You have two triangles a1 b1 c1 and a2 b2 c3 on a plane. Your task is to determine whether they are, i.e. if their corresponding angles have the same measurements.
coordinates is an
array []
let coord = [0, 0, 0, 1, 1, 0, 0, 0, 0, -3, -3, 0];
where a1 is (coord[0],coord[1]), b1 (coord[2],coord[3]) ...
let s = [0, 0, 0, 1, 1, 0, 0, 0, 0, -3, -3, 0]
function areTrianglesSimilar(c) {
let result = null
let line1 = (Math.abs(c[2]) - Math.abs(c[0])) + (Math.abs(c[3]) - Math.abs(c[1]))
let line2 = (Math.abs(c[4]) - Math.abs(c[0])) + (Math.abs(c[5]) - Math.abs(c[1]))
let line3 = Math.abs(Math.sqrt( Math.pow(line1, 2)+ Math.pow(line2, 2)))
console.log(line1, line2, line3)
let angle1 = Math.atan2(line1, line2) * 180 / Math.PI
let angle2 = Math.atan2(line1, line3) * 180 / Math.PI
let angle3 = 180 - (angle1 + angle2)
console.log(angle1, angle2, angle3)
let arr1 = []
arr1.push(angle1, angle2, angle3)
let line4 = (Math.abs(c[8]) - Math.abs(c[6])) + (Math.abs(c[9]) - Math.abs(c[7]))
let line5 = (Math.abs(c[10]) - Math.abs(c[0])) + (Math.abs(c[11]) - Math.abs(c[1]))
let line6 = Math.abs(Math.sqrt( Math.pow(line4, 2)+ Math.pow(line5, 2)))
console.log(line4, line5, line6)
let angle4 = Math.atan2(line4, line5) * 180 / Math.PI
let angle5 = Math.atan2(line4, line6) * 180 / Math.PI
let angle6 = 180 - (angle4 + angle5)
console.log(angle6, angle5, angle4)
if (arr1.includes(angle4) && arr1.includes(angle5) && arr1.includes(angle6)){
return result = true
} else return result = false
}
console.log(areTrianglesSimilar(s))
this was my try but did not pass all tests, any better idea?
Thanks to Mbo
function areTrianglesSimilar(c) {
let dx1 = c[2] - c[0];
let dy1 = c[3] - c[1];
let dx2 = c[4] - c[0];
let dy2 = c[5] - c[1];
let dx3 = c[4] - c[2];
let dy3 = c[5] - c[3];
let l1 = Math.sqrt(dx1 * dx1 + dy1 * dy1);
let l2 = Math.sqrt(dx2 * dx2 + dy2 * dy2);
let l3 = Math.sqrt(dx3 * dx3 + dy3 * dy3);
console.log(l1,l2,l3);
let angle12 = Math.acos((dx1 * dx2 + dy1 * dy2) / (l1 * l2));
let angle13 = Math.acos((dx1 * dx3 + dy1 * dy3) / (l1 * l3));
let angle23 = Math.acos((dx3 * dx2 + dy3 * dy2) / (l3 * l2));
console.log(angle12, angle13, angle23);
let dx4 = c[8] - c[6];
let dy4 = c[9] - c[7];
let dx5 = c[10] - c[6];
let dy5 = c[11] - c[7];
let dx6 = c[10] - c[8];
let dy6 = c[11] - c[9];
let l4 = Math.sqrt(dx4 * dx4 + dy4 * dy4);
let l5 = Math.sqrt(dx5 * dx5 + dy5 * dy5);
let l6 = Math.sqrt(dx6 * dx6 + dy6 * dy6);
console.log(l4,l5,l6);
let angle45 = Math.acos((dx4 * dx5 + dy4 * dy5) / (l4 * l5));
let angle46 = Math.acos((dx4 * dx6 + dy4 * dy6) / (l4 * l6));
let angle56 = Math.acos((dx6 * dx5 + dy6 * dy5) / (l6 * l5));
console.log(angle45, angle46, angle56);
if (angle12 == angle45 && angle13 == angle46){
console.log('result'+':'+ true);
} else console.log("result" + ":" + false);
}
let coordinates = [3, 4, 4, 7, 6, 1, -2, -1, 0, 5, 4, -7];
console.log(areTrianglesSimilar(coordinates))
Your calculation is completely wrong. Dot product approach:
dx1 = c[2] - c[0]
dy1 = c[3] - c[1]
dx2 = c[4] - c[0]
dy2 = c[5] - c[1]
dx3 = c[4] - c[2]
dy3 = c[5] - c[3]
l1 = Math.sqrt(dx1*dx1+dy1*dy1)
l2 = Math.sqrt(dx2*dx2+dy2*dy2)
l3 = Math.sqrt(dx3*dx3+dy3*dy3)
angle12 = Math.acos((dx1*dx2+dy1*dy2)/(l1*l2)
and similar for angle13, and later you need to compare only two angles for equality
if angle12 == angle45 and angle13 == angle46 ...
or use some epsylon value to avoid floating calculation errors
if abs(angle12 -angle45) < 0.0000001 ...
Moreover, you can avoid angles and compare side length ratios
if l1/l4==l2/l5 and l1/l4==l3/l6...
There are quite a number of errors here. Aside from these, you should probably consider refactoring the code into separate functions which encapsulate commonly performed calculations. This will cut down on needless repetition and make copy-paste typos less possible. It will also make the code a little more self-documenting, which allows human beings to understand what you're doing better.
Assuming you want to determine the angles of the triangles and compare them (but you could also use side length ratios as #MBo pointed out), the general approach I would follow is this:
Write a function to convert the coordinates array into a pair of Triangle objects, where a Triangle is a three-tuple of Point objects, defined like this:
type Triangle = [Point, Point, Point];
interface Point { x: number, y: number };
function toTrianges(coords: number[]): [Triangle, Triangle] {
// implement this
}
Write a function that takes three Points, A, B, and C, and returns the (absolute value of the) measure of angle ∡ABC (with B as the vertex) in, say, degrees:
function measureAngleABC(a: Point, b: Point, c: Point): number {
// implement this
}
In order to do that, you might want to write functions that turn two Points A and B and produces the Vector from A to B, and that manipulate vectors:
type Vector = Point;
function vector(a: Point, b: Point): Vector { /* impl */ }
function vectorLength(v: Vector): number { /* impl */ }
function dotProduct(v1: Vector, v2: Vector): number { /* impl */ }
Note that the (unsigned) angle between two vectors can be determined by examining their lengths and their dot product.
Once you have these, you should be able to turn a Triangle into a (sorted) triplet of its (unsigned) angles:
type TriangleAngles = [number, number, number];
function angles(triangle: Triangle): TriangleAngles { /* impl * }
And finally, write a function that compares two TriangleAngles for near-equality. Not actual equality using ===, which is fraught with troubles. Since floating-point numbers do not have infinite precision, two different calculations that should yield the same quantity might actually produce two different floating-point results. The famous example is that 0.1 + 0.2 === 0.3 is false. When you compare two TriangleAngles, you need to decide how close is "close enough" to call two triangles similar:
function areNearlyEqual(ta1: TriangleAngles, ta2: TriangleAngles): boolean {
// impl here
}
I'm not going to write out how to implement these, since this looks like an exercise that benefits you most if you actually do it, not if someone does it for you.
In any case, here are the errors I see in your code:
The line (Math.abs(c[10]) - Math.abs(c[0])) + (Math.abs(c[11]) - Math.abs(c[1])) looks like a typo with indices, as you are seemingly comparing a point from one triangle with a point on a different triangle. This sort of typo would be much less likely if you refactor so as to move from an array of numbers to something like a pair of Triangles.
All code of the form Math.abs(c[k]) for some index k is highly suspect. This treats c[k] === 100 identically to c[k] === -100. If you take a triangle and flip the sign of the x or y coordinate of one of its vertices, you are almost certainly going to change the shape of the triangle by reflecting that vertex across the x or y axis:
If your code can't tell the difference between those two triangles, it's not going to be able to accurately determine if two triangles are similar or not.
The line let line1 = (Math.abs(c[2]) - Math.abs(c[0])) + (Math.abs(c[3]) - Math.abs(c[1])) and its brethren seem to looking at one of the sides of one of the triangles and adding the x component of its length to the y component of its length to get a single number. This doesn't represent much of anything that I can think of. The vector of x-component-of-length and y-component-of-length are important, but when you just add the components together you are throwing away information you need. You can verify this for yourself by coming up with a triangle where swapping c[2] and c[3] will change its shape, but the above code will not see a difference.
The line let line3 = Math.abs(Math.sqrt( Math.pow(line1, 2)+ Math.pow(line2, 2))) seems to assume that line1 and line2 represent the lengths of two sides of a right triangle and line3 is the length of the hypotenuse. But unless your two sides are really perpendicular to each other, this will not be true.
The line let angle2 = Math.atan2(line1, line3) * 180 / Math.PI is calculating an angle, but what angle? You can only use the arctangent to get an angle from the opposite and adjacent sides of a right triangle. But there might be no right triangles here, and since line3 was earlier assumed to be the hypotenuse of a right triangle where one of the sides was line1, there's no way line3 is now one of the perpendicular legs.
Um, I think I have to stop here. Suffice it to say that I would be very surprised if you could get this algorithm working by tweaking it. I'd strongly recommend starting over with reusable functions that perform well-defined calculations.
Good luck.
Related
Edit: I just changed my Control Point to the Intersection. That's why it couldn't fit anymore.
I know it's a very presumptuous. But I am working on a Web-Application and I need to calculate the intersection with a quadratic Beziere-Curve and a Line.
Linear Bezier-Curve: P=s(W-V)+V
Quadratic Bezier-Curve: P=t²(A-2B+C)+t(-2A+2B)+A
Because W, V, A, B, and C are points, I could make two equation. I rearranged the first equation to seperate s to solve the equation.
I'm pretty sure i did it correctly, but my intersection was not on the line. So i was wondering and made my own quadratic-Beziercurve by the correct formular and my intersection hits this curve. Now I am wondering what did I wrong?
That is my function:
intersectsWithLineAtT(lineStartPoint, lineEndPoint)
{
let result = []
let A = this.startPoint, B = this.controlPoint, C = this.endPoint, V = lineStartPoint, W = lineEndPoint
if (!Common.isLineIntersectingLine(A, B, V, W)
&& !Common.isLineIntersectingLine(B, C, V, W)
&& !Common.isLineIntersectingLine(A, C, V, W))
return null
let alpha = Point.add(Point.subtract(A, Point.multiply(B, 2)), C)
let beta = Point.add(Point.multiply(A, -2), Point.multiply(B, 2))
let gamma = A
let delta = V
let epsilon = Point.subtract(W, V)
let a = alpha.x * (epsilon.y / epsilon.x) - alpha.y
let b = beta.x * (epsilon.y / epsilon.x) - beta.y
let c = (gamma.x - delta.x) * (epsilon.y / epsilon.x) - gamma.y + delta.y
let underSquareRoot = b * b - 4 * a * c
if (Common.compareFloats(0, underSquareRoot))
result.push(-b / 2 * a)
else if (underSquareRoot > 0)
{
result.push((-b + Math.sqrt(underSquareRoot)) / (2 * a))
result.push((-b - Math.sqrt(underSquareRoot)) / (2 * a))
}
result = result.filter((t) =>
{
return (t >= 0 && t <= 1)
})
return result.length > 0 ? result : null
}
I hope someone can help me.
Lena
The curve/line intersection problem is the same as the root finding problem, after we rotate all coordinates such that the line ends up on top of the x-axis:
which involves a quick trick involving atan2:
const d = W.minus(V);
const angle = -atan2(d.y, d.x);
const rotated = [A,B,C].map(p => p.minus(V).rotate(angle));
Assuming you're working with point classes that understand vector operations. If not, easy enough to do with standard {x, y} objects:
const rotated = [A,B,C].map(p => {
p.x -= V.x;
p.y -= V.y;
return {
x: p.x * cos(a) - p.y * sin(a),
y: p.x * sin(a) + p.y * cos(a)
};
});
Then all we need to find out is which t values yield y=0, which is (as you also used) just applying the quadratic formula. And we don't need to bother with collapsing dimensions: we've reduced the problem to finding solutions in just the y dimension, so taking
const a = rotated[0].y;
const b = rotated[1].y;
const c = rotated[2].y;
and combining that with the fact that we know that Py = t²(a-b+c)+t(-2a+2b)+a we just work out that t = -b/2a +/- sqrt(b² - 4ac))/2a with the usual checks for negative, zero, and positive discriminant, as well as checking for division by zero.
This gives us with zero or more t value(s) for the y=0 intercept in our rotated case, and for the intersection between our curve and line in the unrotated case. No additional calculations required. Aside from "evaluating B(t) to get the actual (x,y) cooordinates", of course.
I reached out for help recently on math.stackexchange.com with a question about 2 dimensional algebra. The answer was promptly provided but it's in mathematical notation unfamiliar to me and the person giving the answer has stopped responding to my questions. While I am extremely grateful to BStar for providing this information, he/she has stopped replying both on the site and the chat, and doesn't seem interested in helping me understand it to the point that I could write programming code to calculate the desired point P. I respect that, but it leaves me stuck for now. Could someone help me convert this sequence of steps into a programming language such as Javascript? (I am actually working in PHP, but Javascript would be more convenient to represent in a runnable Snippet on stackoverflow .. I'm happy with any current language that I can translate into PHP).
The post is at https://math.stackexchange.com/questions/4110517/trig-101-calculate-coords-of-point-p-such-that-it-is-distance-n-from-line-ab-an/4110550?noredirect=1#comment8504010_4110550
The answer given is in Latex but here's a screenshot of it:
The latest description of the process by the author BStar: "Here is the process: First calculate cos B and use arccos to get B. Second calculate tanθ to get θ with arctan by using |BP| is the same from two triangles. Knowing these, we can get vectors BA’ and B’P, thus vectors OA and OP. We get θ to grt vector BA’ in this case, not the other way around. "
I can follow up until step (5) where the comma notation comes in, i.e. k = (-xb, -yb)(xc - xb, yc - yb) / ac. This seems to make k a two dimensional vector but I don't think I ever worked with this notation. Later, k is used in step (6) and (6a) to calculate theta, appearing both in the numerator and denominator of a fraction. I have no idea how to expand this to get an actual value for theta.
(Edit Note: The author BStar assumed point A is at the origin, so (xa, ya) = (0, 0) but I cannot make that assumption in the real world. Thus the vector BA in Step 1 is actually (xa - xb, ya - yb) and his formula for k shown above is actually k = (xa - xb, ya - yb)(xc - xb, yc - yb) / ac. This expansion needs to be carried through the calculation but it's not a major change.)
If we were to frame this in Javascript, I could lay out a framework of what is known at the beginning of the calculation. It's not productive to represent every single step of the mathematical proof given by BStar, but I'm not sure exactly what steps can be left as processes in the mathematical proof and what steps need expounding in code.
/* Known points - A, B, C */
var xa = 10, ya = 10;
var xb = 100, yb = 500;
var xc = 700, yc = 400;
/* Known lengths m and n (distance perpendicularly from AB and AC) */
var m = 30;
var n = 50;
/* Point we want to calculate, P */
var px = 0, py = 0;
/* Calculation goes here - some Javascript notes:
* var a = Math.sin(angInRadians);
* var b = Math.asin(opposite / hypotenuse);
* var c = Math.pow(number, 2); // square a number
* var d = Math.sqrt(number);
*/
/* Print the result */
console.log('Result: P (' + px + ', ' + py + ')');
How would one express the maths from the diagram in the programming snippet above?
I think I can get you to the angle of B but I'm not very good with math and get lost with all those variables. If you are stuck at figuring out the angle try this and see if it does what you want. It seems to do what step 5 is asking but double check my work.
let pointA = {x: 100, y: 0};
let pointB = {x: 20, y: 20};
let pointC = {x: 0, y: 100};
let distBA_x = pointB.x - pointA.x;
let distBA_y = pointB.y - pointA.y;
//let BA_a = Math.sqrt(distBA_x*distBA_x + distBA_y*distBA_y);
let distBC_x = pointB.x - pointC.x;
let distBC_y = pointB.y - pointC.y;
//let BC_c = Math.sqrt(distBC_x*distBC_x + distBC_y*distBC_y);
var angle = Math.atan2(distBA_x * distBC_y - distBA_y * distBC_x, distBA_x * distBC_x + distBA_y * distBC_y);
if(angle < 0) {angle = angle * -1;}
var degree_angle = angle * (180 / Math.PI);
console.log(degree_angle)
I've laid it out on a canvas so you can see it visually and change the parameters. Hope it helps. Here's the Codepen https://codepen.io/jfirestorm44/pen/RwKdpRw
BA • BC is a "dot product" between two vectors. The result is a single number: It's the sum of the products of vector components. If the vectors are (x1,y1) and (x2,y2) the dot product is x1x2+y1y2.
Assuming you don't have a library for vector calculations and don't want to create one, the code for computing k would be:
k = (-xb*(xc - xb)-yb*(yc - yb)) / ac
I'm receiving all distances between a random number of points in a 2 dimensional coordinate system.
How can I visualize this as coordinates on a map in my browser?
In case there are many solutions I just want to see the first possible one that my algorithm can come up with.
So here's an extremely easy example:
PointCount = 3
Distances:
0-1 = 2
0-2 = 4
1-2 = 2
Does anyone know an easy way (existing solution/framework maybe) to do it using whatever is out there to make it easier to implement?
I was thinking maybe using the html canvas element for drawing, but I don't know how to create an algorithm that could come up with possible coordinates for those points.
The above example is simplified -
Real distance values could look like this:
(0) (1) (2) (3)
(0) 0 2344 3333 10000
(1) 0 3566 10333
(2) 0 12520
I'm not sure this is relevant for SO, but anyway...
The way to do this is quite simply to place the points one by one using the data:
Pick a random location for the first point (let's say it's 0,0).
The second point is on a circle with radius d(0,1) with the first point as its center, so you can pick any point on the circle. Let's pick (d(0,1),0).
The third point is at the intersection of a circle with radius d(0,2) and center point 1, and a circle with radius d(1,2) and center point 2. You will get either 0, 1, 2 or an infinity of solutions. If the data comes from real points, 0 shouldn't happen. 1 and infinity are edge cases, but you should still handle them. Pick any of the solutions.
The fourth point is at the intersection of 3 circles. Unless you're very unlucky (but you should account for it), there should be only one solution.
Continue like this until all points have been placed.
Note that this doesn't mean you'll get the exact locations of the original points: you can have any combination of a translation (the choice of your first point), rotation (the choice of your second point) and symmetry (the choice of your third point) making the difference.
A quick and dirty implementation (not handling quite a few cases, and tested very little):
function distance(p1, p2) {
return Math.sqrt(Math.pow(p2[0] - p1[0], 2) + Math.pow(p2[1] - p1[1], 2));
}
// adapted from https://stackoverflow.com/a/12221389/3527940
function intersection(x0, y0, r0, x1, y1, r1) {
var a, dx, dy, d, h, rx, ry;
var x2, y2;
/* dx and dy are the vertical and horizontal distances between
* the circle centers.
*/
dx = x1 - x0;
dy = y1 - y0;
/* Determine the straight-line distance between the centers. */
d = Math.sqrt((dy * dy) + (dx * dx));
/* Check for solvability. */
if (d > (r0 + r1)) {
/* no solution. circles do not intersect. */
return false;
}
if (d < Math.abs(r0 - r1)) {
/* no solution. one circle is contained in the other */
return false;
}
/* 'point 2' is the point where the line through the circle
* intersection points crosses the line between the circle
* centers.
*/
/* Determine the distance from point 0 to point 2. */
a = ((r0 * r0) - (r1 * r1) + (d * d)) / (2.0 * d);
/* Determine the coordinates of point 2. */
x2 = x0 + (dx * a / d);
y2 = y0 + (dy * a / d);
/* Determine the distance from point 2 to either of the
* intersection points.
*/
h = Math.sqrt((r0 * r0) - (a * a));
/* Now determine the offsets of the intersection points from
* point 2.
*/
rx = -dy * (h / d);
ry = dx * (h / d);
/* Determine the absolute intersection points. */
var xi = x2 + rx;
var xi_prime = x2 - rx;
var yi = y2 + ry;
var yi_prime = y2 - ry;
return [
[xi, yi],
[xi_prime, yi_prime]
];
}
function generateData(nbPoints) {
var i, j, k;
var originalPoints = [];
for (i = 0; i < nbPoints; i++) {
originalPoints.push([Math.random() * 20000 - 10000, Math.random() * 20000 - 10000]);
}
var data = [];
var distances;
for (i = 0; i < nbPoints; i++) {
distances = [];
for (j = 0; j < i; j++) {
distances.push(distance(originalPoints[i], originalPoints[j]));
}
data.push(distances);
}
//console.log("original points", originalPoints);
//console.log("distance data", data);
return data;
}
function findPointsForDistances(data, threshold) {
var points = [];
var solutions;
var solutions1, solutions2;
var point;
var i, j, k;
if (!threshold)
threshold = 0.01;
// First point, arbitrarily set at 0,0
points.push([0, 0]);
// Second point, arbitrarily set at d(0,1),0
points.push([data[1][0], 0]);
// Third point, intersection of two circles, pick any solution
solutions = intersection(
points[0][0], points[0][1], data[2][0],
points[1][0], points[1][1], data[2][1]);
//console.log("possible solutions for point 3", solutions);
points.push(solutions[0]);
//console.log("solution for points 1, 2 and 3", points);
found = true;
// Subsequent points, intersections of n-1 circles, use first two to find 2 solutions,
// the 3rd to pick one of the two
// then use others to check it's valid
for (i = 3; i < data.length; i++) {
// distances to points 1 and 2 give two circles and two possible solutions
solutions = intersection(
points[0][0], points[0][1], data[i][0],
points[1][0], points[1][1], data[i][1]);
//console.log("possible solutions for point " + (i + 1), solutions);
// try to find which solution is compatible with distance to point 3
found = false;
for (j = 0; j < 2; j++) {
if (Math.abs(distance(solutions[j], points[2]) - data[i][2]) <= threshold) {
point = solutions[j];
found = true;
break;
}
}
if (!found) {
console.log("could not find solution for point " + (i + 1));
console.log("distance data", data);
console.log("solution for points 1, 2 and 3", points);
console.log("possible solutions for point " + (i + 1), solutions);
console.log("distances to point 3",
distance(solutions[0], points[2]),
distance(solutions[1], points[2]),
data[i][2]
);
break;
}
// We have found a solution, we need to check it's valid
for (j = 3; j < i; j++) {
if (Math.abs(distance(point, points[j]) - data[i][j]) > threshold) {
console.log("Could not verify solution", point, "for point " + (i + 1) + " against distance to point " + (j + 1));
found = false;
break;
}
}
if (!found) {
console.log("stopping");
break;
}
points.push(point);
}
if (found) {
//console.log("complete solution", points);
return points;
}
}
console.log(findPointsForDistances([
[],
[2344],
[3333, 3566],
[10000, 10333, 12520],
]));
console.log(findPointsForDistances([
[],
[2],
[4, 2],
]));
console.log(findPointsForDistances([
[],
[4000],
[5000, 3000],
[3000, 5000, 4000]
]));
console.log(findPointsForDistances([
[],
[2928],
[4938, 3437],
[10557, 10726, 13535]
]));
var nbPoints, i;
for (nbPoints = 4; nbPoints < 8; nbPoints++) {
for (i = 0; i < 10; i++) {
console.log(findPointsForDistances(generateData(nbPoints)));
}
}
Fiddle here: https://jsfiddle.net/jacquesc/82aqmpnb/15/
Minimum working example. Remember that in canvas coordinates, the y value is inverted but you could do something like:
y = canvasHeight - y
If you also have negative points then if would take a little bit of extra work. Also it may be helpful in that case to draw lines and tick marks to visualize the axis.
let canvas = document.getElementById("canvas");
let ctx = canvas.getContext("2d");
let scale = 10;
let radius = 10;
function point(x, y) {
ctx.fillRect(x*scale, y*scale, radius, radius);
}
// test
point(10, 15);
point(20, 8);
<html>
<body>
<canvas id="canvas" width=1000 height=1000></canvas>
</body>
</html>
There are plenty of libraries out there.
chartist.js is easy to use and responsive JavaS cript library. I used it last year for basic charts after trying many others but it was the only one that scaling easily in different screen sizes.
chartJS is another better looking library.
And you can use html5 canvas it's easy and fun but it will take time especially in scaling.
To scale and position, you should use the minimum and maximum values for x and y.
Good luck
I need to compute the difference between two hex color values so the output is a percentage value. The first thing I discarted was converting the hex value into decimal, as the first one will have much higher weight than the last.
The second option is to compute the difference between each of the RGB values and then add them all. However, the difference between 0, 0, 0 and 30, 30, 30 is much lower than the one between 0, 0, 0 and 90, 0, 0.
This question recommends using YUV, but I can't figure out how to use it to establish the difference.
Also, this other question has a nice formula to compute the difference and output a RGB value, but it's not quite there.
For those just looking for a quick copy/paste, here's the code from this repo by antimatter15 (with some tweaks for ease of use):
function deltaE(rgbA, rgbB) {
let labA = rgb2lab(rgbA);
let labB = rgb2lab(rgbB);
let deltaL = labA[0] - labB[0];
let deltaA = labA[1] - labB[1];
let deltaB = labA[2] - labB[2];
let c1 = Math.sqrt(labA[1] * labA[1] + labA[2] * labA[2]);
let c2 = Math.sqrt(labB[1] * labB[1] + labB[2] * labB[2]);
let deltaC = c1 - c2;
let deltaH = deltaA * deltaA + deltaB * deltaB - deltaC * deltaC;
deltaH = deltaH < 0 ? 0 : Math.sqrt(deltaH);
let sc = 1.0 + 0.045 * c1;
let sh = 1.0 + 0.015 * c1;
let deltaLKlsl = deltaL / (1.0);
let deltaCkcsc = deltaC / (sc);
let deltaHkhsh = deltaH / (sh);
let i = deltaLKlsl * deltaLKlsl + deltaCkcsc * deltaCkcsc + deltaHkhsh * deltaHkhsh;
return i < 0 ? 0 : Math.sqrt(i);
}
function rgb2lab(rgb){
let r = rgb[0] / 255, g = rgb[1] / 255, b = rgb[2] / 255, x, y, z;
r = (r > 0.04045) ? Math.pow((r + 0.055) / 1.055, 2.4) : r / 12.92;
g = (g > 0.04045) ? Math.pow((g + 0.055) / 1.055, 2.4) : g / 12.92;
b = (b > 0.04045) ? Math.pow((b + 0.055) / 1.055, 2.4) : b / 12.92;
x = (r * 0.4124 + g * 0.3576 + b * 0.1805) / 0.95047;
y = (r * 0.2126 + g * 0.7152 + b * 0.0722) / 1.00000;
z = (r * 0.0193 + g * 0.1192 + b * 0.9505) / 1.08883;
x = (x > 0.008856) ? Math.pow(x, 1/3) : (7.787 * x) + 16/116;
y = (y > 0.008856) ? Math.pow(y, 1/3) : (7.787 * y) + 16/116;
z = (z > 0.008856) ? Math.pow(z, 1/3) : (7.787 * z) + 16/116;
return [(116 * y) - 16, 500 * (x - y), 200 * (y - z)]
}
To use it, just pass in two rgb arrays:
deltaE([128, 0, 255], [128, 0, 255]); // 0
deltaE([128, 0, 255], [128, 0, 230]); // 3.175
deltaE([128, 0, 255], [128, 0, 230]); // 21.434
deltaE([0, 0, 255], [255, 0, 0]); // 61.24
The above table is from here. The above code is based on the 1994 version of DeltaE.
the issue is that you want something like a distance on a 3 dimensionnal world,
but that rgb representation is not intuitive at all : 'near' colors can be
much different that 'far' color.
Take for instance two shades of grey c1 : (120,120,120) and c2 : (150,150,150) and a now take c3 : (160,140,140) it is closer to c2 than c1, yet it is purple, and for the eye the darker grey is much closer to grey than a purple.
I would suggest you to use hsv : a color is defined by a 'base' color (hue), the saturation, and the intensity. colors having close hue are indeed very close. colors having very different hue do not relate one to another (expl : yellow and green ) but might seem closer with a (very) low saturation and (very) low intensity.
( At night all colors are alike. )
Since the hue is divided into 6 blocks, cyl = Math.floor( hue / 6 ) gives you the first step of your similarity evalution : if same part of the cylinder -> quite close.
If they don't belong to same cylinder, they might still be (quite) close if (h2-h1) is small, compare it to (1/6). If (h2-h1) > 1/6 this might just be too different colors.
Then you can be more precise with the (s,v). Colors they are nearer if both low/very low saturation and/or low intensity.
Play around with a color picker supporting both rgb and hsv until you know what you would like to have as a difference value. But be aware that you cannot have a 'true' similarity measure.
you have a rgb --> hsv javascript convertor here : http://axonflux.com/handy-rgb-to-hsl-and-rgb-to-hsv-color-model-c
Just compute an Euclidean distance:
var c1 = [0, 0, 0],
c2 = [30, 30, 30],
c3 = [90, 0, 0],
distance = function(v1, v2){
var i,
d = 0;
for (i = 0; i < v1.length; i++) {
d += (v1[i] - v2[i])*(v1[i] - v2[i]);
}
return Math.sqrt(d);
};
console.log( distance(c1, c2), distance(c1, c3), distance(c2, c3) );
//will give you 51.96152422706632 90 73.48469228349535
I released an npm/Bower package for calculating the three CIE algorithms: de76, de94, and de00.
It's public domain and on Github:
http://zschuessler.github.io/DeltaE/
Here's a quickstart guide:
Install via npm
npm install delta-e
Usage
// Include library
var DeltaE = require('delta-e');
// Create two test LAB color objects to compare!
var color1 = {L: 36, A: 60, B: 41};
var color2 = {L: 100, A: 40, B: 90};
// 1976 formula
console.log(DeltaE.getDeltaE76(color1, color2));
// 1994 formula
console.log(DeltaE.getDeltaE94(color1, color2));
// 2000 formula
console.log(DeltaE.getDeltaE00(color1, color2));
You will need to convert to LAB color to use this library. d3.js has an excellent API for doing that - and I'm sure you can find something adhoc as well.
The 3rd rule for color comparisons on ColorWiki is "Never attempt to convert between color differences calculated by different equations through the use of averaging factors". This is because colors that are mathematically close to each other aren't always visually similar to us humans.
What you're looking for is probably delta-e, which is a single number that represents the 'distance' between two colors.
The most popular algorithms are listed below, with CIE76 (aka CIE 1976 or dE76) being the most popular.
CIE76
CMC l:c
dE94
dE2000
Each one goes about things in a different way, but for the most part they all require you to convert to a better (for comparison) color model than RGB.
Wikipedia has all the formulae: http://en.wikipedia.org/wiki/Color_difference
You can check your work with online color calculators:
CIE76
CMC l:c
Finally, it's not javascript but there's an open-source c# library I started will do some of these conversions and calculations: https://github.com/THEjoezack/ColorMine
Using Color.js:
let Color = await import("https://cdn.jsdelivr.net/npm/colorjs.io#0.0.5/dist/color.esm.js").then(m => m.default);
let color1 = new Color(`rgb(10,230,95)`);
let color2 = new Color(`rgb(100,20,130)`);
let colorDistance = color1.deltaE2000(color2);
A distance of 0 means the colors are identical, and a value of 100 means they're opposite.
deltaE2000 is the current industry standard (it's better than the 1994 version mentioned in top answer), but Color.js also has other algorithms like deltaE76, deltaECMC and deltaEITP.
I'm trying to find the row, column in a 2d isometric grid of a screen space point (x, y)
Now I pretty much know what I need to do which is find the length of the vectors in red in the pictures above and then compare it to the length of the vector that represent the bounds of the grid (which is represented by the black vectors)
Now I asked for help over at mathematics stack exchange to get the equation for figuring out what the parallel vectors are of a point x,y compared to the black boundary vectors. Link here Length of Perpendicular/Parallel Vectors
but im having trouble converting this to a function
Ideally i need enough of a function to get the length of both red vectors from three sets of points, the x,y of the end of the 2 black vectors and the point at the end of the red vectors.
Any language is fine but ideally javascript
What you need is a base transformation:
Suppose the coordinates of the first black vector are (x1, x2) and the coordinates of the second vector are (y1, y2).
Therefore, finding the red vectors that get at a point (z1, z2) is equivalent to solving the following linear system:
x1*r1 + y1*r2 = z1
x2*r1 + y2*r2 = z2
or in matrix form:
A x = b
/x1 y1\ |r1| = |z1|
\x2 y2/ |r2| |z2|
x = inverse(A)*b
For example, lets have the black vector be (2, 1) and (2, -1). The corresponding matrix A will be
2 2
1 -1
and its inverse will be
1/4 1/2
1/4 -1/2
So a point (x, y) in the original coordinates will be able to be represened in the alternate base, bia the following formula:
(x, y) = (1/4 * x + 1/2 * y)*(2,1) + (1/4 * x -1/2 * y)*(2, -1)
What exactly is the point of doing it like this? Any isometric grid you display usually contains cells of equal size, so you can skip all the vector math and simply do something like:
var xStep = 50,
yStep = 30, // roughly matches your image
pointX = 2*xStep,
pointY = 0;
Basically the points on any isometric grid fall onto the intersections of a non-isometric grid. Isometric grid controller:
screenPositionToIsoXY : function(o, w, h){
var sX = ((((o.x - this.canvas.xPosition) - this.screenOffsetX) / this.unitWidth ) * 2) >> 0,
sY = ((((o.y - this.canvas.yPosition) - this.screenOffsetY) / this.unitHeight) * 2) >> 0,
isoX = ((sX + sY - this.cols) / 2) >> 0,
isoY = (((-1 + this.cols) - (sX - sY)) / 2) >> 0;
// isoX = ((sX + sY) / isoGrid.width) - 1
// isoY = ((-2 + isoGrid.width) - sX - sY) / 2
return $.extend(o, {
isoX : Math.constrain(isoX, 0, this.cols - (w||0)),
isoY : Math.constrain(isoY, 0, this.rows - (h||0))
});
},
// ...
isoToUnitGrid : function(isoX, isoY){
var offset = this.grid.offset(),
isoX = $.uD(isoX) ? this.isoX : isoX,
isoY = $.uD(isoY) ? this.isoY : isoY;
return {
x : (offset.x + (this.grid.unitWidth / 2) * (this.grid.rows - this.isoWidth + isoX - isoY)) >> 0,
y : (offset.y + (this.grid.unitHeight / 2) * (isoX + isoY)) >> 0
};
},
Okay so with the help of other answers (sorry guys neither quite provided the answer i was after)
I present my function for finding the grid position on an iso 2d grid using a world x,y coordinate where the world x,y is an offset screen space coord.
WorldPosToGridPos: function(iPosX, iPosY){
var d = (this.mcBoundaryVectors.upper.x * this.mcBoundaryVectors.lower.y) - (this.mcBoundaryVectors.upper.y * this.mcBoundaryVectors.lower.x);
var a = ((iPosX * this.mcBoundaryVectors.lower.y) - (this.mcBoundaryVectors.lower.x * iPosY)) / d;
var b = ((this.mcBoundaryVectors.upper.x * iPosY) - (iPosX * this.mcBoundaryVectors.upper.y)) / d;
var cParaUpperVec = new Vector2(a * this.mcBoundaryVectors.upper.x, a * this.mcBoundaryVectors.upper.y);
var cParaLowerVec = new Vector2(b * this.mcBoundaryVectors.lower.x, b * this.mcBoundaryVectors.lower.y);
var iGridWidth = 40;
var iGridHeight = 40;
var iGridX = Math.floor((cParaLowerVec.length() / this.mcBoundaryVectors.lower.length()) * iGridWidth);
var iGridY = Math.floor((cParaUpperVec.length() / this.mcBoundaryVectors.upper.length()) * iGridHeight);
return {gridX: iGridX, gridY: iGridY};
},
The first line is best done once in an init function or similar to save doing the same calculation over and over, I just included it for completeness.
The mcBoundaryVectors are two vectors defining the outer limits of the x and y axis of the isometric grid (The black vectors shown in the picture above).
Hope this helps anyone else in the future