I am building an offline cross-platform using electron. It uses a service worker to make the app offline first. When I try to register the sync manager through following command:-
swRegistration.sync.register('myFirstSync')
Expected behavior
On the page with a service worker registered, this snippet should produce no errors.
navigator.serviceWorker.ready.then(function(swRegistration) {
return swRegistration.sync.register('myFirstSync');
});
Actual behavior
When running with an electron, I get
Uncaught (in promise) DOMException: Background Sync is disabled.
I need to enable sync manager. Any idea of how it can be done?
According to developers.google.com
You just have to follow this article, which is on their website and you can see it on the site by clicking here.
This is the article:
How to request a background sync
In true extensible web style, this is a low level feature that gives you the freedom to do what you need. You ask for an event to be fired when the user has connectivity, which is immediate if the user already has connectivity. Then, you listen for that event and do whatever you need to do.
Like push messaging, it uses a service worker as the event target, which enables it to work when the page isn’t open. To begin, register for a sync from a page:
//register your service worker:
navigator.serviceWorker.register('/sw.js')
//then, later, request a one-off sync:
navigator.serviceWorker.ready.then(function(swRegistration) {
return swRegistration.sync.register('myFirstSync');
});
Then listen for the event in /sw.js:
self.addEventListener('sync', function(event) {
if (event.tag == 'myFirstSync') {
event.waitUntil(doSomeStuff());
}
});
And that's it! In the above, doSomeStuff() should return a promise indicating the success/failure of whatever it’s trying to do. If it fulfills, the sync is complete. If it fails, another sync will be scheduled to retry. Retry syncs also wait for connectivity, and employ an exponential back-off.
The tag name of the sync ('myFirstSync' in the above example) should be unique for a given sync. If you register for a sync using the same tag as a pending sync, it coalesces with the existing sync. That means you can register for an "clear-outbox" sync every time the user sends a message, but if they send 5 messages while offline, you'll only get one sync when they become online. If you want 5 separate sync events, just use unique tags!
Related
I'm playing with the service worker API in my computer so I can grasp how can I benefit from it in my real world apps.
I came across a weird situation where I registered a service worker which intercepts fetch event so it can check its cache for requested content before sending a request to the origin.
The problem is that this code has an error which prevented the function from making the request, so my page is left blank; nothing happens.
As the service worker has been registered, the second time I load the page it intercepts the very first request (the one which loads the HTML). Because I have this bug, that fetch event fails, it never requests the HTML and all I see its a blank page.
In this situation, the only way I know to remove the bad service worker script is through chrome://serviceworker-internals/ console.
If this error gets to a live website, which is the best way to solve it?
Thanks!
I wanted to expand on some of the other answers here, and approach this from the point of view of "what strategies can I use when rolling out a service worker to production to ensure that I can make any needed changes"? Those changes might include fixing any minor bugs that you discover in production, or it might (but hopefully doesn't) include neutralizing the service worker due to an insurmountable bug—a so called "kill switch".
For the purposes of this answer, let's assume you call
navigator.serviceWorker.register('service-worker.js');
on your pages, meaning your service worker JavaScript resource is service-worker.js. (See below if you're not sure the exact service worker URL that was used—perhaps because you added a hash or versioning info to the service worker script.)
The question boils down to how you go about resolving the initial issue in your service-worker.js code. If it's a small bug fix, then you can obviously just make the change and redeploy your service-worker.js to your hosting environment. If there's no obvious bug fix, and you don't want to leave your users running the buggy service worker code while you take the time to work out a solution, it's a good idea to keep a simple, no-op service-worker.js handy, like the following:
// A simple, no-op service worker that takes immediate control.
self.addEventListener('install', () => {
// Skip over the "waiting" lifecycle state, to ensure that our
// new service worker is activated immediately, even if there's
// another tab open controlled by our older service worker code.
self.skipWaiting();
});
/*
self.addEventListener('activate', () => {
// Optional: Get a list of all the current open windows/tabs under
// our service worker's control, and force them to reload.
// This can "unbreak" any open windows/tabs as soon as the new
// service worker activates, rather than users having to manually reload.
self.clients.matchAll({type: 'window'}).then(windowClients => {
windowClients.forEach(windowClient => {
windowClient.navigate(windowClient.url);
});
});
});
*/
That should be all your no-op service-worker.js needs to contain. Because there's no fetch handler registered, all navigation and resource requests from controlled pages will end up going directly against the network, effectively giving you the same behavior you'd get without if there were no service worker at all.
Additional steps
It's possible to go further, and forcibly delete everything stored using the Cache Storage API, or to explicitly unregister the service worker entirely. For most common cases, that's probably going to be overkill, and following the above recommendations should be sufficient to get you in a state where your current users get the expected behavior, and you're ready to redeploy updates once you've fixed your bugs. There is some degree of overhead involved with starting up even a no-op service worker, so you can go the route of unregistering the service worker if you have no plans to redeploy meaningful service worker code.
If you're already in a situation in which you're serving service-worker.js with HTTP caching directives giving it a lifetime that's longer than your users can wait for, keep in mind that a Shift + Reload on desktop browsers will force the page to reload outside of service worker control. Not every user will know how to do this, and it's not possible on mobile devices, though. So don't rely on Shift + Reload as a viable rollback plan.
What if you don't know the service worker URL?
The information above assumes that you know what the service worker URL is—service-worker.js, sw.js, or something else that's effectively constant. But what if you included some sort of versioning or hash information in your service worker script, like service-worker.abcd1234.js?
First of all, try to avoid this in the future—it's against best practices. But if you've already deployed a number of versioned service worker URLs already and you need to disable things for all users, regardless of which URL they might have registered, there is a way out.
Every time a browser makes a request for a service worker script, regardless of whether it's an initial registration or an update check, it will set an HTTP request header called Service-Worker:.
Assuming you have full control over your backend HTTP server, you can check incoming requests for the presence of this Service-Worker: header, and always respond with your no-op service worker script response, regardless of what the request URL is.
The specifics of configuring your web server to do this will vary from server to server.
The Clear-Site-Data: response header
A final note: some browsers will automatically clear out specific data and potentially unregister service workers when a special HTTP response header is returned as part of any response: Clear-Site-Data:.
Setting this header can be helpful when trying to recover from a bad service worker deployment, and kill-switch scenarios are included in the feature's specification as an example use case.
It's important to check the browser support story for Clear-Site-Data: before your rely solely on it as a kill-switch. As of July 2019, it's not supported in 100% of the browsers that support service workers, so at the moment, it's safest to use Clear-Site-Data: along with the techniques mentioned above if you're concerned about recovering from a faulty service worker in all browsers.
You can 'unregister' the service worker using javascript.
Here is an example:
if ('serviceWorker' in navigator) {
navigator.serviceWorker.getRegistrations().then(function (registrations) {
//returns installed service workers
if (registrations.length) {
for(let registration of registrations) {
registration.unregister();
}
}
});
}
That's a really nasty situation, that hopefully won't happen to you in production.
In that case, if you don't want to go through the developer tools of the different browsers, chrome://serviceworker-internals/ for blink based browsers, or about:serviceworkers (about:debugging#workers in the future) in Firefox, there are two things that come to my mind:
Use the serviceworker update mechanism. Your user agent will check if there is any change on the worker registered, will fetch it and will go through the activate phase again. So potentially you can change the serviceworker script, fix (purge caches, etc) any weird situation and continue working. The only downside is you will need to wait until the browser updates the worker that could be 1 day.
Add some kind of kill switch to your worker. Having a special url where you can point users to visit that can restore the status of your caches, etc.
I'm not sure if clearing your browser data will remove the worker, so that could be another option.
I haven't tested this, but there is an unregister() and an update() method on the ServiceWorkerRegistration object. you can get this from the navigator.serviceWorker.
navigator.serviceWorker.getRegistration('/').then(function(registration) {
registration.update();
});
update should then immediately check if there is a new serviceworker and if so install it. This bypasses the 24 hour waiting period and will download the serviceworker.js every time this javascript is encountered.
For live situations you need to alter the service worker at byte-level (put a comment on the first line, for instance) and it will be updated in the next 24 hours. You can emulate this with the chrome://serviceworker-internals/ in Chrome by clicking on Update button.
This should work even for situations when the service worker itself got cached as the step 9 of the update algorithm set a flag to bypass the service worker.
We had moved a site from godaddy.com to a regular WordPress install. Client (not us) had a serviceworker file (sw.js) cached into all their browsers which completely messed things up. Our site, a normal WordPress site, has no service workers.
It's like a virus, in that it's on every page, it does not come from our server and there is no way to get rid of it easily.
We made a new empty file called sw.js on the root of the server, then added the following to every page on the site.
<script>
if (navigator && navigator.serviceWorker && navigator.serviceWorker.getRegistration) {
navigator.serviceWorker.getRegistration('/').then(function(registration) {
if (registration) {
registration.update();
registration.unregister();
}
});
}
</script>
In case it helps someone else, I was trying to kill off service workers that were running in browsers that had hit a production site that used to register them.
I solved it by publishing a service-worker.js that contained just this:
self.globalThis.registration.unregister();
I am building a javascript Web Application. In there i want to upload pictures and other data to a server. This is all working, but i want to use the application offline as well. Therefore i implemented the indexedDB, to store the data offline. Furthermore i made a sync-function, which will be executed every 5 seconds (setIntervall()...) to syncronise the data to the server if there is a internet connection again.
The problem is, that this sync-function only works when the app is open. So I researched a method to solve my problem and i got the idea of a "service worker" with background sync.
The problem is i don't know how to implement it.
This is what i currently have (the whole app is programmed in MVC-concept):
I have a sw.js with the following code:
if (event.tag == 'myFirstSync') {
event.waitUntil(sync());
}
});
In the controller there is the function sync() for synchronising the data
You can implement your background sync inside of your sw.js file, in the handler for the 'sync' event:
self.addEventListener('sync', function(event) {
if (event.tag == 'myFirstSync') {
event.waitUntil(() => {
// Put your sync code here.
});
}
});
At some point after you register your service worker, you need to trigger a sync:
// Register your service worker:
navigator.serviceWorker.register('/sw.js');
// Then later, request a one-off sync:
navigator.serviceWorker.ready.then(function(swRegistration) {
return swRegistration.sync.register('myFirstSync');
});
After triggering the sync once, if it fails, the sync should keep on retrying on its own (even if the app is not open in the browser).
If it fails, another sync will be scheduled to retry. Retry syncs also
wait for connectivity, and employ an exponential back-off.
See https://developers.google.com/web/updates/2015/12/background-sync for further details.
I am using something like this to unregister my service worker:
window.addEventListener("unload", () =>{
registration.unregister().then(function(successs) {
if(successs){
console.log("Unregister succesfull!");
}
else {
console.log("unregister unsuccessfull!!");
}
});
});
Since the unregister function returns a promise, it seems that the unregister process is asnyc. So is it reliable to do this unregistration on the unload event?
I have tested on Chrome and it works, but can't find anything in the spec or anywhere that can validate whether what I am doing will always work.
MORE INFO
I know that it seems weird unregistering the service worker on document unload. But I am not using the service worker for caching or notification or other PWA stuff. I am using to serve a dummy HTML page that I generate at runtime. So I just open an iframe with some dummy src and start intercepting all the requests from that iframe from the service worker. I want this service worker to be unregistered after the user closes the tab.
There is a working example that can be found via this Look at the RegisterServiceWorker.js file that is called from TravelManager.html.
I don't get any console output after the call so assume the promise is not resolved? Either way what does it do? IMHO the registration of a Service Worker (intrinsically for many clients/pages) should not be bound to one page.
The manifest registration/declaration functionality seems to be there?
What do you want the unregister to do?
I wouldn't tie it to an event on one page, otherwise having multiple tabs open of the same page will be hard to handle. Personally I'd have the service worker query for clients with setInterval and if the number of clients drops to zero, unregister itself (with self.registration.unregister()).
Edit: it turns out the above doesn't work due to web workers getting eventually killed. I've ended up using the above strategy but instead of setInterval, every time the site is closed it sends a message to the service worker which then checks how many clients it still has.
I'm playing with the service worker API in my computer so I can grasp how can I benefit from it in my real world apps.
I came across a weird situation where I registered a service worker which intercepts fetch event so it can check its cache for requested content before sending a request to the origin.
The problem is that this code has an error which prevented the function from making the request, so my page is left blank; nothing happens.
As the service worker has been registered, the second time I load the page it intercepts the very first request (the one which loads the HTML). Because I have this bug, that fetch event fails, it never requests the HTML and all I see its a blank page.
In this situation, the only way I know to remove the bad service worker script is through chrome://serviceworker-internals/ console.
If this error gets to a live website, which is the best way to solve it?
Thanks!
I wanted to expand on some of the other answers here, and approach this from the point of view of "what strategies can I use when rolling out a service worker to production to ensure that I can make any needed changes"? Those changes might include fixing any minor bugs that you discover in production, or it might (but hopefully doesn't) include neutralizing the service worker due to an insurmountable bug—a so called "kill switch".
For the purposes of this answer, let's assume you call
navigator.serviceWorker.register('service-worker.js');
on your pages, meaning your service worker JavaScript resource is service-worker.js. (See below if you're not sure the exact service worker URL that was used—perhaps because you added a hash or versioning info to the service worker script.)
The question boils down to how you go about resolving the initial issue in your service-worker.js code. If it's a small bug fix, then you can obviously just make the change and redeploy your service-worker.js to your hosting environment. If there's no obvious bug fix, and you don't want to leave your users running the buggy service worker code while you take the time to work out a solution, it's a good idea to keep a simple, no-op service-worker.js handy, like the following:
// A simple, no-op service worker that takes immediate control.
self.addEventListener('install', () => {
// Skip over the "waiting" lifecycle state, to ensure that our
// new service worker is activated immediately, even if there's
// another tab open controlled by our older service worker code.
self.skipWaiting();
});
/*
self.addEventListener('activate', () => {
// Optional: Get a list of all the current open windows/tabs under
// our service worker's control, and force them to reload.
// This can "unbreak" any open windows/tabs as soon as the new
// service worker activates, rather than users having to manually reload.
self.clients.matchAll({type: 'window'}).then(windowClients => {
windowClients.forEach(windowClient => {
windowClient.navigate(windowClient.url);
});
});
});
*/
That should be all your no-op service-worker.js needs to contain. Because there's no fetch handler registered, all navigation and resource requests from controlled pages will end up going directly against the network, effectively giving you the same behavior you'd get without if there were no service worker at all.
Additional steps
It's possible to go further, and forcibly delete everything stored using the Cache Storage API, or to explicitly unregister the service worker entirely. For most common cases, that's probably going to be overkill, and following the above recommendations should be sufficient to get you in a state where your current users get the expected behavior, and you're ready to redeploy updates once you've fixed your bugs. There is some degree of overhead involved with starting up even a no-op service worker, so you can go the route of unregistering the service worker if you have no plans to redeploy meaningful service worker code.
If you're already in a situation in which you're serving service-worker.js with HTTP caching directives giving it a lifetime that's longer than your users can wait for, keep in mind that a Shift + Reload on desktop browsers will force the page to reload outside of service worker control. Not every user will know how to do this, and it's not possible on mobile devices, though. So don't rely on Shift + Reload as a viable rollback plan.
What if you don't know the service worker URL?
The information above assumes that you know what the service worker URL is—service-worker.js, sw.js, or something else that's effectively constant. But what if you included some sort of versioning or hash information in your service worker script, like service-worker.abcd1234.js?
First of all, try to avoid this in the future—it's against best practices. But if you've already deployed a number of versioned service worker URLs already and you need to disable things for all users, regardless of which URL they might have registered, there is a way out.
Every time a browser makes a request for a service worker script, regardless of whether it's an initial registration or an update check, it will set an HTTP request header called Service-Worker:.
Assuming you have full control over your backend HTTP server, you can check incoming requests for the presence of this Service-Worker: header, and always respond with your no-op service worker script response, regardless of what the request URL is.
The specifics of configuring your web server to do this will vary from server to server.
The Clear-Site-Data: response header
A final note: some browsers will automatically clear out specific data and potentially unregister service workers when a special HTTP response header is returned as part of any response: Clear-Site-Data:.
Setting this header can be helpful when trying to recover from a bad service worker deployment, and kill-switch scenarios are included in the feature's specification as an example use case.
It's important to check the browser support story for Clear-Site-Data: before your rely solely on it as a kill-switch. As of July 2019, it's not supported in 100% of the browsers that support service workers, so at the moment, it's safest to use Clear-Site-Data: along with the techniques mentioned above if you're concerned about recovering from a faulty service worker in all browsers.
You can 'unregister' the service worker using javascript.
Here is an example:
if ('serviceWorker' in navigator) {
navigator.serviceWorker.getRegistrations().then(function (registrations) {
//returns installed service workers
if (registrations.length) {
for(let registration of registrations) {
registration.unregister();
}
}
});
}
That's a really nasty situation, that hopefully won't happen to you in production.
In that case, if you don't want to go through the developer tools of the different browsers, chrome://serviceworker-internals/ for blink based browsers, or about:serviceworkers (about:debugging#workers in the future) in Firefox, there are two things that come to my mind:
Use the serviceworker update mechanism. Your user agent will check if there is any change on the worker registered, will fetch it and will go through the activate phase again. So potentially you can change the serviceworker script, fix (purge caches, etc) any weird situation and continue working. The only downside is you will need to wait until the browser updates the worker that could be 1 day.
Add some kind of kill switch to your worker. Having a special url where you can point users to visit that can restore the status of your caches, etc.
I'm not sure if clearing your browser data will remove the worker, so that could be another option.
I haven't tested this, but there is an unregister() and an update() method on the ServiceWorkerRegistration object. you can get this from the navigator.serviceWorker.
navigator.serviceWorker.getRegistration('/').then(function(registration) {
registration.update();
});
update should then immediately check if there is a new serviceworker and if so install it. This bypasses the 24 hour waiting period and will download the serviceworker.js every time this javascript is encountered.
For live situations you need to alter the service worker at byte-level (put a comment on the first line, for instance) and it will be updated in the next 24 hours. You can emulate this with the chrome://serviceworker-internals/ in Chrome by clicking on Update button.
This should work even for situations when the service worker itself got cached as the step 9 of the update algorithm set a flag to bypass the service worker.
We had moved a site from godaddy.com to a regular WordPress install. Client (not us) had a serviceworker file (sw.js) cached into all their browsers which completely messed things up. Our site, a normal WordPress site, has no service workers.
It's like a virus, in that it's on every page, it does not come from our server and there is no way to get rid of it easily.
We made a new empty file called sw.js on the root of the server, then added the following to every page on the site.
<script>
if (navigator && navigator.serviceWorker && navigator.serviceWorker.getRegistration) {
navigator.serviceWorker.getRegistration('/').then(function(registration) {
if (registration) {
registration.update();
registration.unregister();
}
});
}
</script>
In case it helps someone else, I was trying to kill off service workers that were running in browsers that had hit a production site that used to register them.
I solved it by publishing a service-worker.js that contained just this:
self.globalThis.registration.unregister();
I'm writing a web client with Flask, and integrating Twilio to let me make phone calls from the browser. All well and good, it's mostly working, but I have some status information I want to update when the call is answered.
The connection.status() method doesn't seem to help, since "open" seems to mean the call is attempting to go through, and the status stays as open until I get "closed" when the call ends.
Is there any good way (either through the browser or by registering a callback from the python code on the server) to get a status update for when the call transitions from "ringing" to "live" ?
For outbound calls
The twilio.js library states:
Twilio.Device is your main entry point for creating outbound connections, accepting incoming connections, and setting up your connection event handlers.
Within the Device documentation, it goes on to state that the .status() method:
Returns the status of the device.
The key here is in the code snippet:
Twilio.Device.incoming(function(conn) {
console.log(conn.parameters.From);
conn.status // => "pending"
conn.accept();
conn.status // => "connecting"
});
Now the key here is to remember that the Device.incoming is used when an outbound call has been made from your browser as specified here:
The Device.incoming handler function is called when an incoming event is fired.
This is triggered whenever an incoming connection from an outbound REST call or a TwiML <Dial> to this device is made.
With the above code snippet, I was able to check
conn.status
to be "connecting" when the connection was transitioning to open status and "open" once a call was picked up from an outgoing call. As a result I was able to set a flag and log once a outbound call was picked up. This was the TwiML used:
<Response>
<Dial callerId="+1888XXXXXXX">
{{INSERT PHONE NUMBER HERE}}
</Dial>
</Response>
Here is the documentation for the device specifications and the general twilio.js library:
http://www.twilio.com/docs/client/device
and
http://www.twilio.com/docs/client/twilio-js
Please let me know if you have any other questions!
Thank you for your time,