How does this handleClick function in React retrieve previous state value? - javascript

This codepen toggles a button value from true to false.
I understand this apart from how this handleClick function is working:
handleClick() {
this.setState(prevState => ({
isToggleOn: !prevState.isToggleOn
}));
}
Can someone please break this down and explain in simple terms how the function retrieves the isToggleOn bool value?
I know we can't directly use !this.state.isToggleOn in setState but can someone kindly explain in simple terms why this handleClick function is more reliable in this scenario for a React newbie?
This is where the handleClick function is called:
render() {
return (
<button onClick={this.handleClick}>
{this.state.isToggleOn ? 'ON' : 'OFF'}
</button>
);

From the setState docs:
The first argument is an updater function with the signature:
(state, props) => stateChange
state is a reference to the component state at the time the change is being applied.
In your example prevState is state renamed, and it contains all of the assignments in state, including isToggleOn.
You could alternately just read this.state in the setState function. The prevState pattern is used to communicate that this is the old/current state, the state that is being changed.
setState docs

In this scenario you can actually use both, because it's really simple and you call the setState from the render function. In class components is a bit hard to find a place where this this.setState({oldState:this.state.oldState}) can be problematic.
On the contrary, if you use functional components or hooks, you can see this problem quite often.
JS is not Object oriented!
To understand this you have to think first that js is not an object oriented language. React tries just to simulate it. Basically when you change a state, the class containing it gets called again trying to run only the code which changes. In your case, when handleClick is called, the render function get triggered because the state has changed!
Said this, handleClick is not just a function! It's also a property of the class. React tries to understand whether it should "re-declare" those functions depending on the values they use.
Good Practice
In the case you wrote, isToggleOn: !prevState.isToggleOn, the function is indipendent. It doesn't need any other property of the class (apart of setState, which works with a different pattern), so after the state changes, the react engine doesn't have to set the function again.
Bad Practice (sometimes much much easyer to write)
On the contrary if you use isToggleOn: !this.state.isToggleOn the handleClick function is dependent of this.state so every time it changes, the react engine has to "re-declare" the function by sort of substituting this.state with {isToggleOn:...}
How to recreate that pattern
function myRandom(property){
//Kind of private Variable
let hiddenVar=Math.random();
return property(hiddenVar);
}
//Let's say here the Math class is unreachable while myRandom is.
myRandom((num)=>{
console.log(num);//This ac
})

Maybe just check the docs on this?
The second parameter to setState() is an optional callback function that will be executed once setState is completed and the component is re-rendered. Generally we recommend using componentDidUpdate() for such logic instead.
In essence, you are getting the previous instance of the state in the function, then making a change to the state and returning it. This new state will get saved and cause a re-render of your component.
If you use functional components, you can negate having to pass a callback here and could do something like:
function MyComponent() {
const [on, setOn] = React.useState(false)
return (
<button onClick={() => setOn(!on)}>
{on? 'ON' : 'OFF'}
</button>
);
}

Related

Using Variable from Props vs Passing Prop as Argument in React

In terms of writing components, which would be the preferred way to write below component? Assume that removeCard is outside of shown scope, ie. redux action.
My assumption would be that ComponentCardB would be, as it avoids passing an unnecessary argument which would be in the scope anyway. I imagine in terms of performance in the grand scheme of things, the difference is negligible, just more of a query in regards to best practise.
TIA
const ComponentCardA = (id) => {
const handleRemove = (cardId) => {
removeCard(cardId);
};
<div onClick={() => handleRemove(id)} />;
};
const ComponentCardB = (id) => {
const handleRemove = () => {
removeCard(id);
};
<div onClick={handleRemove} />;
};
With functional components like that, yes, there's no reason for the extra layer of indirection in ComponentCardA vs ComponentCardB.
Slightly tangential, but related: Depending on what you're passing handleRemove to and whether your component has other props or state, you may want to memoize handleRemove via useCallback or useMemo. The reason is that if other props or state change, your component function will get called again and (with your existing code) will create a new handleRemove function and pass that to the child. That means that the child has to be updated or re-rendered. If the change was unrelated to id, that update/rerender is unnecessary.
But if the component just has id and no other props, there's no point, and if it's just passing it to an HTML element (as opposed to React component), there's also probably no point as updating that element's click handler is a very efficient operation.
The second option is better way because using an arrow function in render creates a new function each time the component renders, which may break optimizations based on strict identity comparison.
Also if you don't want to use syntax with props.id you rather create function component with object as parameter:
const Component = ({id}) => { /* ... */ }
Of course using arrow function is also allowed but remember, when you don't have to use them then don't.

How does the splice work in Function Component(hooks) in React? [duplicate]

I understand that React tutorials and documentation warn in no uncertain terms that state should not be directly mutated and that everything should go through setState.
I would like to understand why, exactly, I can't just directly change state and then (in the same function) call this.setState({}) just to trigger the render.
E.g.: The below code seems to work just fine:
const React = require('react');
const App = React.createClass({
getInitialState: function() {
return {
some: {
rather: {
deeply: {
embedded: {
stuff: 1,
},
},
},
},
},
};
updateCounter: function () {
this.state.some.rather.deeply.embedded.stuff++;
this.setState({}); // just to trigger the render ...
},
render: function() {
return (
<div>
Counter value: {this.state.some.rather.deeply.embedded.stuff}
<br></br>
<button onClick={this.updateCounter}>Increment</button>
</div>
);
},
});
export default App;
I am all for following conventions but I would like to enhance my further understanding of how ReactJS actually works and what can go wrong or is it sub-optimal with the above code.
The notes under the this.setState documentation basically identify two gotchas:
That if you mutate state directly and then subsequently call this.setState this may replace (overwrite?) the mutation you made. I don't see how this can happen in the above code.
That setState may mutate this.state effectively in an asynchronous / deferred way and so when accessing this.state right after calling this.setState you are not guaranteed to access the final mutated state. I get that, by this is not an issue if this.setState is the last call of the update function.
This answer is to provide enough information to not change/mutate the state directly in React.
React follows Unidirectional Data Flow. Meaning, the data flow inside react should and will be expected to be in a circular path.
React's Data flow without flux
To make React work like this, developers made React similar to functional programming. The rule of thumb of functional programming is immutability. Let me explain it loud and clear.
How does the unidirectional flow works?
states are a data store which contains the data of a component.
The view of a component renders based on the state.
When the view needs to change something on the screen, that value should be supplied from the store.
To make this happen, React provides setState() function which takes in an object of new states and does a compare and merge(similar to object.assign()) over the previous state and adds the new state to the state data store.
Whenever the data in the state store changes, react will trigger an re-render with the new state which the view consumes and shows it on the screen.
This cycle will continue throughout the component's lifetime.
If you see the above steps, it clearly shows a lot of things are happening behind when you change the state. So, when you mutate the state directly and call setState() with an empty object. The previous state will be polluted with your mutation. Due to which, the shallow compare and merge of two states will be disturbed or won't happen, because you'll have only one state now. This will disrupt all the React's Lifecycle Methods.
As a result, your app will behave abnormal or even crash. Most of the times, it won't affect your app because all the apps which we use for testing this are pretty small.
And another downside of mutation of Objects and Arrays in JavaScript is, when you assign an object or an array, you're just making a reference of that object or that array. When you mutate them, all the reference to that object or that array will be affected. React handles this in a intelligent way in the background and simply give us an API to make it work.
Most common errors done when handling states in React
// original state
this.state = {
a: [1,2,3,4,5]
}
// changing the state in react
// need to add '6' in the array
// bad approach
const b = this.state.a.push(6)
this.setState({
a: b
})
In the above example, this.state.a.push(6) will mutate the state directly. Assigning it to another variable and calling setState is same as what's shown below. As we mutated the state anyway, there's no point assigning it to another variable and calling setState with that variable.
// same as
this.state.a.push(6)
this.setState({})
Many people do this. This is so wrong. This breaks the beauty of React and is bad programming practice.
So, what's the best way to handle states in React? Let me explain.
When you need to change 'something' in the existing state, first get a copy of that 'something' from the current state.
// original state
this.state = {
a: [1,2,3,4,5]
}
// changing the state in react
// need to add '6' in the array
// create a copy of this.state.a
// you can use ES6's destructuring or loadash's _.clone()
const currentStateCopy = [...this.state.a]
Now, mutating currentStateCopy won't mutate the original state. Do operations over currentStateCopy and set it as the new state using setState().
currentStateCopy.push(6)
this.setState({
a: currentStateCopy
})
This is beautiful, right?
By doing this, all the references of this.state.a won't get affected until we use setState. This gives you control over your code and this'll help you write elegant test and make you confident about the performance of the code in production.
To answer your question,
Why can't I directly modify a component's state?
Well, you can. But, you need to face the following consequences.
When you scale, you'll be writing unmanageable code.
You'll lose control of state across components.
Instead of using React, you'll be writing custom codes over React.
Immutability is not a necessity because JavaScript is single threaded, but it's a good to follow practices which will help you in the long run.
PS. I've written about 10000 lines of mutable React JS code. If it breaks now, I don't know where to look into because all the values are mutated somewhere. When I realized this, I started writing immutable code. Trust me! That's the best thing you can do it to a product or an app.
The React docs for setState have this to say:
NEVER mutate this.state directly, as calling setState() afterwards may replace the mutation you made. Treat this.state as if it were immutable.
setState() does not immediately mutate this.state but creates a pending state transition. Accessing this.state after calling this method can potentially return the existing value.
There is no guarantee of synchronous operation of calls to setState and calls may be batched for performance gains.
setState() will always trigger a re-render unless conditional rendering logic is implemented in shouldComponentUpdate(). If mutable objects are being used and the logic cannot be implemented in shouldComponentUpdate(), calling setState() only when the new state differs from the previous state will avoid unnecessary re-renders.
Basically, if you modify this.state directly, you create a situation where those modifications might get overwritten.
Related to your extended questions 1) and 2), setState() is not immediate. It queues a state transition based on what it thinks is going on which may not include the direct changes to this.state. Since it's queued rather than applied immediately, it's entirely possible that something is modified in between such that your direct changes get overwritten.
If nothing else, you might be better off just considering that not directly modifying this.state can be seen as good practice. You may know personally that your code interacts with React in such a way that these over-writes or other issues can't happen but you're creating a situation where other developers or future updates can suddenly find themselves with weird or subtle issues.
the simplest answer to "
Why can't I directly modify a component's state:
is all about Updating phase.
when we update the state of a component all it's children are going to be rendered as well. or our entire component tree rendered.
but when i say our entire component tree is rendered that doesn’t mean that the entire DOM is updated.
when a component is rendered we basically get a react element, so that is updating our virtual dom.
React will then look at the virtual DOM, it also has a copy of the old virtual DOM, that is why we shouldn’t update the state directly, so we can have two different object references in memory, we have the old virtual DOM as well as the new virtual DOM.
then react will figure out what is changed and based on that it will update the real DOM accordingly .
hope it helps.
It surprises me that non of the current answers talk about pure/memo components (React.PureComponent or React.memo). These components only re-render when a change in one of the props is detected.
Say you mutate state directly and pass, not the value, but the over coupling object to the component below. This object still has the same reference as the previous object, meaning that pure/memo components won't re-render, even though you mutated one of the properties.
Since you don't always know what type of component you are working with when importing them from libraries, this is yet another reason to stick to the non-mutating rule.
Here is an example of this behaviour in action (using R.evolve to simplify creating a copy and updating nested content):
class App extends React.Component {
state = { some: { rather: { deeply: { nested: { stuff: 1 } } } } };
mutatingIncrement = () => {
this.state.some.rather.deeply.nested.stuff++;
this.setState({});
}
nonMutatingIncrement = () => {
this.setState(R.evolve(
{ some: { rather: { deeply: { nested: { stuff: n => n + 1 } } } } }
));
}
render() {
return (
<div>
Normal Component: <CounterDisplay {...this.state} />
<br />
Pure Component: <PureCounterDisplay {...this.state} />
<br />
<button onClick={this.mutatingIncrement}>mutating increment</button>
<button onClick={this.nonMutatingIncrement}>non-mutating increment</button>
</div>
);
}
}
const CounterDisplay = (props) => (
<React.Fragment>
Counter value: {props.some.rather.deeply.nested.stuff}
</React.Fragment>
);
const PureCounterDisplay = React.memo(CounterDisplay);
ReactDOM.render(<App />, document.querySelector("#root"));
<script src="https://unpkg.com/react#17/umd/react.production.min.js"></script>
<script src="https://unpkg.com/react-dom#17/umd/react-dom.production.min.js"></script>
<script src="https://unpkg.com/ramda#0/dist/ramda.min.js"></script>
<div id="root"></div>
To avoid every time to create a copy of this.state.element you can use update with $set or $push or many others from immutability-helper
e.g.:
import update from 'immutability-helper';
const newData = update(myData, {
x: {y: {z: {$set: 7}}},
a: {b: {$push: [9]}}
});
setState trigger re rendering of the components.when we want to update state again and again we must need to setState otherwise it doesn't work correctly.
My current understanding is based on this and this answers:
IF you do not use shouldComponentUpdate or any other lifecycle methods (like componentWillReceiveProps, componentWillUpdate, and componentDidUpdate) where you compare the old and new props/state
THEN
It is fine to mutate state and then call setState(), otherwise it is not fine.

Refactoring a React PureComponent to a hooks based functional component

I have a working class based implementation of an Accordion component which I'm trying to refactor to use the new hooks api.
My main challenge is to find a way to re-render only the toggled <AccordionSection /> while preventing all the other <AccordionSection/> components from re-rendering every time the state of the parent <Accordion/> (which keeps track of the open sections on its state) is updated.
On the class-based implementation I've managed to achieve this by making the <AccordionSection /> a PureComponent, passing the isOpen and onClick callbacks to it via a higher-order component which utilizes the context API, and by saving these callbacks on the parent <Accordion/>'s component's state as follows:
this.state = {
/.../
onClick: this.onClick,
isOpen: this.isOpen
};
which, to my understanding, keeps the reference to them and thus prevents them from being created as new instances on each <Accordion /> update.
However, I can't seem to get this to work with the hooks-based implementation.
Some of the things I've already tried to no success:
Wrapping the Accordion section with memo - including various render conditions on the second callback argument.
wrapping the onClick and isOpen callbacks with useCallback (doesn't seem to work since they have dependencies which update on each <Accordion/> render)
saving the onClick and isOpen to the state like this: const [callbacks] = useState({onClick, isOpen}) and then passing the callbacks object as the ContextProvider value. (seems wrong, and didn't work)
Here are the references to my working class-based implementation:
https://codesandbox.io/s/4pyqoxoz9
and my hooks refactor attempt:
https://codesandbox.io/s/lxp8xz80z7
I kept the logs on the <AccordionSection/> render in order to demonstrate which re-renders I'm trying to prevent.
Any inputs will be very appreciated.
so I ended up adding this little nugget after chasing too many rabbits..
const cache = {};
const AccordionSection = memo(({ children, sectionSlug, onClick, isOpen }) => {
if (cache[sectionSlug]) {
console.log({
children: children === cache[sectionSlug].children,
sectionSlug: sectionSlug === cache[sectionSlug].sectionSlug,
onClick: onClick === cache[sectionSlug].onClick,
isOpen: isOpen === cache[sectionSlug].isOpen
});
}
cache[sectionSlug] = { children, sectionSlug, onClick, isOpen };
This showed that it was onClick that was changing. Which then seems obvious as the Accordion component is rendering and creating a new onClick.
wrapping he onClick creation with useCallback rectifies the issue.
const onClick = useCallback(
sectionSlug =>
setOpenSections({
...(exclusive ? {} : openSections),
[sectionSlug]: !openSections[sectionSlug]
}),
[]
);
though I do seem to have broken exclusive in the process as it's always enabled now..
https://codesandbox.io/s/1o08p08m27
oh, I did move a few other pieces around in there that might have contributed to the fix..
Update
refactored to use useReducer and moved all the logic there so we can deliver a stable onClick
Update
they say sleep is good, but for me it's just trying to get to sleep..
I knew there was something I was missing.. realised last night we don't need the reducer, just the function form of setState which allows us to access the up-to-date state from within the useCallback memoed function. Converted #itaydafna's optimisation here https://codesandbox.io/s/8490v55029

Which React lifecycle method is a good replacement for componentWillRecieveProps?

I have heard of getDerivedStateFromProps but it does not work how I want it to.
I have this code:
class App extends Component {
static getDerivedStateFromProps(props, state) {
console.log("Get derived state from props called");
return null;
}
render() {
return (
<button onClick={() => this.setState({})}>Change State</button>
);
}
}
Clicking the button calls getDerivedStateFromProps. This is not what I need. I want a function that is called only when new props are received. When internal state changes, this function should not be called.
I intend to use this in a modal form scenario. When the component receives an object as a prop, the component should translate this object into a form, then place that form into the state. If I use getDerivedStateFromProps, since it is called in every this.setState(), it would not reflect the changes in the form since whenever the user types, a this.setState() is fired, and instead of the changes being set into the state, the initial object is.
Which React lifecycle method should I use?
There are a couple of ways to approach this problem depending on different use cases.
If new props are added, those new props can be checked in the Child component and user defined functions can be called in case the new object exists.
getDerivedStateFromProps(props, state, prevProps) is a static method and this does not exist in the same, which means that you'll have to return a state based on various conditions. That is, let it work on default on most cases. On cases where you want to alter its functionality, place checks and return the modified state.
Hope it answers :)

Passing data to Parent but lagging [duplicate]

This question already has answers here:
Why does calling react setState method not mutate the state immediately?
(9 answers)
The useState set method is not reflecting a change immediately
(15 answers)
Closed 8 months ago.
I would like to ask why my state is not changing when I do an onClick event. I've search a while ago that I need to bind the onClick function in constructor but still the state is not updating.
Here's my code:
import React from 'react';
import Grid from 'react-bootstrap/lib/Grid';
import Row from 'react-bootstrap/lib/Row';
import Col from 'react-bootstrap/lib/Col';
import BoardAddModal from 'components/board/BoardAddModal.jsx';
import style from 'styles/boarditem.css';
class BoardAdd extends React.Component {
constructor(props) {
super(props);
this.state = {
boardAddModalShow: false
};
this.openAddBoardModal = this.openAddBoardModal.bind(this);
}
openAddBoardModal() {
this.setState({ boardAddModalShow: true }); // set boardAddModalShow to true
/* After setting a new state it still returns a false value */
console.log(this.state.boardAddModalShow);
}
render() {
return (
<Col lg={3}>
<a href="javascript:;"
className={style.boardItemAdd}
onClick={this.openAddBoardModal}>
<div className={[style.boardItemContainer,
style.boardItemGray].join(' ')}>
Create New Board
</div>
</a>
</Col>
);
}
}
export default BoardAdd
Your state needs some time to mutate, and since console.log(this.state.boardAddModalShow) executes before the state mutates, you get the previous value as output. So you need to write the console in the callback to the setState function
openAddBoardModal() {
this.setState({ boardAddModalShow: true }, function () {
console.log(this.state.boardAddModalShow);
});
}
setState is asynchronous. It means you can’t call it on one line and assume the state has changed on the next.
According to React docs
setState() does not immediately mutate this.state but creates a
pending state transition. Accessing this.state after calling this
method can potentially return the existing value. There is no
guarantee of synchronous operation of calls to setState and calls may
be batched for performance gains.
Why would they make setState async
This is because setState alters the state and causes rerendering. This
can be an expensive operation and making it synchronous might leave
the browser unresponsive.
Thus the setState calls are asynchronous as well as batched for better
UI experience and performance.
Fortunately setState() takes a callback. And this is where we get updated state.
Consider this example.
this.setState({ name: "myname" }, () => {
//callback
console.log(this.state.name) // myname
});
So When callback fires, this.state is the updated state.
You can get mutated/updated data in callback.
For anyone trying to do this with hooks, you need useEffect.
function App() {
const [x, setX] = useState(5)
const [y, setY] = useState(15)
console.log("Element is rendered:", x, y)
// setting y does not trigger the effect
// the second argument is an array of dependencies
useEffect(() => console.log("re-render because x changed:", x), [x])
function handleXClick() {
console.log("x before setting:", x)
setX(10)
console.log("x in *line* after setting:", x)
}
return <>
<div> x is {x}. </div>
<button onClick={handleXClick}> set x to 10</button>
<div> y is {y}. </div>
<button onClick={() => setY(20)}> set y to 20</button>
</>
}
Output:
Element is rendered: 5 15
re-render because x changed: 5
(press x button)
x before setting: 5
x in *line* after setting: 5
Element is rendered: 10 15
re-render because x changed: 10
(press y button)
Element is rendered: 10 20
Live version
Since setSatate is a asynchronous function so you need to console the state as a callback like this.
openAddBoardModal(){
this.setState({ boardAddModalShow: true }, () => {
console.log(this.state.boardAddModalShow)
});
}
setState() does not always immediately update the component. It may batch or defer the update until later. This makes reading this.state right after calling setState() a potential pitfall. Instead, use componentDidUpdate or a setState callback (setState(updater, callback)), either of which are guaranteed to fire after the update has been applied. If you need to set the state based on the previous state, read about the updater argument below.
setState() will always lead to a re-render unless shouldComponentUpdate() returns false. If mutable objects are being used and conditional rendering logic cannot be implemented in shouldComponentUpdate(), calling setState() only when the new state differs from the previous state will avoid unnecessary re-renders.
The first argument is an updater function with the signature:
(state, props) => stateChange
state is a reference to the component state at the time the change is being applied. It should not be directly mutated. Instead, changes should be represented by building a new object based on the input from state and props. For instance, suppose we wanted to increment a value in state by props.step:
this.setState((state, props) => {
return {counter: state.counter + props.step};
});
Think of setState() as a request rather than an immediate command to
update the component. For better perceived performance, React may
delay it, and then update several components in a single pass. React
does not guarantee that the state changes are applied immediately.
Check this for more information.
In your case you have sent a request to update the state. It takes time for React to respond. If you try to immediately console.log the state, you will get the old value.
The above solutions don't work for useState hooks.
One can use the below code
setState((prevState) => {
console.log(boardAddModalShow)
// call functions
// fetch state using prevState and update
return { ...prevState, boardAddModalShow: true }
});
This callback is really messy. Just use async await instead:
async openAddBoardModal(){
await this.setState({ boardAddModalShow: true });
console.log(this.state.boardAddModalShow);
}
If you want to track the state is updating or not then the another way of doing the same thing is
_stateUpdated(){
console.log(this.state. boardAddModalShow);
}
openAddBoardModal(){
this.setState(
{boardAddModalShow: true},
this._stateUpdated.bind(this)
);
}
This way you can call the method "_stateUpdated" every time you try to update the state for debugging.
Although there are many good answers, if someone lands on this page searching for alternative to useState for implementing UI components like Navigation drawers which should be opened or closed based on user input, this answer would be helpful.
Though useState seems handy approach, the state is not set immediately and thus, your website or app looks laggy... And if your page is large enough, react is going to take long time to compute what all should be updated upon state change...
My suggestion is to use refs and directly manipulate the DOM when you want UI to change immediately in response to user action.
Using state for this purspose is really a bad idea in case of react.
setState() is asynchronous. The best way to verify if the state is updating would be in the componentDidUpdate() and not to put a console.log(this.state.boardAddModalShow) after this.setState({ boardAddModalShow: true }) .
according to React Docs
Think of setState() as a request rather than an immediate command to update the component. For better perceived performance, React may delay it, and then update several components in a single pass. React does not guarantee that the state changes are applied immediately
According to React Docs
React does not guarantee that the state changes are applied immediately.
This makes reading this.state right after calling setState() a potential pitfall and can potentially return the existing value due to async nature .
Instead, use componentDidUpdate or a setState callback that is executed right after setState operation is successful.Generally we recommend using componentDidUpdate() for such logic instead.
Example:
import React from "react";
import ReactDOM from "react-dom";
import "./styles.css";
class App extends React.Component {
constructor() {
super();
this.state = {
counter: 1
};
}
componentDidUpdate() {
console.log("componentDidUpdate fired");
console.log("STATE", this.state);
}
updateState = () => {
this.setState(
(state, props) => {
return { counter: state.counter + 1 };
});
};
render() {
return (
<div className="App">
<h1>Hello CodeSandbox</h1>
<h2>Start editing to see some magic happen!</h2>
<button onClick={this.updateState}>Update State</button>
</div>
);
}
}
const rootElement = document.getElementById("root");
ReactDOM.render(<App />, rootElement);
this.setState({
isMonthFee: !this.state.isMonthFee,
}, () => {
console.log(this.state.isMonthFee);
})
when i was running the code and checking my output at console it showing the that it is undefined.
After i search around and find something that worked for me.
componentDidUpdate(){}
I added this method in my code after constructor().
check out the life cycle of react native workflow.
https://images.app.goo.gl/BVRAi4ea2P4LchqJ8
Yes because setState is an asynchronous function. The best way to set state right after you write set state is by using Object.assign like this:
For eg you want to set a property isValid to true, do it like this
Object.assign(this.state, { isValid: true })
You can access updated state just after writing this line.

Categories