Placeholders
){
for( // Loop :)
b = a = ''; // b - result , a - numeric variable
a++ < 36; //
b += a*51&52 // If "a" is not 9 or 14 or 19 or 24
? // return a random number or 4
(
a^15 // If "a" is not 15,
? // generate a random number from 0 to 15
8^Math.random() *
(a^20 ? 16 : 4) // unless "a" is 20, in which case a random number from 8 to 11,
:
4 // otherwise 4
).toString(16)
:
'-' // In other cases, (if "a" is 9,14,19,24) insert "-"
);
return b
}
Minimized:
function(a,b){for(b=a='';a++<36;b+=a*51&52?(a^15?8^Math.random()*(a^20?16:4):4).toString(16):'-');return b}
The following is simple code that uses crypto.getRandomValues(a) on supported browsers (Internet Explorer 11+, iOS 7+, Firefox 21+, Chrome, and Android Chrome).
It avoids using Math.random(), because that can cause collisions (for example 20 collisions for 4000 generated UUIDs in a real situation by Muxa).
function uuid() {
function randomDigit() {
if (crypto && crypto.getRandomValues) {
var rands = new Uint8Array(1);
crypto.getRandomValues(rands);
return (rands[0] % 16).toString(16);
} else {
return ((Math.random() * 16) | 0).toString(16);
}
}
var crypto = window.crypto || window.msCrypto;
return 'xxxxxxxx-xxxx-4xxx-8xxx-xxxxxxxxxxxx'.replace(/x/g, randomDigit);
}
Notes:
Optimised for code readability, not speed, so it is suitable for, say, a few hundred UUIDs per second. It generates about 10000 uuid() per second in Chromium on my laptop using http://jsbin.com/fuwigo/1 to measure performance.
It only uses 8 for "y" because that simplifies code readability (y is allowed to be 8, 9, A, or B).
If you just need a random 128 bit string in no particular format, you can use:
function uuid() {
return crypto.getRandomValues(new Uint32Array(4)).join('-');
}
Which will return something like 2350143528-4164020887-938913176-2513998651.
I couldn't find any answer that uses a single 16-octet TypedArray and a DataView, so I think the following solution for generating a version 4 UUID per the RFC will stand on its own here:
const uuid4 = () => {
const ho = (n, p) => n.toString(16).padStart(p, 0); /// Return the hexadecimal text representation of number `n`, padded with zeroes to be of length `p`
const data = crypto.getRandomValues(new Uint8Array(16)); /// Fill the buffer with random data
data[6] = (data[6] & 0xf) | 0x40; /// Patch the 6th byte to reflect a version 4 UUID
data[8] = (data[8] & 0x3f) | 0x80; /// Patch the 8th byte to reflect a variant 1 UUID (version 4 UUIDs are)
const view = new DataView(data.buffer); /// Create a view backed by a 16-byte buffer
return `${ho(view.getUint32(0), 8)}-${ho(view.getUint16(4), 4)}-${ho(view.getUint16(6), 4)}-${ho(view.getUint16(8), 4)}-${ho(view.getUint32(10), 8)}${ho(view.getUint16(14), 4)}`; /// Compile the canonical textual form from the array data
};
I prefer it because:
it only relies on functions available to the standard ECMAScript platform, where possible -- which is all but one procedure
it only uses a single buffer, minimizing copying of data, which should in theory yield performance advantages
At the time of writing this, getRandomValues is not something implemented for the crypto object in Node.js. However, it has the equivalent randomBytes function which may be used instead.
Just another more readable variant with just two mutations.
function uuid4()
{
function hex (s, b)
{
return s +
(b >>> 4 ).toString (16) + // high nibble
(b & 0b1111).toString (16); // low nibble
}
let r = crypto.getRandomValues (new Uint8Array (16));
r[6] = r[6] >>> 4 | 0b01000000; // Set type 4: 0100
r[8] = r[8] >>> 3 | 0b10000000; // Set variant: 100
return r.slice ( 0, 4).reduce (hex, '' ) +
r.slice ( 4, 6).reduce (hex, '-') +
r.slice ( 6, 8).reduce (hex, '-') +
r.slice ( 8, 10).reduce (hex, '-') +
r.slice (10, 16).reduce (hex, '-');
}

How to create a function that converts a Number to a Bijective Hexavigesimal?

Maybe i am just not that good enough in math, but I am having a problem in converting a number into pure alphabetical Bijective Hexavigesimal just like how Microsoft Excel/OpenOffice Calc do it.
Here is a version of my code but did not give me the output i needed:
var toHexvg = function(a){
var x='';
var let="_abcdefghijklmnopqrstuvwxyz";
var len=let.length;
var b=a;
var cnt=0;
var y = Array();
do{
a=(a-(a%len))/len;
cnt++;
}while(a!=0)
a=b;
var vnt=0;
do{
b+=Math.pow((len),vnt)*Math.floor(a/Math.pow((len),vnt+1));
vnt++;
}while(vnt!=cnt)
var c=b;
do{
y.unshift( c%len );
c=(c-(c%len))/len;
}while(c!=0)
for(var i in y)x+=let[y[i]];
return x;
}
The best output of my efforts can get is: a b c d ... y z ba bb bc - though not the actual code above. The intended output is suppose to be a b c ... y z aa ab ac ... zz aaa aab aac ... zzzzz aaaaaa aaaaab, you get the picture.
Basically, my problem is more on doing the ''math'' rather than the function. Ultimately my question is: How to do the Math in Hexavigesimal conversion, till a [supposed] infinity, just like Microsoft Excel.
And if possible, a source code, thank you in advance.
Okay, here's my attempt, assuming you want the sequence to be start with "a" (representing 0) and going:
a, b, c, ..., y, z, aa, ab, ac, ..., zy, zz, aaa, aab, ...
This works and hopefully makes some sense. The funky line is there because it mathematically makes more sense for 0 to be represented by the empty string and then "a" would be 1, etc.
alpha = "abcdefghijklmnopqrstuvwxyz";
function hex(a) {
// First figure out how many digits there are.
a += 1; // This line is funky
c = 0;
var x = 1;
while (a >= x) {
c++;
a -= x;
x *= 26;
}
// Now you can do normal base conversion.
var s = "";
for (var i = 0; i < c; i++) {
s = alpha.charAt(a % 26) + s;
a = Math.floor(a/26);
}
return s;
}
However, if you're planning to simply print them out in order, there are far more efficient methods. For example, using recursion and/or prefixes and stuff.
Although #user826788 has already posted a working code (which is even a third quicker), I'll post my own work, that I did before finding the posts here (as i didnt know the word "hexavigesimal"). However it also includes the function for the other way round. Note that I use a = 1 as I use it to convert the starting list element from
aa) first
ab) second
to
<ol type="a" start="27">
<li>first</li>
<li>second</li>
</ol>
:
function linum2int(input) {
input = input.replace(/[^A-Za-z]/, '');
output = 0;
for (i = 0; i < input.length; i++) {
output = output * 26 + parseInt(input.substr(i, 1), 26 + 10) - 9;
}
console.log('linum', output);
return output;
}
function int2linum(input) {
var zeros = 0;
var next = input;
var generation = 0;
while (next >= 27) {
next = (next - 1) / 26 - (next - 1) % 26 / 26;
zeros += next * Math.pow(27, generation);
generation++;
}
output = (input + zeros).toString(27).replace(/./g, function ($0) {
return '_abcdefghijklmnopqrstuvwxyz'.charAt(parseInt($0, 27));
});
return output;
}
linum2int("aa"); // 27
int2linum(27); // "aa"
You could accomplish this with recursion, like this:
const toBijective = n => (n > 26 ? toBijective(Math.floor((n - 1) / 26)) : "") + ((n % 26 || 26) + 9).toString(36);
// Parsing is not recursive
const parseBijective = str => str.split("").reverse().reduce((acc, x, i) => acc + ((parseInt(x, 36) - 9) * (26 ** i)), 0);
toBijective(1) // "a"
toBijective(27) // "aa"
toBijective(703) // "aaa"
toBijective(18279) // "aaaa"
toBijective(127341046141) // "overflow"
parseBijective("Overflow") // 127341046141
I don't understand how to work it out from a formula, but I fooled around with it for a while and came up with the following algorithm to literally count up to the requested column number:
var getAlpha = (function() {
var alphas = [null, "a"],
highest = [1];
return function(decNum) {
if (alphas[decNum])
return alphas[decNum];
var d,
next,
carry,
i = alphas.length;
for(; i <= decNum; i++) {
next = "";
carry = true;
for(d = 0; d < highest.length; d++){
if (carry) {
if (highest[d] === 26) {
highest[d] = 1;
} else {
highest[d]++;
carry = false;
}
}
next = String.fromCharCode(
highest[d] + 96)
+ next;
}
if (carry) {
highest.push(1);
next = "a" + next;
}
alphas[i] = next;
}
return alphas[decNum];
};
})();
alert(getAlpha(27)); // "aa"
alert(getAlpha(100000)); // "eqxd"
Demo: http://jsfiddle.net/6SE2f/1/
The highest array holds the current highest number with an array element per "digit" (element 0 is the least significant "digit").
When I started the above it seemed a good idea to cache each value once calculated, to save time if the same value was requested again, but in practice (with Chrome) it only took about 3 seconds to calculate the 1,000,000th value (bdwgn) and about 20 seconds to calculate the 10,000,000th value (uvxxk). With the caching removed it took about 14 seconds to the 10,000,000th value.
Just finished writing this code earlier tonight, and I found this question while on a quest to figure out what to name the damn thing. Here it is (in case anybody feels like using it):
/**
* Convert an integer to bijective hexavigesimal notation (alphabetic base-26).
*
* #param {Number} int - A positive integer above zero
* #return {String} The number's value expressed in uppercased bijective base-26
*/
function bijectiveBase26(int){
const sequence = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const length = sequence.length;
if(int <= 0) return int;
if(int <= length) return sequence[int - 1];
let index = (int % length) || length;
let result = [sequence[index - 1]];
while((int = Math.floor((int - 1) / length)) > 0){
index = (int % length) || length;
result.push(sequence[index - 1]);
}
return result.reverse().join("")
}
I had to solve this same problem today for work. My solution is written in Elixir and uses recursion, but I explain the thinking in plain English.
Here are some example transformations:
0 -> "A", 1 -> "B", 2 -> "C", 3 -> "D", ..
25 -> "Z", 26 -> "AA", 27 -> "AB", ...
At first glance it might seem like a normal 26-base counting system
but unfortunately it is not so simple.
The "problem" becomes clear when you realize:
A = 0
AA = 26
This is at odds with a normal counting system, where "0" does not behave
as "1" when it is in a decimal place other than then unit.
To understand the algorithm, consider a simpler but equivalent base-2 system:
A = 0
B = 1
AA = 2
AB = 3
BA = 4
BB = 5
AAA = 6
In a normal binary counting system we can determine the "value" of decimal places by
taking increasing powers of 2 (1, 2, 4, 8, 16) and the value of a binary number is
calculated by multiplying each digit by that digit place's value.
e.g. 10101 = 1 * (2 ^ 4) + 0 * (2 ^ 3) + 1 * (2 ^ 2) + 0 * (2 ^ 1) + 1 * (2 ^ 0) = 21
In our more complicated AB system, we can see by inspection that the decimal place values are:
1, 2, 6, 14, 30, 62
The pattern reveals itself to be (previous_unit_place_value + 1) * 2.
As such, to get the next lower unit place value, we divide by 2 and subtract 1.
This can be extended to a base-26 system. Simply divide by 26 and subtract 1.
Now a formula for transforming a normal base-10 number to special base-26 is apparent.
Say the input is x.
Create an accumulator list l.
If x is less than 26, set l = [x | l] and go to step 5. Otherwise, continue.
Divide x by 2. The floored result is d and the remainder is r.
Push the remainder as head on an accumulator list. i.e. l = [r | l]
Go to step 2 with with (d - 1) as input, e.g. x = d - 1
Convert """ all elements of l to their corresponding chars. 0 -> A, etc.
So, finally, here is my answer, written in Elixir:
defmodule BijectiveHexavigesimal do
def to_az_string(number, base \\ 26) do
number
|> to_list(base)
|> Enum.map(&to_char/1)
|> to_string()
end
def to_09_integer(string, base \\ 26) do
string
|> String.to_charlist()
|> Enum.reverse()
|> Enum.reduce({0, nil}, fn
char, {_total, nil} ->
{to_integer(char), 1}
char, {total, previous_place_value} ->
char_value = to_integer(char + 1)
place_value = previous_place_value * base
new_total = total + char_value * place_value
{new_total, place_value}
end)
|> elem(0)
end
def to_list(number, base, acc \\ []) do
if number < base do
[number | acc]
else
to_list(div(number, base) - 1, base, [rem(number, base) | acc])
end
end
defp to_char(x), do: x + 65
end
You use it simply as BijectiveHexavigesimal.to_az_string(420). It also accepts on optional "base" arg.
I know the OP asked about Javascript but I wanted to provide an Elixir solution for posterity.
I have published these functions in npm package here:
https://www.npmjs.com/package/#gkucmierz/utils
Converting bijective numeration to number both ways (also BigInt version is included).
https://github.com/gkucmierz/utils/blob/main/src/bijective-numeration.mjs

Convert numbers to letters beyond the 26 character alphabet

I'm creating some client side functions for a mappable spreadsheet export feature.
I'm using jQuery to manage the sort order of the columns, but each column is ordered like an Excel spreadsheet i.e. a b c d e......x y z aa ab ac ad etc etc
How can I generate a number as a letter? Should I define a fixed array of values? Or is there a dynamic way to generate this?
I think you're looking for something like this
function colName(n) {
var ordA = 'a'.charCodeAt(0);
var ordZ = 'z'.charCodeAt(0);
var len = ordZ - ordA + 1;
var s = "";
while(n >= 0) {
s = String.fromCharCode(n % len + ordA) + s;
n = Math.floor(n / len) - 1;
}
return s;
}
// Example:
for(n = 0; n < 125; n++)
document.write(n + ":" + colName(n) + "<br>");
This is a very easy way:
function numberToLetters(num) {
let letters = ''
while (num >= 0) {
letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'[num % 26] + letters
num = Math.floor(num / 26) - 1
}
return letters
}
function getColumnDescription(i) {
const m = i % 26;
const c = String.fromCharCode(65 + m);
const r = i - m;
return r > 0
? `${getColumnDescription((r - 1) / 26)}${c}`
: `Column ${c}`
}
Usage:
getColumnDescription(15)
"Column P"
getColumnDescription(26)
"Column AA"
getColumnDescription(4460)
"Column FOO"
If you have your data in a two-dimensional array, e.g.
var data = [
['Day', 'score],
['Monday', 99],
];
you can map the rows/columns to spreadsheet cell numbers as follows (building on the code examples above):
function getSpreadSheetCellNumber(row, column) {
let result = '';
// Get spreadsheet column letter
let n = column;
while (n >= 0) {
result = String.fromCharCode(n % 26 + 65) + result;
n = Math.floor(n / 26) - 1;
}
// Get spreadsheet row number
result += `${row + 1}`;
return result;
};
E.g. the 'Day' value from data[0][0] would go in spreadsheet cell A1.
> getSpreadSheetCellNumber(0, 0)
> "A1"
This also works when you have 26+ columns:
> getSpreadSheetCellNumber(0, 26)
> "AA1"
You can use code like this, assuming that numbers contains the numbers of your columns. So after this code you'll get the string names for your columns:
var letters = ['a', 'b', 'c', ..., 'z'];
var numbers = [1, 2, 3, ...];
var columnNames = [];
for(var i=0;i<numbers.length;i++) {
var firstLetter = parseInt(i/letters.length) == 0 ? '' : letters[parseInt(i/letters.length)];
var secondLetter = letters[i%letters.length-1];
columnNames.push(firstLetter + secondLetter);
}
Simple recursive solution:
function numberToColumn(n) {
const res = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'[n % 26];
return n >= 26 ? numberToColumn(Math.floor(n / 26) - 1) + res : res;
}
Here is an alternative approach that relies on .toString(26). It uses conversion to base-26 and then translates the characters so they are in the a..z range:
const conv = ((base, alpha) => { // Closure for preparing the function
const map = Object.fromEntries(Array.from(alpha, (c, i) => [c, alpha[i + 10]]));
return n => (n + base).toString(26).replace(/o*p/, "").replace(/./g, m => map[m]);
})(parseInt("ooooooooop0", 26), "0123456789abcdefghijklmnopqrstuvwxyz");
// Example:
for (let n = 0; n < 29; n++) console.log(n, conv(n));
console.log("...");
for (let n = 690; n < 705; n++) console.log(n, conv(n));
About the magical number
The magical value "ooooooooop0" is derived as follows:
It is a number expressed in radix 26, in the standard way, i.e. where the ten digits also play a role, and then the first letters of the alphabet.
The greatest "digit" in this radix 26 is "p" (the 16th letter of the Latin alphabet), and "o" is the second greatest.
The magical value is formed by a long enough series of the one-but-greatest digit, followed by the greatest digit and ended by a 0.
As JavaScript integer numbers max out around Number.MAX_SAFE_INTEGER (greater integers numbers would suffer from rounding errors), there is no need to have a longer series of "o" than was selected. We can see that Number.MAX_SAFE_INTEGER.toString(26) has 12 digits, so precision is ensured up to 11 digits in radix 26, meaning we need 9 "o".
This magical number ensures that if we add units to it (in radix 26), we will always have a representation which starts with a series of "o" and then a "p". That is because at some point the last digit will wrap around to 0 again, and the "p" will also wrap around to 0, bringing the preceding "o" to "p". And so we have this invariant that the number always starts with zero or more "o" and then a "p".
More generic
The above magic number could be derived via code, and we could make it more generic by providing the target alphabet. The length of that target alphabet then also directly determines the radix (i.e. the number of characters in that string).
Here is the same output generated as above, but with a more generic function:
function createConverter(targetDigits) {
const radix = targetDigits.length,
alpha = "0123456789abcdefghijklmnopqrstuvwxyz",
map = Object.fromEntries(Array.from(alpha,
(src, i) => [src, targetDigits[i]]
)),
base = parseInt((alpha[radix-1]+'0').padStart(
Number.MAX_SAFE_INTEGER.toString(radix).length - 1, alpha[radix-2]
), radix),
trimmer = RegExp("^" + alpha[radix-2] + "*" + alpha[radix-1]);
return n => (n + base).toString(radix)
.replace(trimmer, "")
.replace(/./g, m => map[m]);
}
// Example:
const conv = createConverter("abcdefghijklmnopqrstuvwxyz");
for (let n = 0; n < 29; n++) console.log(n, conv(n));
console.log("...");
for (let n = 690; n < 705; n++) console.log(n, conv(n));
This can now easily be adapted to use a more reduced target alphabet (like without the letters "l" and "o"), giving a radix of 24 instead of 26:
function createConverter(targetDigits) {
const radix = targetDigits.length,
alpha = "0123456789abcdefghijklmnopqrstuvwxyz",
map = Object.fromEntries(Array.from(alpha,
(src, i) => [src, targetDigits[i]]
)),
base = parseInt((alpha[radix-1]+'0').padStart(
Number.MAX_SAFE_INTEGER.toString(radix).length - 1, alpha[radix-2]
), radix),
trimmer = RegExp("^" + alpha[radix-2] + "*" + alpha[radix-1]);
return n => (n + base).toString(radix)
.replace(trimmer, "")
.replace(/./g, m => map[m]);
}
// Example without "l" and "o" in target alphabet:
const conv = createConverter("abcdefghijkmnpqrstuvwxyz");
for (let n = 0; n < 29; n++) console.log(n, conv(n));
console.log("...");
for (let n = 690; n < 705; n++) console.log(n, conv(n));
This covers the range from 1 to 1000. Beyond that I haven't checked.
function colToletters(num) {
let a = " ABCDEFGHIJKLMNOPQRSTUVWXYZ";
if (num < 27) return a[num % a.length];
if (num > 26) {
num--;
let letters = ''
while (num >= 0) {
letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'[num % 26] + letters
num = Math.floor(num / 26) - 1
}
return letters;
}
}
I could be wrong but I've checked the other functions in this answer and they seem to fail at 26 which should be Z. Remember there are 26 letters in the alphabet not 25.

Categories