How "this" reference is transferred in the following function - javascript

In the JS manual I have the following example, that is working correctly:
let worker = {
someMethod() {
return 1;
},
slow(x) {
alert("Called with " + x);
return x * this.someMethod(); // (*)
}
};
function cachingDecorator(func) {
let cache = new Map();
return function(x) {
if (cache.has(x)) {
return cache.get(x);
}
let result = func.call(this, x); // теперь 'this' передаётся правильно
cache.set(x, result);
return result;
};
}
worker.slow = cachingDecorator(worker.slow); // теперь сделаем её кеширующей
alert( worker.slow(2) ); // работает
alert( worker.slow(2) ); // работает, не вызывая первоначальную функцию (кешируется)
The question is: how the "this" reference is transferred into cachingDecorator function, if the cachingDecorator is not declared inside of the object, and is called like worker.slow = cachingDecorator(worker.slow)? I talk about this row inside the cachingDecorator: let result = func.call(this, x).

this reference is transferred in the last 2 rows when the decorator is actually used as worker object is before the dot.

The this is not actually in cachingDecorator, but is rather in the anonymous function being returned. So the this value is not set until that function is invoked.
Because that function is assigned to worker.slow, and you're calling it from that object, the this value gets set to the worker object.
The important thing to remember is that this is kind of like a weird function parameter. It just has a keyword for a name and always gets set (except in arrow functions). It gets set based on how the function is invoked, instead of being set like regular parameters via arguments being passed.

Note that the function cachingDecorator returns a function declared like function(x) {. . .}. Any function like this will inherit context when it is invoked as a reference to an object member:
function magicFn() { return this }
const x = { magicFn };
const y = { someKey: 6, magicFn };
x.magicFn(); // === x, because it was invoked as x.magicFn
y.magicFn(); // === y
magicFn(); // === undefined, no `this` object member reference
So when worker.slow = cachingDecorator(worker.slow) is called, the resulting function invokes the original worker.slow using worker.slow.call(this, x); which proxies the incoming this value (in this case, worker).

Related

What does binding a function to 'this' do in the constructor? [duplicate]

What is the use of bind() in JavaScript?
Bind creates a new function that will force the this inside the function to be the parameter passed to bind().
Here's an example that shows how to use bind to pass a member method around that has the correct this:
var myButton = {
content: 'OK',
click() {
console.log(this.content + ' clicked');
}
};
myButton.click();
var looseClick = myButton.click;
looseClick(); // not bound, 'this' is not myButton - it is the globalThis
var boundClick = myButton.click.bind(myButton);
boundClick(); // bound, 'this' is myButton
Which prints out:
OK clicked
undefined clicked
OK clicked
You can also add extra parameters after the 1st (this) parameter and bind will pass in those values to the original function. Any additional parameters you later pass to the bound function will be passed in after the bound parameters:
// Example showing binding some parameters
var sum = function(a, b) {
return a + b;
};
var add5 = sum.bind(null, 5);
console.log(add5(10));
Which prints out:
15
Check out JavaScript Function bind for more info and interactive examples.
Update: ECMAScript 2015 adds support for => functions. => functions are more compact and do not change the this pointer from their defining scope, so you may not need to use bind() as often. For example, if you wanted a function on Button from the first example to hook up the click callback to a DOM event, the following are all valid ways of doing that:
var myButton = {
... // As above
hookEvent(element) {
// Use bind() to ensure 'this' is the 'this' inside click()
element.addEventListener('click', this.click.bind(this));
}
};
Or:
var myButton = {
... // As above
hookEvent(element) {
// Use a new variable for 'this' since 'this' inside the function
// will not be the 'this' inside hookEvent()
var me = this;
element.addEventListener('click', function() { me.click() });
}
};
Or:
var myButton = {
... // As above
hookEvent(element) {
// => functions do not change 'this', so you can use it directly
element.addEventListener('click', () => this.click());
}
};
The simplest use of bind() is to make a function that, no matter
how it is called, is called with a particular this value.
x = 9;
var module = {
x: 81,
getX: function () {
return this.x;
}
};
module.getX(); // 81
var getX = module.getX;
getX(); // 9, because in this case, "this" refers to the global object
// create a new function with 'this' bound to module
var boundGetX = getX.bind(module);
boundGetX(); // 81
Please refer to this link on MDN Web Docs for more information:
Function.prototype.bind()
bind allows-
set the value of "this" to an specific object. This becomes very helpful as sometimes this is not what is intended.
reuse methods
curry a function
For example, you have a function to deduct monthly club fees
function getMonthlyFee(fee){
var remaining = this.total - fee;
this.total = remaining;
return this.name +' remaining balance:'+remaining;
}
Now you want to reuse this function for a different club member. Note that the monthly fee will vary from member to member.
Let's imagine Rachel has a balance of 500, and a monthly membership fee of 90.
var rachel = {name:'Rachel Green', total:500};
Now, create a function that can be used again and again to deduct the fee from her account every month
//bind
var getRachelFee = getMonthlyFee.bind(rachel, 90);
//deduct
getRachelFee();//Rachel Green remaining balance:410
getRachelFee();//Rachel Green remaining balance:320
Now, the same getMonthlyFee function could be used for another member with a different membership fee. For Example, Ross Geller has a 250 balance and a monthly fee of 25
var ross = {name:'Ross Geller', total:250};
//bind
var getRossFee = getMonthlyFee.bind(ross, 25);
//deduct
getRossFee(); //Ross Geller remaining balance:225
getRossFee(); //Ross Geller remaining balance:200
From the MDN docs on Function.prototype.bind() :
The bind() method creates a new function that, when called, has its
this keyword set to the provided value, with a given sequence of
arguments preceding any provided when the new function is called.
So, what does that mean?!
Well, let's take a function that looks like this :
var logProp = function(prop) {
console.log(this[prop]);
};
Now, let's take an object that looks like this :
var Obj = {
x : 5,
y : 10
};
We can bind our function to our object like this :
Obj.log = logProp.bind(Obj);
Now, we can run Obj.log anywhere in our code :
Obj.log('x'); // Output : 5
Obj.log('y'); // Output : 10
This works, because we bound the value of this to our object Obj.
Where it really gets interesting, is when you not only bind a value for this, but also for its argument prop :
Obj.logX = logProp.bind(Obj, 'x');
Obj.logY = logProp.bind(Obj, 'y');
We can now do this :
Obj.logX(); // Output : 5
Obj.logY(); // Output : 10
Unlike with Obj.log, we do not have to pass x or y, because we passed those values when we did our binding.
Variables has local and global scopes. Let's suppose that we have two variables with the same name. One is globally defined and the other is defined inside a function closure and we want to get the variable value which is inside the function closure. In that case we use this bind() method. Please see the simple example below:
var x = 9; // this refers to global "window" object here in the browser
var person = {
x: 81,
getX: function() {
return this.x;
}
};
var y = person.getX; // It will return 9, because it will call global value of x(var x=9).
var x2 = y.bind(person); // It will return 81, because it will call local value of x, which is defined in the object called person(x=81).
document.getElementById("demo1").innerHTML = y();
document.getElementById("demo2").innerHTML = x2();
<p id="demo1">0</p>
<p id="demo2">0</p>
Summary:
The bind() method takes an object as an first argument and creates a new function. When the function is invoked the value of this in the function body will be the object which was passed in as an argument in the bind() function.
How does this work in JS anyway
The value of this in javascript is dependent always depends on what Object the function is called. The value of this always refers to the object left of the dot from where is the function is called. In case of the global scope this is window (or global in nodeJS). Only call, apply and bind can alter the this binding differently. Here is an example to show how the this keyword works:
let obj = {
prop1: 1,
func: function () { console.log(this); }
}
obj.func(); // obj left of the dot so this refers to obj
const customFunc = obj.func; // we store the function in the customFunc obj
customFunc(); // now the object left of the dot is window,
// customFunc() is shorthand for window.customFunc()
// Therefore window will be logged
How is bind used?
Bind can help in overcoming difficulties with the this keyword by having a fixed object where this will refer to. For example:
var name = 'globalName';
const obj = {
name: 'myName',
sayName: function () { console.log(this.name);}
}
const say = obj.sayName; // we are merely storing the function the value of this isn't magically transferred
say(); // now because this function is executed in global scope this will refer to the global var
const boundSay = obj.sayName.bind(obj); // now the value of this is bound to the obj object
boundSay(); // Now this will refer to the name in the obj object: 'myName'
Once the function is bound to a particular this value we can pass it around and even put it on properties on other objects. The value of this will remain the same.
The bind() method creates a new function instance whose this value is bound to the value that was passed into bind().
For example:
window.color = "red";
var o = { color: "blue" };
function sayColor(){
alert(this.color);
}
var objectSayColor = sayColor.bind(o);
objectSayColor(); //blue
Here, a new function called objectSayColor() is created from sayColor() by calling bind() and passing in the object o. The objectSayColor() function has a this value equivalent to o, so calling the function, even as a global call, results in the string “blue” being displayed.
Reference : Nicholas C. Zakas - PROFESSIONAL JAVASCRIPT® FOR WEB DEVELOPERS
I will explain bind theoretically as well as practically
bind in javascript is a method -- Function.prototype.bind . bind is a method. It is called on function prototype. This method creates a function whose body is similar to the function on which it is called but the 'this' refers to the first parameter passed to the bind method. Its syntax is
var bindedFunc = Func.bind(thisObj,optionsArg1,optionalArg2,optionalArg3,...);
Example:--
var checkRange = function(value){
if(typeof value !== "number"){
return false;
}
else {
return value >= this.minimum && value <= this.maximum;
}
}
var range = {minimum:10,maximum:20};
var boundedFunc = checkRange.bind(range); //bounded Function. this refers to range
var result = boundedFunc(15); //passing value
console.log(result) // will give true;
Creating a new Function by Binding Arguments to Values
The bind method creates a new function from another function with one or more arguments bound to specific values, including the implicit this argument.
Partial Application
This is an example of partial application. Normally we supply a function with all of its arguments which yields a value. This is known as function application. We are applying the function to its arguments.
A Higher Order Function (HOF)
Partial application is an example of a higher order function (HOF) because it yields a new function with a fewer number of argument.
Binding Multiple Arguments
You can use bind to transform functions with multiple arguments into new functions.
function multiply(x, y) {
return x * y;
}
let multiplyBy10 = multiply.bind(null, 10);
console.log(multiplyBy10(5));
Converting from Instance Method to Static Function
In the most common use case, when called with one argument the bind method will create a new function that has the this value bound to a specific value. In effect this transforms an instance method to a static method.
function Multiplier(factor) {
this.factor = factor;
}
Multiplier.prototype.multiply = function(x) {
return this.factor * x;
}
function ApplyFunction(func, value) {
return func(value);
}
var mul = new Multiplier(5);
// Produces garbage (NaN) because multiplying "undefined" by 10
console.log(ApplyFunction(mul.multiply, 10));
// Produces expected result: 50
console.log(ApplyFunction(mul.multiply.bind(mul), 10));
Implementing a Stateful CallBack
The following example shows how using binding of this can enable an object method to act as a callback that can easily update the state of an object.
function ButtonPressedLogger()
{
this.count = 0;
this.onPressed = function() {
this.count++;
console.log("pressed a button " + this.count + " times");
}
for (let d of document.getElementsByTagName("button"))
d.onclick = this.onPressed.bind(this);
}
new ButtonPressedLogger();
<button>press me</button>
<button>no press me</button>
As mentioned, Function.bind() lets you specify the context that the function will execute in (that is, it lets you pass in what object the this keyword will resolve to in the body of the function.
A couple of analogous toolkit API methods that perform a similar service:
jQuery.proxy()
Dojo.hitch()
Bind Method
A bind implementation might look something like so:
Function.prototype.bind = function () {
const self = this;
const args = [...arguments];
const context = args.shift();
return function () {
return self.apply(context, args.concat([...arguments]));
};
};
The bind function can take any number of arguments and return a new function.
The new function will call the original function using the JS Function.prototype.apply method.The apply method will use the first argument passed to the target function as its context (this), and the second array argument of the apply method will be a combination of the rest of the arguments from the target function, concat with the arguments used to call the return function (in that order).
An example can look something like so:
function Fruit(emoji) {
this.emoji = emoji;
}
Fruit.prototype.show = function () {
console.log(this.emoji);
};
const apple = new Fruit('🍎');
const orange = new Fruit('🍊');
apple.show(); // 🍎
orange.show(); // 🍊
const fruit1 = apple.show;
const fruit2 = apple.show.bind();
const fruit3 = apple.show.bind(apple);
const fruit4 = apple.show.bind(orange);
fruit1(); // undefined
fruit2(); // undefined
fruit3(); // 🍎
fruit4(); // 🍊
/**
* Bind is a method inherited from Function.prototype same like call and apply
* It basically helps to bind a function to an object's context during initialisation
*
* */
window.myname = "Jineesh";
var foo = function(){
return this.myname;
};
//IE < 8 has issues with this, supported in ecmascript 5
var obj = {
myname : "John",
fn:foo.bind(window)// binds to window object
};
console.log( obj.fn() ); // Returns Jineesh
Consider the Simple Program listed below,
//we create object user
let User = { name: 'Justin' };
//a Hello Function is created to Alert the object User
function Hello() {
alert(this.name);
}
//since there the value of this is lost we need to bind user to use this keyword
let user = Hello.bind(User);
user();
//we create an instance to refer the this keyword (this.name);
Simple Explanation:
bind() create a new function, a new reference at a function it returns to you.
In parameter after this keyword, you pass in the parameter you want to preconfigure. Actually it does not execute immediately, just prepares for execution.
You can preconfigure as many parameters as you want.
Simple Example to understand bind:
function calculate(operation) {
if (operation === 'ADD') {
alert('The Operation is Addition');
} else if (operation === 'SUBTRACT') {
alert('The Operation is Subtraction');
}
}
addBtn.addEventListener('click', calculate.bind(this, 'ADD'));
subtractBtn.addEventListener('click', calculate.bind(this, 'SUBTRACT'));
The bind function creates a new function with the same function body as the function it is calling .It is called with the this argument .why we use bind fun. : when every time a new instance is created and we have to use first initial instance then we use bind fun.We can't override the bind fun.simply it stores the initial object of the class.
setInterval(this.animate_to.bind(this), 1000/this.difference);
function.prototype.bind() accepts an Object.
It binds the calling function to the passed Object and the returns
the same.
When an object is bound to a function, it means you will be able to
access the values of that object from within the function using
'this' keyword.
It can also be said as,
function.prototype.bind() is used to provide/change the context of a
function.
let powerOfNumber = function(number) {
let product = 1;
for(let i=1; i<= this.power; i++) {
product*=number;
}
return product;
}
let powerOfTwo = powerOfNumber.bind({power:2});
alert(powerOfTwo(2));
let powerOfThree = powerOfNumber.bind({power:3});
alert(powerOfThree(2));
let powerOfFour = powerOfNumber.bind({power:4});
alert(powerOfFour(2));
Let us try to understand this.
let powerOfNumber = function(number) {
let product = 1;
for (let i = 1; i <= this.power; i++) {
product *= number;
}
return product;
}
Here, in this function, this corresponds to the object bound to the function powerOfNumber. Currently we don't have any function that is bound to this function.
Let us create a function powerOfTwo which will find the second power of a number using the above function.
let powerOfTwo = powerOfNumber.bind({power:2});
alert(powerOfTwo(2));
Here the object {power : 2} is passed to powerOfNumber function using bind.
The bind function binds this object to the powerOfNumber() and returns the below function to powerOfTwo. Now, powerOfTwo looks like,
let powerOfNumber = function(number) {
let product = 1;
for(let i=1; i<=2; i++) {
product*=number;
}
return product;
}
Hence, powerOfTwo will find the second power.
Feel free to check this out.
bind() function in Javascript
The bind() method creates a new function that, when called, has its this keyword set to the provided value, with a given sequence of arguments preceding any provided when the new function is called.
An example for the first part
grabbed from react package useSt8
import { useState } from "react"
function st8() {
switch(arguments.length) {
case 0: return this[0]
case 1: return void this[1](arguments[0])
default: throw new Error("Expected 0 or 1 arguments")
}
}
function useSt8(initial) {
// this in st8 will be something like [state, setSatate]
return st8.bind(useState(initial))
}
// usage
function Counter() {
const count = useSt8(0);
return (
<>
Count: {count()}
<button onClick={() => count(0)}>Reset</button>
<button onClick={() => count(prevCount => prevCount + 1)}>inc</button>
</>
);
}
An example for the second part
const add = (a, b) => a+b
someThis = this
// new function with this value equal to someThis
add5 = add.bind(someThis, 5)
add5(10) // 15
// we don't use this in add decelartion so this will work too.
add10 = add.bind(null, 10)
add10(5) // 15
Here's the simplest possible explanation:
Say you have a function
function _loop(n) { console.log("so: " + n) }
obviously you can call it like _loop(69) as usual.
Rewrite like this:
var _loop = function() { console.log("so: " + this.n) }
Notice there are now
no arguments as such
you use "this. " to get to the named arguments
You can now call the function like this:
_loop.bind( {"n": 420} )
That's it.
Most typical use case:
A really typical use is when you need to add an argument to a callback.
Callbacks can't have arguments.
So just "rewrite" the callback as above.
Simple example
function lol(second, third) {
console.log(this.first, second, third);
}
lol(); // undefined, undefined, undefined
lol('1'); // undefined, "1", undefined
lol('1', '2'); // undefined, "1", "2"
lol.call({first: '1'}); // "1", undefined, undefined
lol.call({first: '1'}, '2'); // "1", "2", undefined
lol.call({first: '1'}, '2', '3'); // "1", "2", "3"
lol.apply({first: '1'}); // "1", undefined, undefined
lol.apply({first: '1'}, ['2', '3']); // "1", "2", "3"
const newLol = lol.bind({first: '1'});
newLol(); // "1", undefined, undefined
newLol('2'); // "1", "2", undefined
newLol('2', '3'); // "1", "2", "3"
const newOmg = lol.bind({first: '1'}, '2');
newOmg(); // "1", "2", undefined
newOmg('3'); // "1", "2", "3"
const newWtf = lol.bind({first: '1'}, '2', '3');
newWtf(); // "1", "2", "3"
Another usage is that you can pass binded function as an argument to another function which is operating under another execution context.
var name = "sample";
function sample(){
console.log(this.name);
}
var cb = sample.bind(this);
function somefunction(cb){
//other code
cb();
}
somefunction.call({}, cb);
In addition to what have been said, the bind() method allows an object to borrow a method from another object without making a copy of that method. This is known as function borrowing in JavaScript.
i did not read above code but i learn something in simple so want to share here about bind method after bind method we can use it as any normal method.
<pre> note: do not use arrow function it will show error undefined </pre>
let solarSystem = {
sun: 'red',
moon : 'white',
sunmoon : function(){
let dayNight = this.sun + ' is the sun color and present in day and '+this.moon + ' is the moon color and prenet in night';
return dayNight;
}
}
let work = function(work,sleep){
console.log(this.sunmoon()); // accessing the solatSystem it show error undefine sunmmon untill now because we can't access directly for that we use .bind()
console.log('i work in '+ work +' and sleep in '+sleep);
}
let outPut = work.bind(solarSystem);
outPut('day','night')
bind is a function which is available in java script prototype, as the name suggest bind is used to bind your function call to the context whichever you are dealing with for eg:
var rateOfInterest='4%';
var axisBank=
{
rateOfInterest:'10%',
getRateOfInterest:function()
{
return this.rateOfInterest;
}
}
axisBank.getRateOfInterest() //'10%'
let knowAxisBankInterest=axisBank.getRateOfInterest // when you want to assign the function call to a varaible we use this syntax
knowAxisBankInterest(); // you will get output as '4%' here by default the function is called wrt global context
let knowExactAxisBankInterest=knowAxisBankInterest.bind(axisBank); //so here we need bind function call to its local context
knowExactAxisBankInterest() // '10%'

Why pass an undefined javascript function parameter?

So I'm learning Javascript and I see this code:
var apple = {//... an object with some properties};
var fruit = apple.someMethod(function (b) {return b.a_property_of_apple});
Where someMethod and a_property_of_apple are valid methods and properties.
My question pertains to the argument, b, of the anonymous function which is not declared or defined anywhere else:
function (b) {return ...
What is going on here? What is b and why is it being used?
Apologies in advance for the basic nature of the question. If someone just wants to drop some focused terms on me to read up on that would be great short of an explanation.
The anonymous function is a callback function being passed to the apple.method() invocation.
apple.method() will invoke that anonymous function at some point during it's execution, ( or pass it to another function ). Whenever it's invoked it will be invoked with an argument that will be available inside the callback. You could call it b, or response, or whatever you want (logical names are best) and be able to use it within the anonymous function.
You should read about Callback functions over at MDN.
EDIT: I will explain the parts to you
var apple = {} This is the definition of an object
var fruit = apple.someMethod(function (b) {return b.a_property_of_apple}); is defining that fruit is equal to the return value of the invocation of apple.someMethod(...)
apple.someMethod(function (b) {return b.a_property_of_apple}); is the invocation of apple.someMethod with function (b) {return b.a_property_of_apple} as the only argument.
The b argument in the anonymous function function (b) {return b.a_property_of_apple} will be passed to it's invocation within the apple.someMethod.
Here is an example snippet.
// define apple
var apple = {
// define method
someMethod: function( callback ) {
var obj = {
a_property_of_apple: "Eat me!" // this will be returned
}
// return the invocation of callback with obj as argument
return callback(obj);
}
}
var fruit = apple.someMethod(function (b) {return b.a_property_of_apple});
console.log(fruit);
EDIT: Ok, going to use something slightly less abstract as an example.
// notice employees being passed to this function
// that is called an argument and is usable inside the function
var orginization = function( employees ) {
// this will take the empoyees argument and assign it to this.employees
// or set this.employees to an empty array if there is no employees argument
this.employees = employees || [ ];
// this is a method ( a method is a function on an object )
// this function takes 3 arguments
this.addEmployee = function( employee ) {
// we use the 3 arguments to push a new object with title, name, and salary
// properties provided by the function arguments
this.employees.push( employee );
}
// this method returns the value stored in this.employees
this.getEmployees = function() {
return this.employees;
}
}
// this is a variable an array of employees only containing 1 employee
// i will use it in the creation of my new orginization
var employess = [
{
title: "CEO",
name: "Enola",
salary: "$$$$$$$"
}
];
// i use the new to create learningInc from originization( employees )
// originization is a constructor function which creates an object
// with methods and properties found on the constructor
var learningInc = new orginization( employess );
// console.log learningInc.getEmployees() an you will see still only the CEO
// works here
console.log( "before newHire: ", learningInc.getEmployees() );
// lets make a newHire
var newHire = {
title: "Peon",
name: "Sadly McFrownFace",
salary: "$"
};
// add the newHire to the employess of learningInc wth out getEmployees() method
learningInc.addEmployee( newHire );
// log the new value of learningInc.getEmployees and you see we now have 2 employees
console.log( "after newHire: ", learningInc.getEmployees() );
Ok now notice this line var learningInc = new orginization( employess );
The employees variable I'm passing to this function as an argument is used in this function var orginization = function( employees ) { ... }.
Hope this help.
My question pertains to the parameter, b, of the anonymous function which is not declared or defined anywhere else: What is going on here?
What is b and why is it being used?
Why you say it is not declared? It is declared right there. Consider this simple JavaScript function:
function doSomething(a, b){
//do something here;
}
In this code, we are creating a function, naming it "doSomething", and declaring two parameters for it a and b. This is how we declare function parameters in JavaScript. Now your example:
function (b) {return ...
is exactly the same, except we didn't give this function a name, which means it is an anonymous function. That's the only difference, but its parameter b is declared right there like any standard function. So there is nothing special going here, it's a standard function parameter and used as such.
There are a couple concepts at work here
Function declarations vs function expressions; you can use function as an operator to define a function, and assign the function to an identifier and pass it around like any normal object
Callbacks; you can pass a function CB into another function A to be called by A (as defined by A)
Passing something without an identifier
Function Declaration
// declare function
function foo(argFoo) {
console.log('foo', argFoo);
}
// invoke function
foo('was declared'); // "foo" "was declared"
Function Expression
// express function
var bar = function (argBar) {
console.log('bar', argBar);
};
// invoke function
bar('was expressed'); // "bar" "was expressed"
Callbacks
function fizz(callback) {
console.log('first I fizz');
callback();
}
function buzz() {
console.log('then I buzz');
}
fizz(buzz);
// "first I fizz"
// "then I buzz"
Passing without an Identifier,
Basically, defining things in-place
// say we have some fn fizzbuzz
function fizzbuzz(foo) {
console.log(foo);
}
// we could pre-define what we want to pass to it
var i = 1;
fizzbuzz(i); // 1
// or we could pass directly
fizzbuzz(1); // 1
// with anything we like
fizzbuzz({some: 'object'}); // {some: "object"}
// even a function
fizzbuzz(function () {}); // function () {}
Maybe if I break down what is happening into more readable code, you can see what is happening.
someMethod is a method that take a function as an argument. This is more easily seen when broken down like below.
It's up to someMethod to determine what they do with that function. In this example, I am executing the function being passed into someMethod and passing it my this context.
var apple = {
name: 'Apple',
someMethod: function(func) {
return func(this);
}
};
function getName (b) {
return b.name;
};
const name = apple.someMethod(getName); // Apple
To your question: b is defined as the first argument to your anonymous function. This is more clearly expressed when the code is broken out above. But you could also express it like this:
const name = apple.someMethod(function(x) { return x.name; }); // Apple
or like this using ES6:
const name = apple.someMethod(x => x.name); // Apple

Bind more arguments of an already bound function in Javascript

I try to sort my thoughts about how javascript's bind() works.
I see that if I do
var f = function (a) { ... }
var g = f.bind(obj);
g(1)
then f is called with obj as this and 1 as a.
What I thought is g is a wrapper function around f.
But when I do
var f = function (a) { ... }
var g = f.bind(obj);
g.call(1)
then f is called with 1 as this and a undefined.
So it seems g is not just a simple wrapper, but call somehow differentiates between normal and bound functions.
One more thing is I cannot partially apply a function more times.
var f = function (a) { ... }
var g = f.bind(obj);
var h = g.bind(1);
h();
Then f is called with obj as this and a undefined.
What is the cause of this behavior?
Edit
The constructs in this question are actually wrong, see the accepted answer on what they should look like (in general I haven't noticed that call and bind do always need the context argument as the first argument).
Once you bound an object to a function with bind, you cannot override it. It's clearly written in the specs, as you can see in MDN documentation:
"The bind() function creates a new function (a bound function) with the same function body (internal call property in ECMAScript 5 terms) as the function it is being called on (the bound function's target function) with the this value bound to the first argument of bind(), which cannot be overridden."
That means, also if you do:
g.call(1);
You will get obj as this, and not 1 – on the browsers that follows the specs.
You can of course binds multiple arguments, so:
var sum = function(a, b, c) { return a + b + c };
var sumAB = sum.bind(null, 1, 5);
var sumC = sumAB.bind(null, 2);
console.log(sumC());
But the context object will be always the one specified with the first bind, because it cannot be overwritten.
Just to avoid confusion, the first argument of call is the context object (this), then you will have the rest of the argument.
It means:
var obj = { foo: function(bar) { console.log(bar) } };
obj.foo('hello');
// equivalent to:
var foo = obj.foo;
foo.call(obj, 'hello');
Hope it helps.
You never passed any arguments — you only ever set context. call's first argument is received as context (this), and arguments 2 onwards are received as the called function's arguments 1 and onwards. Meanwhile, bind creates a new function with a new context — arguments are passed when it's invoked.
Here are ways of passing 1 as function f's argument a following on from your first code block:
f( 1 );
g( 1 );
g.call( this, 1 );
g.apply( this, [ 1 ] );
Function.prototype.call()
With the call() method, you can write a method that can be used on different objects. In other words with call(), an object can use a method belonging to another object. More information
const person = {
fullName: function() {
return this.firstName + " " + this.lastName;
}
}
const person1 = {
firstName:"John",
lastName: "Doe"
}
const person2 = {
firstName:"Mary",
lastName: "Doe"
}
// This will return "John Doe":
console.log(person.fullName.call(person1));
The call() allows for a function/method belonging to one object to be assigned and called for a different object.
call() provides a new value of this to the function/method. With call(), you can write a method once and then inherit it in another object, without having to rewrite the method for the new object.
> Using call to chain constructors for an object
You can use call to chain constructors for an object (similar to Java).
In the following example, the constructor for the Product object is defined with two parameters: name and price.
Two other functions, Food and Toy, invoke Product, passing this, name, and price. Product initializes the properties name and price, both specialized functions define the category.
function Product(name, price) {
this.name = name;
this.price = price;
}
function Food(name, price) {
Product.call(this, name, price);
this.category = 'food';
}
function Toy(name, price) {
Product.call(this, name, price);
this.category = 'toy';
}
const cheese = new Food('feta', 5);
const fun = new Toy('robot', 40);
console.log(cheese);
console.log(fun);
> Using call to invoke an anonymous function
In this example, we create an anonymous function and use call to invoke it on every object in an array.
The main purpose of the anonymous function here is to add a print function to every object, which is able to print the correct index of the object in the array.
const animals = [
{ species: 'Lion', name: 'King' },
{ species: 'Whale', name: 'Fail' }
];
for (let i = 0; i < animals.length; i++) {
(function(i) {
this.print = function() {
console.log('#' + i + ' ' + this.species
+ ': ' + this.name);
}
this.print();
}).call(animals[i], i);
}
> Using call to invoke a function and specifying the context for 'this'
In the example below, when we call greet, the value of this will be bound to object obj.
function greet() {
const reply = [this.animal, 'typically sleep between', this.sleepDuration].join(' ');
console.log(reply);
}
const obj = {
animal: 'cats', sleepDuration: '12 and 16 hours'
};
greet.call(obj); // cats typically sleep between 12 and 16 hours
> Using call to invoke a function and without specifying the first argument
In the example below, we invoke the display function without passing the first argument. If the first argument is not passed, the value of this is bound to the global object.
var sData = 'Wisen';
function display() {
console.log('sData value is %s ', this.sData);
}
display.call(); // sData value is Wisen
Note: In strict mode, the value of this will be undefined. See below.
'use strict';
var sData = 'Wisen';
function display() {
console.log('sData value is %s ', this.sData);
}
display.call(); // Cannot read the property of 'sData' of undefined
For more read you can visit reference
Function.prototype.bind()
The bind() method creates a new function that, when called, has its this keyword set to the provided value, with a given sequence of arguments preceding any provided when the new function is called.
const module = {
x: 42,
getX: function() {
return this.x;
}
};
const unboundGetX = module.getX;
console.log(unboundGetX()); // The function gets invoked at the global scope
// expected output: undefined
const boundGetX = unboundGetX.bind(module);
console.log(boundGetX());
// expected output: 42
> Creating a bound function
The simplest use of bind() is to make a function that, no matter how it is called, is called with a particular this value.
A common mistake for new JavaScript programmers is to extract a method from an object, then to later call that function and expect it to use the original object as its this (e.g., by using the method in callback-based code).
Without special care, however, the original object is usually lost. Creating a bound function from the function, using the original object, neatly solves this problem:
this.x = 9; // 'this' refers to global 'window' object here in a browser
const module = {
x: 81,
getX: function() { return this.x; }
};
module.getX();
// returns 81
const retrieveX = module.getX;
retrieveX();
// returns 9; the function gets invoked at the global scope
// Create a new function with 'this' bound to module
// New programmers might confuse the
// global variable 'x' with module's property 'x'
const boundGetX = retrieveX.bind(module);
console.log(boundGetX());
// returns 81
> Partially applied functions
The next simplest use of bind() is to make a function with pre-specified initial arguments.
These arguments (if any) follow the provided this value and are then inserted at the start of the arguments passed to the target function, followed by whatever arguments are passed to the bound function at the time it is called.
function list() {
return Array.prototype.slice.call(arguments);
}
function addArguments(arg1, arg2) {
return arg1 + arg2;
}
const list1 = list(1, 2, 3);
// [1, 2, 3]
const result1 = addArguments(1, 2);
// 3
// Create a function with a preset leading argument
const leadingThirtysevenList = list.bind(null, 37);
// Create a function with a preset first argument.
const addThirtySeven = addArguments.bind(null, 37);
const list2 = leadingThirtysevenList();
// [37]
const list3 = leadingThirtysevenList(1, 2, 3);
// [37, 1, 2, 3]
const result2 = addThirtySeven(5);
// 37 + 5 = 42
const result3 = addThirtySeven(5, 10);
// 37 + 5 = 42
// (the second argument is ignored)
> With setTimeout()
By default within setTimeout(), the this keyword will be set to the window (or global) object. When working with class methods that require this to refer to class instances, you may explicitly bind this to the callback function, in order to maintain the instance.
function LateBloomer() {
this.petalCount = Math.floor(Math.random() * 12) + 1;
}
// Declare bloom after a delay of 1 second
LateBloomer.prototype.bloom = function() {
window.setTimeout(this.declare.bind(this), 1000);
};
LateBloomer.prototype.declare = function() {
console.log(`I am a beautiful flower with ${this.petalCount} petals!`);
};
const flower = new LateBloomer();
flower.bloom();
// after 1 second, calls 'flower.declare()'
And if you want to know more about bind method, read this resource

Can I redefine a JavaScript function from within another function?

I want to pass a function reference "go" into another function "redefineFunction", and redefine "go" inside of "redefineFunction". According to Johnathan Snook, functions are passed by reference, so I don't understand why go() does not get redefined when I pass it into redefineFunction(). Is there something that I am missing?
// redefineFunction() will take a function reference and
// reassign it to a new function
function redefineFunction(fn) {
fn = function(x) { return x * 3; };
}
// initial version of go()
function go(x) {
return x;
}
go(5); // returns 5
// redefine go()
go = function(x) {
return x * 2;
}
go(5); // returns 10
// redefine go() using redefineFunction()
redefineFunction(go);
go(5); // still returns 10, I want it to return 15
​
Or see my fiddle http://jsfiddle.net/q9Kft/
Pedants will tell you that JavaScript is pure pass-by-value, but I think that only clouds the issue since the value passed (when passing objects) is a reference to that object. Thus, when you modify an object's properties, you're modifying the original object, but if you replace the variable altogether, you're essentially giving up your reference to the original object.
If you're trying to redefine a function in the global scope: (which is a bad thing; you generally shouldn't have global functions)
function redefineFunction(fn) {
window[fn] = function() { ... };
}
redefineFunction('go');
Otherwise, you'll have to return the new function and assign on the calling side.
function makeNewFunction() {
return function() { ... };
}
go = makeNewFunction();
Nothing is "passed by reference" in JS. There are times that references are passed, but they're passed by value. The difference is subtle, but important -- for one thing, it means that while you can manipulate a referenced object pretty much at will, you can't reliably replace the object (read: alter the reference itself) in any way the caller will see (because the reference was passed by value, and is thus merely a copy of the original reference; attempting to reassign it breaks in the same way it would if the arg were a number or string).
Some cowboys will assume you're redefining a global function and mess with it by name to get around the limitations of pass-by-value, but that will cause issues the second you decide not to have globals all over the place.
The real solution: return the new function, and let the caller decide what to do with it. (I'd argue that redefining functions right out from under the code that uses them is a pretty bad design decision anyway, but eh. I guess there could be a reason for it...)
Snook is wrong. And I don't think it's pedantic at all (#josh3736 :) to point out that EVERYTHING in JavaScript is pass by value. The article by Snook gets this COMPLETELY wrong. Passing a primitive and passing an object work the exact same way. These are equivalent:
var x = 2;
var y = x;
y = 3; //x is STILL 2.
function stuff(y){
y = 3; //guess what. x is STILL 2
}
stuff(x);
///////////////////
var x = {stuff: 2};
var y = x;
y = {stuff: 3}; //x.stuff is STILL 2
function stuff(y){
y = {stuff: 3}; //guess what. x.stuff is STILL 2
}
stuff(x);
This is important. Java, C#, and MOST languages work this way. That's why C# has a "ref" keyword for when you really do want to pass something by reference.
You can't modify the variable from inside the function, so the quick fix is to return the value and assign it outside the function, like this
// log() just writes a message to the text area
function log(message) {
$('#output').val($('#output').val() + message + "\n");
}
// redefineFunction() will take a function reference and
// reassign it to a new function
function redefineFunction() {
newvalue = function(x) { return x * 3; };
return newvalue;
}
// initial version of go()
function go(x) {
return x;
}
log(go(5)); // returns 5
// redefine go()
go = function(x) {
return x * 2;
}
log(go(5)); // returns 10
// redefine go() using redefineFunction()
go = redefineFunction();
log(go(5)); // returns 10, I want it to return 15
I believe functions are 'passed in by value'. If you put log(f(5)); inside your redefineFunction function it will output 15, but 10 when you call log(go(5)) afterwards.
If you change redefineFunction to return the function and then assign it to go (go = redefineFunction()) it will work as you expect.
This is equivalent to asking if you can redefine any variable by passing it as an argument to some function. No. You can reassign it by, uhh, reassigning it. In this case, if you make redefineFunction return a function, you can simply assign it to go:
function redefineFunction() {
var fn = function(x) { return x * e; };
return fn;
}
function go(x) {
return x;
}
go = redefineFunction();
go(5); // return 15
This is working in firefox:
function redefineFunction(fn) {
window[fn] = function(x) {
return x * 3;
}
};
function go(x) {
return x;
};
alert(go(5));
go=function(x) {
return x * 2;
}
alert(go(5));
redefineFunction('go');
alert(go(5));
The secret is that a global function called go also is called window.go and window["go"].
This can also be used at styles: element.style["overflow"] = "hidden", and in attributes:
element["value"] = "hello there".
This is a very useful knowlege.
Why dont use a object? something like this:
var o = {
go: function( x ) {
return x;
},
redefineFunction: function ( fn ) {
if (typeof fn === 'function') {
this.go = fn;
}
}
}
console.log(o.go(5)); // return 5
var fn = function (x) {
return x * 2;
};
o.redefineFunction(fn);
console.log(o.go(5));​ //return 10
Hope it helps!

how to use function(1)(2) in javascript? and how does it work?

I understand calling function(1) but not function(1)(2), how does it work?
also possible for function(1)(2)(3)(4) too?
In this case you are supposing that function(1) returns a function, than you are calling this new, anonymous function with an argument of 2.
See this example:
function sum(a) {
return function(b) {
return a+b;
}
}
// Usage:
window.alert(sum(5)(3)); // shows 8
var add2 = sum(2);
window.alert(add2(5)); // shows 7
window.alert(typeof(add2)); // shows 'function'
Here we create a function sum that takes one argument. Inside the function sum, we create an anonymous function that takes another argument. This anonymous function is returned as the result of executing sum.
Note that this anonymous function is a great example of what we call closure. A closure is a function that keeps the context in which it was created. In this case, it will keep the value of the variable a inside it, as did the example function add2. If we create many closures, they are independent as you can see:
var add3 = sum(3);
var add4 = sum(4);
window.alert(add3(3)); // shows 6
window.alert(add4(3)); // shows 7
Furthermore, they won't get "confused" if you have similarly named local variables:
var a = "Hello, world";
function multiply(a) {
return function(b) {
return a * b;
}
}
window.alert(multiply(6)(7)); // shows 42
var twoTimes = multiply(2);
window.alert(typeof(twoTimes));
window.alert(twoTimes(5));
So, after a call to sum(2) or multiply(2) the result is not a number, nor a string, but is a function. This is a characteristic of functional languages -- languages in which functions can be passed as parameters and returned as results of other functions.
You have a function that returns a function:
function f(n) {
return function(x) {
return n + x;
};
}
When you call f(1) you get a reference to a function back. You can either store the reference in a variable and call it:
var fx = f(1);
var result = fx(2);
Or you can call it directly:
var result = f(1)(2);
To get a function that returns a function that returns a function that returns a function, you just have to repeat the process:
function f(n) {
return function(x) {
return function(y) {
return function(z) {
return n + x + y + z;
}
}
};
}
If your function returns a function, you can call that too.
x = f(1)(2)
is equivalent to:
f2 = f(1)
x = f2(2)
The parenthesis indicate invocation of a function (you "call" it). If you have
<anything>()
It means that the value of anything is a callable value. Imagine the following function:
function add(n1) {
return function add_second(n2) {
return n1+n2
}
}
You can then invoke it as add(1)(2) which would equal 3. You can naturally extend this as much as you want.

Categories