I try to implement a loop in my noejs app that will always wait between the tasks. For this I found the setInterval function and I thought it is the solution for me. But as I found out, the first Interval, means the very first action also wait until the interval is ready. But I want that the first action runs immediatly and then each action with the given interval.
In arry scope:
myArray[0] starts immediatly while myArray[1..10] will start with Interval waiting time.
I tried it with:
function rollDice(profilearray, browserarray, url) {
return new Promise((resolve, reject) => {
var i = 0;
const intervalId = setInterval(
(function exampleFunction() {
console.log(profilearray[i].profil);
//########################################################################
createTestCafe("localhost", 1337, 1338, void 0, true)
.then((tc) => {
testcafe = tc;
runner = testcafe.createRunner();
inputStore.metaUrl = url;
inputStore.metaLogin = teamdataarray[0].email;
inputStore.metaPassword = teamdataarray[0].password;
inputStore.moderator = profilearray[i].profil;
inputStore.message = profilearray[i].template;
inputStore.channelid = profilearray[i].channelid;
})
.then(() => {
return runner
.src([__basedir + "/tests/temp.js"])
.browsers(browserarray)
.screenshots("", false)
.run()
.then((failedCount) => {
testcafe.close();
if (failedCount > 0) {
console.log(profilearray[i].profil);
console.log("No Success. Fails: " + failedCount);
//clearInterval(intervalId);
//reject("Error");
} else {
console.log(profilearray[i].profil);
console.log("All success");
//clearInterval(intervalId);
//resolve("Fertig");
}
});
})
.catch((error) => {
testcafe.close();
console.log(profilearray[i].profil);
console.log("Testcafe Error" + error);
//clearInterval(intervalId);
//reject("Error");
});
//######################################################################
i++;
console.log("Counter " + i);
if (i === profilearray.length) {
clearInterval(intervalId);
resolve("Fertig");
}
return exampleFunction;
})(),
3000
); //15 * 60 * 1000 max time to wait (user input)
});
}
The way I have done works bad because in the first action it will not start the testcafe. But in all other actions it will do.
Anybody knows a better way to do this?
Scope:
Give a array of data and for each array start testcafe with a given waiting time. 3 seconds up to 15 minutes. Because in some cases 15 Minutes is a long time I want to start the first one without any waiting time.
Iam open for any suggestion
For modern JavaScript await and async should be used instead of then and catch.
This will make many things easier, and the code becomes more readable. You e.g. can use a regular for loop to iterate over an array while executing asynchronous tasks within it. And use try-catch blocks in the same way as you would in synchronous code.
// a helperfunction that creates a Promise that resolves after
// x milliseconds
function wait(milliseconds) {
return new Promise(resolve => setTimeout(resolve, milliseconds))
}
async function rollDice(profilearray, browserarray, url) {
for (let i = 0; i < profilearray.length; i++) {
// depending how you want to handle the wait you would create
// the "wait"-Promise here
// let timer = wait(3000)
let testcafe = await createTestCafe("localhost", 1337, 1338, void 0, true);
try {
let runner = testcafe.createRunner();
inputStore.metaUrl = url;
inputStore.metaLogin = teamdataarray[0].email;
inputStore.metaPassword = teamdataarray[0].password;
inputStore.moderator = profilearray[i].profil;
inputStore.message = profilearray[i].template;
inputStore.channelid = profilearray[i].channelid;
let failedCount = await runner.src([__basedir + "/tests/temp.js"])
.browsers(browserarray)
.screenshots("", false)
.run()
if (failedCount > 0) {
// ...
} else {
// ...
}
} catch (err) {
console.log(profilearray[i].profil);
console.log("Testcafe Error" + error);
} finally {
testcafe.close();
}
// Here you would wait for the "wait"-Promise to resolve:
// await timer;
// This would have similar behavior to an interval.
// Or you wait here for a certain amount of time.
// The difference is whether you want that the time the
// runner requires to run counts to the waiting time or not.
await wait(3000)
}
return "Fertig"
}
Declare function before setInterval, run setInterval(exampleFunction, time) and then run the function as usual (exampleFunction()). May not be ideal to the millisecond, but if you don't need to be perfectly precise, should work fine.
Ask if you need further assistance
EDIT: now looking twice at it, why are you calling the function you pass as parameter to setInterval inside the setInterval?
Edit: can you spot the bugs in this poker game? it's driving me crazy. the promise isn't working. plus poker is played with max 9 players. I managed to have 10 players although I specified the number of players. I don't know what's going on. Can somebody help me?
function playerActs(i, s) {
return new Promise(resolve => {
console.log(`player ${i+1} took ${(s/1000).toFixed(2)} secs to decide`);
resolve('finished');
});
}
async function round() {
let hasEveryoneSpoken = false;
let hasEveryoneChecked = false;
let isEveryoneAllIn = false;
let stopBettingRound = false;
let nbPlayers = 9;
let i = 0;
while (!stopBettingRound) {
let delay = (Math.random() * 1000 * 5);
// wait until the player take a decision
let res = await setTimeout(playerActs, delay, i, delay);
console.log(res);
// dummy condition to exit loop
if (i == nbPlayers) hasEveryoneSpoken = true;
stopBettingRound =
hasEveryoneSpoken || hasEveryoneChecked || isEveryoneAllIn;
i++;
}
}
round();
You can't use setInterval like that because as with Promises, it doesn't block code execution, so the code falls straight through to your call to resolve.
I would suggest that you refactor the entire count-down logic into its own function that also wraps a Promise that you can await for.
That said, I also don't see any logic yet to allow you to cancel the countdown if the user proceeds with their next move while you're waiting.
How can I make a simple, non-block Javascript function call? For example:
//begin the program
console.log('begin');
nonBlockingIncrement(10000000);
console.log('do more stuff');
//define the slow function; this would normally be a server call
function nonBlockingIncrement(n){
var i=0;
while(i<n){
i++;
}
console.log('0 incremented to '+i);
}
outputs
"beginPage"
"0 incremented to 10000000"
"do more stuff"
How can I form this simple loop to execute asynchronously and output the results via a callback function? The idea is to not block "do more stuff":
"beginPage"
"do more stuff"
"0 incremented to 10000000"
I've tried following tutorials on callbacks and continuations, but they all seem to rely on external libraries or functions. None of them answer the question in a vacuum: how does one write Javascript code to be non-blocking!?
I have searched very hard for this answer before asking; please don't assume I didn't look. Everything I found is Node.js specific ([1], [2], [3], [4], [5]) or otherwise specific to other functions or libraries ([6], [7], [8], [9], [10], [11]), notably JQuery and setTimeout(). Please help me write non-blocking code using Javascript, not Javascript-written tools like JQuery and Node. Kindly reread the question before marking it as duplicate.
To make your loop non-blocking, you must break it into sections and allow the JS event processing loop to consume user events before carrying on to the next section.
The easiest way to achieve this is to do a certain amount of work, and then use setTimeout(..., 0) to queue the next chunk of work. Crucially, that queueing allows the JS event loop to process any events that have been queued in the meantime before going on to the next piece of work:
function yieldingLoop(count, chunksize, callback, finished) {
var i = 0;
(function chunk() {
var end = Math.min(i + chunksize, count);
for ( ; i < end; ++i) {
callback.call(null, i);
}
if (i < count) {
setTimeout(chunk, 0);
} else {
finished.call(null);
}
})();
}
with usage:
yieldingLoop(1000000, 1000, function(i) {
// use i here
}, function() {
// loop done here
});
See http://jsfiddle.net/alnitak/x3bwjjo6/ for a demo where the callback function just sets a variable to the current iteration count, and a separate setTimeout based loop polls the current value of that variable and updates the page with its value.
SetTimeout with callbacks is the way to go. Though, understand your function scopes are not the same as in C# or another multi-threaded environment.
Javascript does not wait for your function's callback to finish.
If you say:
function doThisThing(theseArgs) {
setTimeout(function (theseArgs) { doThatOtherThing(theseArgs); }, 1000);
alert('hello world');
}
Your alert will fire before the function you passed will.
The difference being that alert blocked the thread, but your callback did not.
There are in general two ways to do this as far as I know. One is to use setTimeout (or requestAnimationFrame if you are doing this in a supporting environment). #Alnitak shown how to do this in another answer. Another way is to use a web worker to finish your blocking logic in a separate thread, so that the main UI thread is not blocked.
Using requestAnimationFrame or setTimeout:
//begin the program
console.log('begin');
nonBlockingIncrement(100, function (currentI, done) {
if (done) {
console.log('0 incremented to ' + currentI);
}
});
console.log('do more stuff');
//define the slow function; this would normally be a server call
function nonBlockingIncrement(n, callback){
var i = 0;
function loop () {
if (i < n) {
i++;
callback(i, false);
(window.requestAnimationFrame || window.setTimeout)(loop);
}
else {
callback(i, true);
}
}
loop();
}
Using web worker:
/***** Your worker.js *****/
this.addEventListener('message', function (e) {
var i = 0;
while (i < e.data.target) {
i++;
}
this.postMessage({
done: true,
currentI: i,
caller: e.data.caller
});
});
/***** Your main program *****/
//begin the program
console.log('begin');
nonBlockingIncrement(100, function (currentI, done) {
if (done) {
console.log('0 incremented to ' + currentI);
}
});
console.log('do more stuff');
// Create web worker and callback register
var worker = new Worker('./worker.js'),
callbacks = {};
worker.addEventListener('message', function (e) {
callbacks[e.data.caller](e.data.currentI, e.data.done);
});
//define the slow function; this would normally be a server call
function nonBlockingIncrement(n, callback){
const caller = 'nonBlockingIncrement';
callbacks[caller] = callback;
worker.postMessage({
target: n,
caller: caller
});
}
You cannot run the web worker solution as it requires a separate worker.js file to host worker logic.
You cannot execute Two loops at the same time, remember that JS is single thread.
So, doing this will never work
function loopTest() {
var test = 0
for (var i; i<=100000000000, i++) {
test +=1
}
return test
}
setTimeout(()=>{
//This will block everything, so the second won't start until this loop ends
console.log(loopTest())
}, 1)
setTimeout(()=>{
console.log(loopTest())
}, 1)
If you want to achieve multi thread you have to use Web Workers, but they have to have a separated js file and you only can pass objects to them.
But, I've managed to use Web Workers without separated files by genering Blob files and i can pass them callback functions too.
//A fileless Web Worker
class ChildProcess {
//#param {any} ags, Any kind of arguments that will be used in the callback, functions too
constructor(...ags) {
this.args = ags.map(a => (typeof a == 'function') ? {type:'fn', fn:a.toString()} : a)
}
//#param {function} cb, To be executed, the params must be the same number of passed in the constructor
async exec(cb) {
var wk_string = this.worker.toString();
wk_string = wk_string.substring(wk_string.indexOf('{') + 1, wk_string.lastIndexOf('}'));
var wk_link = window.URL.createObjectURL( new Blob([ wk_string ]) );
var wk = new Worker(wk_link);
wk.postMessage({ callback: cb.toString(), args: this.args });
var resultado = await new Promise((next, error) => {
wk.onmessage = e => (e.data && e.data.error) ? error(e.data.error) : next(e.data);
wk.onerror = e => error(e.message);
})
wk.terminate(); window.URL.revokeObjectURL(wk_link);
return resultado
}
worker() {
onmessage = async function (e) {
try {
var cb = new Function(`return ${e.data.callback}`)();
var args = e.data.args.map(p => (p.type == 'fn') ? new Function(`return ${p.fn}`)() : p);
try {
var result = await cb.apply(this, args); //If it is a promise or async function
return postMessage(result)
} catch (e) { throw new Error(`CallbackError: ${e}`) }
} catch (e) { postMessage({error: e.message}) }
}
}
}
setInterval(()=>{console.log('Not blocked code ' + Math.random())}, 1000)
console.log("starting blocking synchronous code in Worker")
console.time("\nblocked");
var proc = new ChildProcess(blockCpu, 43434234);
proc.exec(function(block, num) {
//This will block for 10 sec, but
block(10000) //This blockCpu function is defined below
return `\n\nbla bla ${num}\n` //Captured in the resolved promise
}).then(function (result){
console.timeEnd("\nblocked")
console.log("End of blocking code", result)
})
.catch(function(error) { console.log(error) })
//random blocking function
function blockCpu(ms) {
var now = new Date().getTime();
var result = 0
while(true) {
result += Math.random() * Math.random();
if (new Date().getTime() > now +ms)
return;
}
}
For very long tasks, a Web-Worker should be preferred, however for small-enough tasks (< a couple of seconds) or for when you can't move the task to a Worker (e.g because you needs to access the DOM or whatnot, Alnitak's solution of splitting the code in chunks is the way to go.
Nowadays, this can be rewritten in a cleaner way thanks to async/await syntax.
Also, instead of waiting for setTimeout() (which is delayed to at least 1ms in node-js and to 4ms everywhere after the 5th recursive call), it's better to use a MessageChannel.
So this gives us
const waitForNextTask = () => {
const { port1, port2 } = waitForNextTask.channel ??= new MessageChannel();
return new Promise( (res) => {
port1.addEventListener("message", () => res(), { once: true } );
port1.start();
port2.postMessage("");
} );
};
async function doSomethingSlow() {
const chunk_size = 10000;
// do something slow, like counting from 0 to Infinity
for (let i = 0; i < Infinity; i++ ) {
// we've done a full chunk, let the event-loop loop
if( i % chunk_size === 0 ) {
log.textContent = i; // just for demo, to check we're really doing something
await waitForNextTask();
}
}
console.log("Ah! Did it!");
}
console.log("starting my slow computation");
doSomethingSlow();
console.log("started my slow computation");
setTimeout(() => console.log("my slow computation is probably still running"), 5000);
<pre id="log"></pre>
Using ECMA async function it's very easy to write non-blocking async code, even if it performs CPU-bound operations. Let's do this on a typical academic task - Fibonacci calculation for the incredible huge value.
All you need is to insert an operation that allows the event loop to be reached from time to time. Using this approach, you will never freeze the user interface or I/O.
Basic implementation:
const fibAsync = async (n) => {
let lastTimeCalled = Date.now();
let a = 1n,
b = 1n,
sum,
i = n - 2;
while (i-- > 0) {
sum = a + b;
a = b;
b = sum;
if (Date.now() - lastTimeCalled > 15) { // Do we need to poll the eventloop?
lastTimeCalled = Date.now();
await new Promise((resolve) => setTimeout(resolve, 0)); // do that
}
}
return b;
};
And now we can use it (Live Demo):
let ticks = 0;
console.warn("Calulation started");
fibAsync(100000)
.then((v) => console.log(`Ticks: ${ticks}\nResult: ${v}`), console.warn)
.finally(() => {
clearTimeout(timer);
});
const timer = setInterval(
() => console.log("timer tick - eventloop is not freezed", ticks++),
0
);
As we can see, the timer is running normally, which indicates the event loop is not blocking.
I published an improved implementation of these helpers as antifreeze2 npm package. It uses setImmediate internally, so to get the maximum performance you need to import setImmediate polyfill for environments without native support.
Live Demo
import { antifreeze, isNeeded } from "antifreeze2";
const fibAsync = async (n) => {
let a = 1n,
b = 1n,
sum,
i = n - 2;
while (i-- > 0) {
sum = a + b;
a = b;
b = sum;
if (isNeeded()) {
await antifreeze();
}
}
return b;
};
If you are using jQuery, I created a deferred implementation of Alnitak's answer
function deferredEach (arr, batchSize) {
var deferred = $.Deferred();
var index = 0;
function chunk () {
var lastIndex = Math.min(index + batchSize, arr.length);
for(;index<lastIndex;index++){
deferred.notify(index, arr[index]);
}
if (index >= arr.length) {
deferred.resolve();
} else {
setTimeout(chunk, 0);
}
};
setTimeout(chunk, 0);
return deferred.promise();
}
Then you'll be able to use the returned promise to manage the progress and done callback:
var testArray =["Banana", "Orange", "Apple", "Mango"];
deferredEach(testArray, 2).progress(function(index, item){
alert(item);
}).done(function(){
alert("Done!");
})
I managed to get an extremely short algorithm using functions. Here is an example:
let l=($,a,f,r)=>{f(r||0),$((r=a(r||0))||0)&&l($,a,f,r)};
l
(i => i < 4, i => i+1, console.log)
/*
output:
0
1
2
3
*/
I know this looks very complicated, so let me explain what is really going on here.
Here is a slightly simplified version of the l function.
let l_smpl = (a,b,c,d) => {c(d||0);d=b(d||0),a(d||0)&&l_smpl(a,b,c,d)||0}
First step in the loop, l_smpl calls your callback and passes in d - the index. If d is undefined, as it would be on the first call, it changes it to 0.
Next, it updates d by calling your updater function and setting d to the result. In our case, the updater function would add 1 to the index.
The next step checks if your condition is met by calling the first function and checking if the value is true meaning the loop is not done. If so, it calls the function again, or otherwise, it returns 0 to end the loop.
I'm receiving data in browser through websockets (paho-mqtt) but problem is that the receiving callback gets fired only when another task ends (big for loop) and it gets fired with all the stacked data, I'm not losing data just getting delayed. Shouldn't the callback get fired even if there is a loop running? What is happening here?. Otherwise, how can I achieve this, keep receiving while inside a loop?
What I'm trying to say is equivalent to the following:
If I do this in chrome
setTimeout(() => {
console.log('hello!');
}, 10);
for (var i = 0; i < 50000; i++) {
console.log('for array');
}
I get
50000 VM15292:5 for array
VM15292:2 hello!
Shouldn't I get something like this?
1000 VM15292:5 for array
VM15292:2 hello!
49000 VM15292:5 for array
When you run JavaScript code in the browser (unless using Web Workers or other special technologies), it is executed on a single thread. That might not sound too important, but it is.
Your code consists of a for-loop (synchronous) and a call to setTimeout (asychronous). Since only one piece of JavaScript can be running at once, your for-loop will never be interrupted by setTimeout.
In fact, if your for-loop contained extremely intensive operations that required more than 10 ms to complete, your setTimeout callback might actually be delayed past that mark, because the browser always wait for the currently executing code to finish before continuing to run the event loop.
setTimeout(() => {
console.log('hello!');
}, 10);
for (var i = 0; i < /* 50000 */ 5; i++) {
console.log('for array');
}
The others have diagnosed the problem well, the single threaded nature of the browser. I will offer a possible solution: generators.
Here's a codepen which demonstrates the problem:
http://codepen.io/anon/pen/zZwXem?editors=1111
window.CP.PenTimer.MAX_TIME_IN_LOOP_WO_EXIT = 60000;
function log(message) {
const output = document.getElementById('output');
output.value = output.value + '\n' + message;
}
function asyncTask() {
log('Simulated websocket message')
}
function doWork() {
const timer = setInterval(1000, asyncTask);
let total = 0;
for (let i = 1; i < 100000000; i++) {
const foo = Math.log(i) * Math.sin(i);
total += foo;
}
log('The total is: '+ total);
clearInterval(timer);
}
When doWork() is called by clicking the 'Do Work' button, the asyncTask never runs, and the UI locks up. Horrible UX.
The following example uses a generator to run the long running task.
http://codepen.io/anon/pen/jBmoPZ?editors=1111
//Basically disable codepen infinite loop detection, which is faulty for generators
window.CP.PenTimer.MAX_TIME_IN_LOOP_WO_EXIT = 120000;
let workTimer;
function log(message) {
const output = document.getElementById('output');
output.value = output.value + '\n' + message;
}
function asyncTask() {
log('Simulated websocket message')
}
let workGenerator = null;
function runWork() {
if (workGenerator === null) {
workGenerator = doWork();
}
const work = workGenerator.next();
if (work.done) {
log('The total is: '+ work.value);
workerGenerator = null;
} else {
workTimer = setTimeout(runWork,0);
}
}
function* doWork() {
const timer = setInterval(asyncTask,1000);
let total = 0;
for (let i = 1; i < 100000000; i++) {
if (i % 100000 === 0) {
yield;
}
if (i % 1000000 == 0) {
log((i / 100000000 * 100).toFixed(1) + '% complete');
}
const foo = Math.log(i) * Math.sin(i);
total += foo;
}
clearInterval(timer);
return total;
}
Here we do work in a generator, and create a generator runner to call from the 'Do Work' button in the UI. This runs on the latest version of Chrome, I can't speak for other browsers. Typically you'd use something like babel to compile the generators down to ES5 syntax for a production build.
The generator yields every 10000 rows of calculation, and emits a status update every 100000 rows. The generator runner 'runWork' creates an instance of the generator and repeatedly calls next(). The generator then runs until it hits the next 'yield' or return statement. After the generator yields, the generator runner then gives up the UI thread by calling setTimeout with 0 milliseconds and using itself as the handler function. This typically means it will get called once every animation frame (ideally). This goes until the generator returns the done flag, at which point the generator runner can get the returned value and clean up.
Here the HTML for the example in case you need to recreate the codepen:
<input type='button' value='Do Work' onclick=doWork() />
<textarea id='output' style='width:200px;height:200px'></textarea>
Javascript engines tends to be single threaded.
So if you are in a long running tight loop that doesn't yield (e.g. to do some io) then the callback will never get a chance to run until the loop finishes
I've got a method that returns a promise and internally that method makes a call to an API which can only have 20 requests every minute. The problem is that I have a large array of objects (around 300) and I would like to make a call to the API for each one of them.
At the moment I have the following code:
const bigArray = [.....];
Promise.all(bigArray.map(apiFetch)).then((data) => {
...
});
But it doesnt handle the timing constraint. I was hoping I could use something like _.chunk and _.debounce from lodash but I can't wrap my mind around it. Could anyone help me out ?
If you can use the Bluebird promise library, it has a concurrency feature built in that lets you manage a group of async operations to at most N in flight at a time.
var Promise = require('bluebird');
const bigArray = [....];
Promise.map(bigArray, apiFetch, {concurrency: 20}).then(function(data) {
// all done here
});
The nice thing about this interface is that it will keep 20 requests in flight. It will start up 20, then each time one finishes, it will start another. So, this is a potentially more efficient than sending 20, waiting for all to finish, sending 20 more, etc...
This also provides the results in the exact same order as bigArray so you can identify which result goes with which request.
You could, of course, code this yourself with generic promises using a counter, but since it is already built in the the Bluebird library, I thought I'd recommend that way.
The Async library also has a similar concurrency control though it is obviously not promise based.
Here's a hand-coded version using only ES6 promises that maintains result order and keeps 20 requests in flight at all time (until there aren't 20 left) for maximum throughput:
function pMap(array, fn, limit) {
return new Promise(function(resolve, reject) {
var index = 0, cnt = 0, stop = false, results = new Array(array.length);
function run() {
while (!stop && index < array.length && cnt < limit) {
(function(i) {
++cnt;
++index;
fn(array[i]).then(function(data) {
results[i] = data;
--cnt;
// see if we are done or should run more requests
if (cnt === 0 && index === array.length) {
resolve(results);
} else {
run();
}
}, function(err) {
// set stop flag so no more requests will be sent
stop = true;
--cnt;
reject(err);
});
})(index);
}
}
run();
});
}
pMap(bigArray, apiFetch, 20).then(function(data) {
// all done here
}, function(err) {
// error here
});
Working demo here: http://jsfiddle.net/jfriend00/v98735uu/
You could send 1 block of 20 requests every minute or space them out 1 request every 3 seconds (latter probably preferred by the API owners).
function rateLimitedRequests(array, chunkSize) {
var delay = 3000 * chunkSize;
var remaining = array.length;
var promises = [];
var addPromises = function(newPromises) {
Array.prototype.push.apply(promises, newPromises);
if (remaining -= newPromises.length == 0) {
Promise.all(promises).then((data) => {
... // do your thing
});
}
};
(function request() {
addPromises(array.splice(0, chunkSize).map(apiFetch));
if (array.length) {
setTimeout(request, delay);
}
})();
}
To call 1 every 3 seconds:
rateLimitedRequests(bigArray, 1);
Or 20 every minute:
rateLimitedRequests(bigArray, 20);
If you prefer to use _.chunk and _.debounce1 _.throttle:
function rateLimitedRequests(array, chunkSize) {
var delay = 3000 * chunkSize;
var remaining = array.length;
var promises = [];
var addPromises = function(newPromises) {
Array.prototype.push.apply(promises, newPromises);
if (remaining -= newPromises.length == 0) {
Promise.all(promises).then((data) => {
... // do your thing
});
}
};
var chunks = _.chunk(array, chunkSize);
var throttledFn = _.throttle(function() {
addPromises(chunks.pop().map(apiFetch));
}, delay, {leading: true});
for (var i = 0; i < chunks.length; i++) {
throttledFn();
}
}
1You probably want _.throttle since it executes each function call after a delay whereas _.debounce groups multiple calls into one call. See this article linked from the docs
Debounce: Think of it as "grouping multiple events in one". Imagine that you go home, enter in the elevator, doors are closing... and suddenly your neighbor appears in the hall and tries to jump on the elevator. Be polite! and open the doors for him: you are debouncing the elevator departure. Consider that the same situation can happen again with a third person, and so on... probably delaying the departure several minutes.
Throttle: Think of it as a valve, it regulates the flow of the executions. We can determine the maximum number of times a function can be called in certain time. So in the elevator analogy.. you are polite enough to let people in for 10 secs, but once that delay passes, you must go!