MDN has an example in which a generator function is marked as async, and yield is used without await.
Why is await not necessary in this example?
const myAsyncIterable = {
async* [Symbol.asyncIterator]() {
yield "hello"
yield "async"
yield "iteration!"
}
}
Just because an function is async doesn't mean that await is required. I think this example has async just to show that you could easily insert an awaited Promise into it.
Something with a Symbol.asyncIterator can be iterated over asynchronously if needed, but it doesn't have to have any asynchronous operations. You could even replace the async function with a standard generator function, on the Symbol.asyncIterator property, and still have things work just fine:
const myAsyncIterable = {
*[Symbol.asyncIterator]() {
yield "hello"
yield "async"
yield "iteration!"
}
};
(async () => {
for await (const item of myAsyncIterable) {
console.log(item);
}
})();
Looking at the specification, after the iterator is retrieved from the object, it doesn't matter whether the iterator is sync or async. An async generator function will result in an async iterator; a sync generator function will result in a sync iterator. See the final step 7 of the spec here - GetIterator will be invoked, and whatever object that's on Symbol.asyncIterator will be returned, if it exists, without regard to whether it's actually async or not.
With the iterator, when iterated over with for await, each value returned by the iterator will be awaited:
b. If iteratorKind is async, then set nextResult to ? Await(nextResult).
And it's perfectly fine to await something that isn't a Promise, it's just odd:
(async () => {
const item = await 'foo';
console.log(item);
})();
await will unwrap a Promise if the expression to its right is a Promise, and will leave it unchanged otherwise.
Related
This question already has answers here:
Async function without await in JavaScript
(4 answers)
Closed 2 years ago.
due to everyone's help, I got the logic behind async, promise, then, await.
I have one curisosity on top of its basic nature, which is what if
I declare async function but doesn't use await in it.
technically every argument within async function is invisibly capsulated by '.then()'
but how it works would be exactly same as synchronous function execution.
For example,
async function trackUserHandler() {
var positiondata= await getPosition();
var timerdata = await setTimer(2000)
console.log(positiondata, timerdata);
setTimer(1000).then(() => {
console.log('Timer done!');
});
console.log('one');
}
The console below doesn't run till the first two await function is done due to await(s) sitting before this.
console.log(positiondata, timerdata);
What if I don't put any await(s) in the async like below?
async function trackUserHandler() {
var positiondata= getPosition();
var timerdata = setTimer(2000)
console.log(positiondata, timerdata);
setTimer(1000).then(() => {
console.log('Timer done!');
});
console.log('one');
}
I test-run this code and behaves seemigly same as regular function without 'async'.
Of course behind the scene, everything in the function is encapsulated into 'then()' though.
Am I understanding right?
Thank you in advance.
Behind the scene- If I use Aync but doesn't use await in it, would it be identical with normal function?
Yes, you are right. An async function without an await expression will run synchronously and would be identical with normal function, but the only difference is that async functions always return a promise. If the return value of an async function is not explicitly a promise, it will be implicitly wrapped in a promise.
For example, the following:
async function foo() {
return 1
}
...is equivalent to:
function foo() {
return Promise.resolve(1)
}
If there is an await expression inside the function body, however, the async function will always complete asynchronously.
For example:
async function foo() {
await 1
}
...is equivalent to:
function foo() {
return Promise.resolve(1).then(() => undefined)
}
Code after each await expression can be thought of as existing in a .then callback.
Yes, an async function runs synchronously till the first await, so it behaves like a regular function. It does return a Promise though:
function trackUserHandler() {
// ... code
return Promise.resolve(undefined);
}
In your example, the 2 functions won't behave the same. Without the await keyword, your variables won't capture the results returned by these 2 functions, but instead receive 2 Promises.
var positiondata = getPosition();
var timerdata = setTimer(2000);
So your console.log will print out 2 Promises instead of the values you actually expect.
An async function can contain an await expression, that pauses the
execution of the async function and waits for the passed Promise's
resolution, and then resumes the async function's execution and
returns the resolved value.
As you assumed, if no await is present the execution is not paused and your code will then be executed in a non-blocking manner.
const getPromise = async (s) => {
return new Promise((resolve, reject) => {
setTimeout(() => resolve(s), 500);
});
}
(async() => {
try {
const result = getPromise("a"); //no await, result has not been unwrapped
console.log('async/await -> ', result);
} catch (err) {
console.log(err);
}
})();
Async function without await in Javascript
I am trying to visualize the synchronicity of for...await loops in JavaScript.
It appears that in an async generator function both yield and await will stop progress and cue up a continuation on a microtask.
In other words: yielding is always asynchronous in this context, even if you don't use the await keyword.
Is this correct? What about async generator functions outside of the context of for...await loops?
Below a tight microtask loop is created using then, in an attempt to see how tasks are interleaved.
function printNums() {
let counter = 0
function go() {
console.log(counter++)
if(counter < 10) Promise.resolve().then(go)
}
Promise.resolve().then(go)
}
printNums()
async function asyncFn() {
console.log('inside asyncFn 1')
await null
console.log('inside asyncFn 2')
}
asyncFn()
const asyncIterable = {
async *[Symbol.asyncIterator]() {
console.log('inside asyncIterable 1')
yield '⛱'
console.log('inside asyncIterable 2')
await null
console.log('inside asyncIterable 3')
yield '🐳'
yield '🥡'
}
}
async function printAsyncIterable() {
for await(let z of asyncIterable) {
console.log(z)
}
}
printAsyncIterable()
In other words: yielding is always asynchronous in this context, even if you don't use the await keyword
Yes. Inside an asynchronous generator function, the expression
yield value
behaves as if you had written
await (yield (await value))
You cannot yield promises, and you cannot receive promises, they always get automatically unwrapped by the next() call.
I'm trying to learn async-await. In this code -
const myFun = () => {
let state = false;
setTimeout(() => {state = true}, 2000);
return new Promise((resolve, reject) => {
setTimeout(() => {
if(state) {
resolve('State is true');
} else {
reject('State is false');
}
}, 3000);
});
}
const getResult = async () => {
return await myFun();
}
console.log(getResult());
why am I getting output as -
Promise { <pending> }
Instead of some value? Shouldn't the getResult() function wait for myFun() function resolve it's promise value?
If you're using async/await, all your calls have to use Promises or async/await. You can't just magically get an async result from a sync call.
Your final call needs to be:
getResult().then(response => console.log(response));
Or something like:
(async () => console.log(await getResult()))()
What you need to understand is that async/await does not make your code run synchronously, but let's you write it as if it is:
In short: The function with async in front of it is literally executed asynchronously, hence the keyword "async". And the "await" keyword wil make that line that uses it inside this async function wait for a promise during its execution. So although the line waits, the whole function is still run asynchronously, unless the caller of that function also 'awaits'...
More elaborately explained: When you put async in front of a function, what is actually does is make it return a promise with whatever that function returns inside it. The function runs asynchronously and when the return statement is executed the promise resolves the returning value.
Meaning, in your code:
const getResult = async () => {
return await myFun();
}
The function "getResult()" will return a Promise which will resolve once it has finished executing. So the lines inside the getResult() function are run asynchronously, unless you tell the function calling getResult() to 'await' for it as well. Inside the getResult() function you may say it must await the result, which makes the execution of getResult() wait for it to resolve the promise, but the caller of getResult() will not wait unless you also tell the caller to 'await'.
So a solution would be calling either:
getResult().then(result=>{console.log(result)})
Or when using in another function you can simply use 'await' again
async function callingFunction(){
console.log(await(getResult());
}
This is my routine dealing with await and async using a Promise with resolve and reject mechanism
// step 1 create a promise inside a function
function longwork()
{
p = new Promise(function (resolve, reject) {
result = 1111111111111 // long work here ;
if(result == "good"){
resolve(result);
}
else
{
reject("error ...etc")
}
})
return p
}
// step 2 call that function inside an async function (I call it main)and use await before it
async function main()
{
final_result = await longwork();
//..
}
//step 3 call the async function that calls the long work function
main().catch((error)=>{console.log(error);})
Hope that saves someone valuable hours
What hasn't been mentioned in this discussion are the use-case implications of the behaviour. The key thing, as I see it, is to consider what you are planning to do with the output from the top level, truly asynchronous function, and where you are planning to do that.
If you are planning to consume the output immediately, i.e. within the "async" function that is awaiting the return of the top level asynchronous function, and what you do with the output has no implication for other functions deeper in the call stack, then it does not matter that the deeper functions have moved on. But if the output is needed deeper in the call stack, then you need use "async" functions making await calls all the way down the stack to that point. Once you reach a point in the call stack where the function does not care about the asynchronous output, then you can stop using async functions.
For example, in the following code, function B uses the stuff returned from function A so is declared "async" and awaits A(). Function C() calls B(), is returned a Promise, but can move straight on before that promise is resolved because it is not interested in A()'s stuff, nor what's done with it. So C does not need to be declared as async, nor await B().
function A() {
return new Promise((resolve, reject) => {
//do something slow
resolve (astuff)
}
}
async function B() {
var bstuff = await A();
dosomethingwith(bstuff);
return;
}
function C() {
B();
dontwaitmoveon();
...
return;
}
In this next example, C() does use A()'s stuff, so needs to wait for it. C() must be declared "async" and await B(). However D() does not care about A()'s stuff, nor what's done with it, so moves on once C() returns its promise.
function A() {
return new Promise((resolve, reject) => {
//do something slow
resolve (astuff)
}
}
async function B() {
var bstuff = await A();
dosomething();
return bstuff;
}
async function C() {
var cstuff = await B();
dosomethingwith(cstuff);
...
return;
}
function D() {
C();
dontwaitmoveon();
...
return;
}
Since figuring this out, I have tried to design my code so the stuff returned by the asynchronous function is consumed as close as possible to the source.
Though your "getResult" function is async and you have rightly made an await call of myFun, look at the place where you call the getResult function, it is outside any async functions so it runs synchronously.
So since getResult called from a synchronous point of view, as soon as it is called, Javascript synchronously gets whatever result is available at the moment, which is a promise.
So returns from an async function cannot be forced to await(very important), since they are synchronously tied to the place of origin of the call.
To get what you want you can run the below,
async function getResult() {
const result = await myFun();
console.log(result);
//see no returns here
}
getResult();
If I have an async function, do I have to repeatedly use the await keyword down the call chain, even if the methods being invoked are marked as async and use the await keyword themselves?
async function foo() {
const result = await bar(); // is this await required?
console.log(result);
}
async function bar() {
console.log('waiting...');
return await new Promise(resolve => setTimeout(() => resolve('result'), 1000)) ;
}
You do if you want the promise to be resolved.
Because
const result = bar();
is perfectly valid: it returns a promise.
Using await, you instruct the engine to wait for the promise to be resolved (or fail) and get the result. There are many valid cases where you would want to deal with the promise itself (for example adding operations) even inside an async function.
No you dont:
async function foo() {
const result = await baz(); //this is just required
console.log(result);
}
async function baz(){//mustnt be async
return bar();//simply return, no await required
}
async function bar() {//mustnt be async
console.log('waiting...');
return new Promise(resolve => setTimeout(() => resolve('result'), 1000)) ;//this isnt
}
You just need to await the promise once at the highest level ( if youre not planning to change the data somewhere).
The upper example does not need to be async , however this has to:
async function buy(product){
if(await isAvailableNow()){
return buy();//buy is a promise
}else{
return buySomewhereElse();//another promise
}
}
If I have an async function, do I have to repeatedly use the await keyword down the call chain
If the function is async and you want to run your instructions (that follows the call) AFTER the async function is done, then yes. Always. You have used
return await new Promise(...);
in bar() which is a strange thing. The await is not required here because you have defined the function as async function bar() { ... }. It implicitly returns with a Promise.resolve(...) object. So at the end, no matter of what you do in the return statement, you always get that object.
So when calling bar() as
const result = bar();
// stmt
then result contains a promise object which is doing the task in bar() function asynchronously AND runs the stmt after it. So the stmt is executed, even if the bar() function is not done yet.
To resolve it, you have to use await at the call...
const result = await bar();
// stmt
In this situation, stmt is only executed if bar is done.
If you want the result of the Promise before solving the async you'll need the await. The only function of the await is wait a Promise to be solved, but await is not mandatory in async functions, is just for that case. Just think "I have a Promise? I need this solved before the async?" If the answer was a double yes, so use await.
I was just reading this fantastic article «Generators» and it clearly highlights this function, which is a helper function for handling generator functions:
function async(makeGenerator){
return function () {
var generator = makeGenerator.apply(this, arguments);
function handle(result){
// result => { done: [Boolean], value: [Object] }
if (result.done) return Promise.resolve(result.value);
return Promise.resolve(result.value).then(function (res){
return handle(generator.next(res));
}, function (err){
return handle(generator.throw(err));
});
}
try {
return handle(generator.next());
} catch (ex) {
return Promise.reject(ex);
}
}
}
which I hypothesize is more or less the way the async keyword is implemented with async/await. So the question is, if that is the case, then what the heck is the difference between the await keyword and the yield keyword? Does await always turn something into a promise, whereas yield makes no such guarantee? That is my best guess!
You can also see how async/await is similar to yield with generators in this article where he describes the 'spawn' function ES7 async functions.
Well, it turns out that there is a very close relationship between async/await and generators. And I believe async/await will always be built on generators. If you look at the way Babel transpiles async/await:
Babel takes this:
this.it('is a test', async function () {
const foo = await 3;
const bar = await new Promise(resolve => resolve('7'));
const baz = bar * foo;
console.log(baz);
});
and turns it into this
function _asyncToGenerator(fn) {
return function () {
var gen = fn.apply(this, arguments);
return new Promise(function (resolve, reject) {
function step(key, arg) {
try {
var info = gen[key](arg);
var value = info.value;
} catch (error) {
reject(error);
return;
}
if (info.done) {
resolve(value);
} else {
return Promise.resolve(value).then(function (value) {
return step("next", value);
}, function (err) {
return step("throw", err);
});
}
}
return step("next");
});
};
}
this.it('is a test', _asyncToGenerator(function* () { // << now it's a generator
const foo = yield 3; // <<< now it's yield, not await
const bar = yield new Promise(resolve => resolve(7));
const baz = bar * foo;
console.log(baz);
}));
you do the math.
This makes it look like the async keyword is just that wrapper function, but if that's the case then await just gets turned into yield, there will probably be a bit more to the picture later on when they become native.
You can see more of an explanation for this here:
https://www.promisejs.org/generators/
yield can be considered to be the building block of await. yield takes the value it's given and passes it to the caller. The caller can then do whatever it wishes with that value (1). Later the caller may give a value back to the generator (via generator.next()) which becomes the result of the yield expression (2), or an error that will appear to be thrown by the yield expression (3).
async-await can be considered to use yield. At (1) the caller (i.e. the async-await driver - similar to the function you posted) will wrap the value in a promise using a similar algorithm to new Promise(r => r(value) (note, not Promise.resolve, but that's not a big deal). It then waits for the promise to resolve. If it fulfills, it passes the fulfilled value back at (2). If it rejects, it throws the rejection reason as an error at (3).
So the utility of async-await is this machinery that uses yield to unwrap the yielded value as a promise and pass its resolved value back, repeating until the function returns its final value.
what the heck is the difference between the await keyword and the yield keyword?
The await keyword is only to be used in async functions, while the yield keyword is only to be used in generator function*s. And those are obviously different as well - the one returns promises, the other returns generators.
Does await always turn something into a promise, whereas yield makes no such guarantee?
Yes, await will call Promise.resolve on the awaited value.
yield just yields the value outside of the generator.
tl;dr
Use async/await 99% of the time over generators. Why?
async/await directly replaces the most common workflow of promise chains allowing code to be declared as if it was synchronous, dramatically simplifying it.
Generators abstract the use case where you would call a series of async-operations that depend on each other and eventually will be in a "done" state. The most simple example would be paging through results that eventually return the last set but you would only call a page as needed, not immediately in succession.
async/await is actually an abstraction built on top of generators to make working with promises easier.
See very in-depth Explanation of Async/Await vs. Generators
Try this test programs which I used to understand await/async with promises.
Program #1: without promises it doesn't run in sequence
function functionA() {
console.log('functionA called');
setTimeout(function() {
console.log('functionA timeout called');
return 10;
}, 15000);
}
function functionB(valueA) {
console.log('functionB called');
setTimeout(function() {
console.log('functionB timeout called = ' + valueA);
return 20 + valueA;
}, 10000);
}
function functionC(valueA, valueB) {
console.log('functionC called');
setTimeout(function() {
console.log('functionC timeout called = ' + valueA);
return valueA + valueB;
}, 10000);
}
async function executeAsyncTask() {
const valueA = await functionA();
const valueB = await functionB(valueA);
return functionC(valueA, valueB);
}
console.log('program started');
executeAsyncTask().then(function(response) {
console.log('response called = ' + response);
});
console.log('program ended');
Program #2: with promises
function functionA() {
return new Promise((resolve, reject) => {
console.log('functionA called');
setTimeout(function() {
console.log('functionA timeout called');
// return 10;
return resolve(10);
}, 15000);
});
}
function functionB(valueA) {
return new Promise((resolve, reject) => {
console.log('functionB called');
setTimeout(function() {
console.log('functionB timeout called = ' + valueA);
return resolve(20 + valueA);
}, 10000);
});
}
function functionC(valueA, valueB) {
return new Promise((resolve, reject) => {
console.log('functionC called');
setTimeout(function() {
console.log('functionC timeout called = ' + valueA);
return resolve(valueA + valueB);
}, 10000);
});
}
async function executeAsyncTask() {
const valueA = await functionA();
const valueB = await functionB(valueA);
return functionC(valueA, valueB);
}
console.log('program started');
executeAsyncTask().then(function(response) {
console.log('response called = ' + response);
});
console.log('program ended');
In many ways, generators are a superset of async/await. Right now async/await has cleaner stack traces than co, the most popular async/await-like generator based lib. You can implement your own flavor of async/await using generators and add new features, like built-in support for yield on non-promises or building it on RxJS observables.
So, in short, generators give you more flexibility and generator-based libs generally have more features. But async/await is a core part of the language, it's standardized and won't change under you, and you don't need a library to use it. I have a blog post with more details on the difference between async/await and generators.
The yield+gen.next()-as-a-language-feature can be used to describe (or implement) the underlying control-flow that await-async has abstracted away.
As other answers suggest, await-as-a-language-feature is (or can be thought of) an implementation on top of yield.
Here is a more intutive understanding for that:
Say we have 42 awaits in an async function, await A -> await B -> ...
Deep down it is equivalent to having yield A -> tries resolve this as a Promise [1]
-> if resolvable, we yield B, and repeat [1] for B
-> if not resolveable, we throw
And so we end up with 42 yields in a generator. And in our controller we simply keep doing gen.next() until it is completed or gets rejected. (ie this is the same as using await on an async function that contains 42 await.)
This is why lib like redux-saga utilizes generator to then pipe the promises to the saga middleware to be resolved all at one place; thus decoupling the Promises constructions from their evaluations, thus sharing close resemblance to the Free Monad.
The idea is to recursively chain then() calls to replicate the behavior of await which allows one to invoke async routines in a synchronous fashion. A generator function is used to yield back control (and each value) from the callee to the caller, which happens to be the _asyncToGenerator() wrapper function.
As mentioned above, this is the trick that Babel uses to create polyfills. I slightly edited the code to make it more readable and added comments.
(async function () {
const foo = await 3;
const bar = await new Promise((resolve) => resolve(7));
const baz = bar * foo;
console.log(baz);
})();
function _asyncToGenerator(fn) {
return function () {
let gen = fn(); // Start the execution of the generator function and store the generator object.
return new Promise(function (resolve, reject) {
function step(func, arg) {
try {
let item = gen[func](arg); // Retrieve the function object from the property name and invoke it. Similar to eval(`gen.${func}(arg)`) but safer. If the next() method is called on the generator object, the item value by the generator function is saved and the generator resumes execution. The value passed as an argument is assigned as a result of a yield expression.
if (item.done) {
resolve(item.value);
return; // The executor return value is ignored, but we need to stop the recursion here.
}
// The trick is that Promise.resolve() returns a promise object that is resolved with the value given as an argument. If that value is a promise object itself, then it's simply returned as is.
return Promise.resolve(item.value).then(
(v) => step("next", v),
(e) => step("throw", e)
);
} catch (e) {
reject(e);
return;
}
}
return step("next");
});
};
}
_asyncToGenerator(function* () { // <<< Now it's a generator function.
const foo = yield 3; // <<< Now it's yield, not await.
const bar = yield new Promise((resolve, reject) => resolve(7)); // <<< Each item is converted to a thenable object and recursively enclosed into chained then() calls.
const baz = bar * foo;
console.log(baz);
})();