I have abstraction:
function fetchDataFromAPI() {
const url = `https://api...`
return fetch(url).then(response => response.json())
}
I want to use it in my other piece of code like:
if(something){
const data = fetchDataFromAPI()
return data
}
if I console.log data what I get is resolved pending promise
Promise {<pending>}
__proto__: Promise
[[PromiseStatus]]: "resolved"
[[PromiseValue]]: Object
How do I get that Object in data instead of Promise?
You can not. Here is why:
Promise is a language construct that makes JavaScript engine to continue to execute the code without waiting the return of inner function, also known as the executor function. A promise always run inside the event loop.
var p = new Promise(function(resolve, reject) {
setTimeout(function() {
resolve('foo');
}, 300);
});
console.log(p);
Basically a promise is a glorified syntactic sugar for a callback. We will see how but first lets have a more realistic code:
function someApiCall(){
return new Promise(function(resolve, reject){
setTimeout(()=>{
resolve('Hello');
})
})
}
let data = someApiCall();
console.log(data);
This is a so-called asynchronous code, when JavaScript engine executes it, someApiCall immediately returns a result, in this case pending promise:
> Promise {<pending>}
If you pay attention to the executor, you will see we needed to pass resolve and reject arguments aka callbacks. Yes, they are callbacks required by the language construct. When either of them called, promise will change its state and hence be settled. We don't call it resolved because resolving implies successful execution but a function also can error out.
How do we get the data? Well we need more callbacks, which will be called by the executor function once the promise is settled:
var p = new Promise(function(resolve, reject) {
setTimeout(function() {
resolve('foo');
}, 300);
});
p.then((result) => {
console.log(result); // foo
}).catch((err) => {
console.log(err);
});
Why we need to pass separate callbacks? Because one will be fed to the resolve, and the other to the reject. Then callback will be called by the resolve function, the catch callback by the reject function.
Javascript engine will execute these callbacks later on its leisure, for a regular function it means when the event loop is cleared, for timeout when the time is up.
Now to answer your question, how do we get data out from a promise. Well we can't.
If you look closely, you will see we don't really get the data out but keep feeding callbacks. There is no getting data out, but passing callbacks in.
p.then((result) => {
console.log(result);
}).catch((err) => {
console.log(err);
});
Some say use await:
async function() {
let result = await p;
}
But there is a catch. We have to or wrap it in async function. Always. Why? Because Async/await is another level of abstraction or syntactic sugar, whichever you prefer, on top of promise api. That is why we can not use await directly but always wrap it in async statement.
To sum up, when we use promise or async/await we need to follow certain convention and write terse code with closely knitted callbacks. Either javascript engine or transpilers like babeljs or typescript converts these code to regular javascript to be run.
I can understand your confusion because people keep saying getting data out when talking about promises, but we don't get any data out but pass callback to be executed when the data is ready.
Hope everything is clear now.
No, you cannot without using promises or async/await etc because calling a REST API is an asynchronous operation and is non blocking.
When you make a call to a REST API, the code shouldn't wait until the API returns a value because it may take a lot of time, making program non-responsive, thus by design making a network request is categorized as an asynchronous operation.
To avoid async/await, you'll need to use another .then:
if (something) {
return fetchDataFromAPI()
.then((data) => data /* you can console.log(data) here */)
}
Related
I test the fetch API with a callback, but my function returns "Promise State: Pending", and I don't understand why :
async function getJson(url, callback) {
await fetch(url)
.then(async function(response) {
return await response.json()
})
.then(function(data) {
console.log(data)
callback(data)
})
}
let getData = {
getAll: async function() {
await getJson('js/getJson/data.json', function(data) {
console.log(data.photographers) //OK
let test = data.photographers
return test
})
}
}
console.log(getData.getAll()); //return promise pending
Thanks
General advice for asynchronous and promise-based programming listed below...
Here's what getJson() should look like:
function getJson(url, callback) {
return fetch(url).then(function(response) {
return response.json();
});
}
Just return the promise that fetch() already returned - don't try to convert to a callback. Converting a promise-based interface to a callback interface is going backwards in terms of programming usability. Promises are much better to program with than plain callbacks for asynchronous programming.
Here's how getAll() can then use it:
const getData = {
getAll: async function() {
const data = await getJson('js/getJson/data.json');
return data.photographers;
}
}
Or, equally good (and equivalent to the above example) would be this:
const getData = {
getAll: function() {
return getJson('js/getJson/data.json').then(data => {
return data.photographers;
});
}
}
await has significant advantages when you are sequencing more than one asynchronous operation, but usually doesn't really help much when there's just one asynchronous operation. It's not wrong to use it then, it just doesn't really offer much help.
And, here's how one would call getAll():
getData.getAll().then(photographers => {
console.log(photographers);
}).catch(err => {
console.log(err);
});
General Advice and Explanation:
1. Read and study how async and await work with promises. Only use it once you understand that and then you will only be using await when you are awaiting a promise. await does nothing useful unless you are awaiting a promise so if you're awaiting a function call, then that function must be returning a promise and that promise must be connected to when the asynchronous operations in that function are completed.
2. Don't mix plain callbacks and promises. If you are programming with a promise interface, use that promise - never convert it to a plain callback. Return a promise from your function and let the caller use that. Among the many, many reasons that promises were invented is that control flow in non-simple asynchronous operations is massively simpler with promises (particularly asynchronous error handling and error propagation to higher levels).
3. Convert plain callbacks to promises. If you encounter an asynchronous operation that you want to use in a world where there are other promise-based asynchronous operations (such as fetch()), then wrap the plain callback into a promise interface so you are only mixing promise-based calls with other promise-based calls. Much, much simpler to code reliably.
4. async functions ALWAYS return a promise. That's how they are built internal to Javascript. So, a caller of an async function always gets back a promise as the return value. That promise will initially be in the pending state. It will be resolved sometime in the future and the eventual resolved value of the promise will be whatever value is returned from the outer scope of the async function. If there's no return statement in the outer scope of the async function, then the resolved value will be undefined as it is with both your `async functions.
5. A caller gets a resolved value from a promise with .then() or await. Those are the only two ways to get a resolved value out of a promise. So, any caller of an async function that wants some value back from it needs to use .then() or await to get that value.
6. If you have a promise-based operation inside a function and you wish to return it's resolved value from your function, then just return that promise from the function. That will allow the caller to use that promise to get the value. See my getJson() implementation above for how simple that can be.
7. Avoid return await fn() and use return fn() instead. If you're using return await fn(), then you're already in an async function and thus the function is already returning a promise. So, avoid the extra await as it doesn't do anything useful and just use return fn(). If fn() returns a value that value will become the resolved value of the promise that your async function returned. If fn() returns a promise, then the resolved value of that promise will become the resolved value of the promise that your async function returned.
8. Returning a value from a .then() handler becomes the resolved value of the parent promise. In the second getData() example above that uses .then() internally, the return data.photographers; statement sets the resolved value of the parent promise to data.photographers. So, any caller of getData() will find that data.photographers becomes the resolved value of the promise that getData() returns.
9. Returning a promise from a .then() handler chains the promises and the resolved value of the promise you return becomes the resolved value of the parent promise. Essentially, returning a promise from a .then() causes the parent promise to wait for the newly returned promise to resolve and it then gets its resolved value from that newly returned promise. You can see this in play in the getJson() function where response.json() returns a new promise that resolves to the json-parsed body of the http request. That resolved value will become the resolved value of the promise that the function returned.
10. Don't pass a callback when expecting a promise back. If you're passing a callback to some asynchronous function, then most of the time that function will not be returning a promise because many asynchronous APIs these days accept either a callback or return a promise, but don't do both at the same time. So, when looking to use await, make absolutely sure the function you're awaiting is returning a promise. When in doubt, look at the doc. If the doc is unclear look at the code for the function itself or run an experiment to see what the return value actually is. As an example, most of the mongodb asynchronous APIs will return a promise if you do NOT pass a callback to them, but will not return a promise if you do pass the callback. Use one or the other, not both.
It works, although it's not really what I wanted. Because I thought I could store my result outside of functions in a variable. But it seems that this is not possible in fact.
All this and due to the fact that I have to give an evaluation for my training. Fetch is not mandatory.
In the first version of my code, I didn't use it. I just did classes and function synchronously by loading my JSON into a variable and adding it to a script tag.
However, I wanted to do some tests because then I have to use the design pattern factory method. And I just tested and it works with your code. Thank you for taking the time to respond to me at such a late hour.
//we instantiate the factory
let factory = new identityFactory
getData.getAll().then(photographers => {
let identity = photographers
console.log(identity);
//we pass the identity in the factory
let newIdentity = factory.createIdentity(identity,'all')
console.log(newIdentity);
showIdentity(newIdentity)
}).catch(err => {
console.log(err);
});
I'm doing some unit testing. The test framework loads a page into an iFrame and then runs assertions against that page. Before each test begins, I create a Promise which sets the iFrame's onload event to call resolve(), sets the iFrame's src, and returns the promise.
So, I can just call loadUrl(url).then(myFunc), and it will wait for the page to load before executing whatever myFunc is.
I use this sort of pattern all over the place in my tests (not just for loading URLs), primarily in order to allow changes to the DOM to happen (e.g. mimick clicking a button, and wait for divs to hide and show).
The downside to this design is that I'm constantly writing anonymous functions with a few lines of code in them. Further, while I have a work-around (QUnit's assert.async()), the test function that defines the promises completes before the promise is run.
I'm wondering if there is any way to get a value from a Promise or wait (block/sleep) until it has resolved, similar to .NET's IAsyncResult.WaitHandle.WaitOne(). I know JavaScript is single-threaded, but I'm hoping that doesn't mean that a function can't yield.
In essence, is there a way to get the following to spit out results in the correct order?
function kickOff() {
return new Promise(function(resolve, reject) {
$("#output").append("start");
setTimeout(function() {
resolve();
}, 1000);
}).then(function() {
$("#output").append(" middle");
return " end";
});
};
function getResultFrom(promise) {
// todo
return " end";
}
var promise = kickOff();
var result = getResultFrom(promise);
$("#output").append(result);
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<div id="output"></div>
I'm wondering if there is any way to get a value from a Promise or
wait (block/sleep) until it has resolved, similar to .NET's
IAsyncResult.WaitHandle.WaitOne(). I know JavaScript is
single-threaded, but I'm hoping that doesn't mean that a function
can't yield.
The current generation of Javascript in browsers does not have a wait() or sleep() that allows other things to run. So, you simply can't do what you're asking. Instead, it has async operations that will do their thing and then call you when they're done (as you've been using promises for).
Part of this is because of Javascript's single threadedness. If the single thread is spinning, then no other Javascript can execute until that spinning thread is done. ES6 introduces yield and generators which will allow some cooperative tricks like that, but we're quite a ways from being able to use those in a wide swatch of installed browsers (they can be used in some server-side development where you control the JS engine that is being used).
Careful management of promise-based code can control the order of execution for many async operations.
I'm not sure I understand exactly what order you're trying to achieve in your code, but you could do something like this using your existing kickOff() function, and then attaching a .then() handler to it after calling it:
function kickOff() {
return new Promise(function(resolve, reject) {
$("#output").append("start");
setTimeout(function() {
resolve();
}, 1000);
}).then(function() {
$("#output").append(" middle");
return " end";
});
}
kickOff().then(function(result) {
// use the result here
$("#output").append(result);
});
This will return output in a guaranteed order - like this:
start
middle
end
Update in 2018 (three years after this answer was written):
If you either transpile your code or run your code in an environment that supports ES7 features such as async and await, you can now use await to make your code "appear" to wait for the result of a promise. It is still programming with promises. It does still not block all of Javascript, but it does allow you to write sequential operations in a friendlier syntax.
Instead of the ES6 way of doing things:
someFunc().then(someFunc2).then(result => {
// process result here
}).catch(err => {
// process error here
});
You can do this:
// returns a promise
async function wrapperFunc() {
try {
let r1 = await someFunc();
let r2 = await someFunc2(r1);
// now process r2
return someValue; // this will be the resolved value of the returned promise
} catch(e) {
console.log(e);
throw e; // let caller know the promise was rejected with this reason
}
}
wrapperFunc().then(result => {
// got final result
}).catch(err => {
// got error
});
async functions return a promise as soon as the first await is hit inside their function body so to the caller an async function is still non-blocking and the caller must still deal with a returned promise and get the result from that promise. But, inside the async function, you can write more sequential-like code using await on promises. Keep in mind that await only does something useful if you await a promise so in order to use async/await, your asynchronous operations must all be promise-based.
If using ES2016 you can use async and await and do something like:
(async () => {
const data = await fetch(url)
myFunc(data)
}())
If using ES2015 you can use Generators. If you don't like the syntax you can abstract it away using an async utility function as explained here.
If using ES5 you'll probably want a library like Bluebird to give you more control.
Finally, if your runtime supports ES2015 already execution order may be preserved with parallelism using Fetch Injection.
Another option is to use Promise.all to wait for an array of promises to resolve and then act on those.
Code below shows how to wait for all the promises to resolve and then deal with the results once they are all ready (as that seemed to be the objective of the question); Also for illustrative purposes, it shows output during execution (end finishes before middle).
function append_output(suffix, value) {
$("#output_"+suffix).append(value)
}
function kickOff() {
let start = new Promise((resolve, reject) => {
append_output("now", "start")
resolve("start")
})
let middle = new Promise((resolve, reject) => {
setTimeout(() => {
append_output("now", " middle")
resolve(" middle")
}, 1000)
})
let end = new Promise((resolve, reject) => {
append_output("now", " end")
resolve(" end")
})
Promise.all([start, middle, end]).then(results => {
results.forEach(
result => append_output("later", result))
})
}
kickOff()
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
Updated during execution: <div id="output_now"></div>
Updated after all have completed: <div id="output_later"></div>
I've been developing JavaScript for a few years and I don't understand the fuss about promises at all.
It seems like all I do is change:
api(function(result){
api2(function(result2){
api3(function(result3){
// do work
});
});
});
Which I could use a library like async for anyway, with something like:
api().then(function(result){
api2().then(function(result2){
api3().then(function(result3){
// do work
});
});
});
Which is more code and less readable. I didn't gain anything here, it's not suddenly magically 'flat' either. Not to mention having to convert things to promises.
So, what's the big fuss about promises here?
Promises are not callbacks. A promise represents the future result of an asynchronous operation. Of course, writing them the way you do, you get little benefit. But if you write them the way they are meant to be used, you can write asynchronous code in a way that resembles synchronous code and is much more easy to follow:
api().then(function(result){
return api2();
}).then(function(result2){
return api3();
}).then(function(result3){
// do work
});
Certainly, not much less code, but much more readable.
But this is not the end. Let's discover the true benefits: What if you wanted to check for any error in any of the steps? It would be hell to do it with callbacks, but with promises, is a piece of cake:
api().then(function(result){
return api2();
}).then(function(result2){
return api3();
}).then(function(result3){
// do work
}).catch(function(error) {
//handle any error that may occur before this point
});
Pretty much the same as a try { ... } catch block.
Even better:
api().then(function(result){
return api2();
}).then(function(result2){
return api3();
}).then(function(result3){
// do work
}).catch(function(error) {
//handle any error that may occur before this point
}).then(function() {
//do something whether there was an error or not
//like hiding an spinner if you were performing an AJAX request.
});
And even better: What if those 3 calls to api, api2, api3 could run simultaneously (e.g. if they were AJAX calls) but you needed to wait for the three? Without promises, you should have to create some sort of counter. With promises, using the ES6 notation, is another piece of cake and pretty neat:
Promise.all([api(), api2(), api3()]).then(function(result) {
//do work. result is an array contains the values of the three fulfilled promises.
}).catch(function(error) {
//handle the error. At least one of the promises rejected.
});
Hope you see Promises in a new light now.
Yes, Promises are asynchronous callbacks. They can't do anything that callbacks can't do, and you face the same problems with asynchrony as with plain callbacks.
However, Promises are more than just callbacks. They are a very mighty abstraction, allow cleaner and better, functional code with less error-prone boilerplate.
So what's the main idea?
Promises are objects representing the result of a single (asynchronous) computation. They resolve to that result only once. There's a few things what this means:
Promises implement an observer pattern:
You don't need to know the callbacks that will use the value before the task completes.
Instead of expecting callbacks as arguments to your functions, you can easily return a Promise object
The promise will store the value, and you can transparently add a callback whenever you want. It will be called when the result is available. "Transparency" implies that when you have a promise and add a callback to it, it doesn't make a difference to your code whether the result has arrived yet - the API and contracts are the same, simplifying caching/memoisation a lot.
You can add multiple callbacks easily
Promises are chainable (monadic, if you want):
If you need to transform the value that a promise represents, you map a transform function over the promise and get back a new promise that represents the transformed result. You cannot synchronously get the value to use it somehow, but you can easily lift the transformation in the promise context. No boilerplate callbacks.
If you want to chain two asynchronous tasks, you can use the .then() method. It will take a callback to be called with the first result, and returns a promise for the result of the promise that the callback returns.
Sounds complicated? Time for a code example.
var p1 = api1(); // returning a promise
var p3 = p1.then(function(api1Result) {
var p2 = api2(); // returning a promise
return p2; // The result of p2 …
}); // … becomes the result of p3
// So it does not make a difference whether you write
api1().then(function(api1Result) {
return api2().then(console.log)
})
// or the flattened version
api1().then(function(api1Result) {
return api2();
}).then(console.log)
Flattening does not come magically, but you can easily do it. For your heavily nested example, the (near) equivalent would be
api1().then(api2).then(api3).then(/* do-work-callback */);
If seeing the code of these methods helps understanding, here's a most basic promise lib in a few lines.
What's the big fuss about promises?
The Promise abstraction allows much better composability of functions. For example, next to then for chaining, the all function creates a promise for the combined result of multiple parallel-waiting promises.
Last but not least Promises come with integrated error handling. The result of the computation might be that either the promise is fulfilled with a value, or it is rejected with a reason. All the composition functions handle this automatically and propagate errors in promise chains, so that you don't need to care about it explicitly everywhere - in contrast to a plain-callback implementation. In the end, you can add a dedicated error callback for all occurred exceptions.
Not to mention having to convert things to promises.
That's quite trivial actually with good promise libraries, see How do I convert an existing callback API to promises?
In addition to the already established answers, with ES6 arrow functions Promises turn from a modestly shining small blue dwarf straight into a red giant. That is about to collapse into a supernova:
api().then(result => api2()).then(result2 => api3()).then(result3 => console.log(result3))
As oligofren pointed out, without arguments between api calls you don't need the anonymous wrapper functions at all:
api().then(api2).then(api3).then(r3 => console.log(r3))
And finally, if you want to reach a supermassive black hole level, Promises can be awaited:
async function callApis() {
let api1Result = await api();
let api2Result = await api2(api1Result);
let api3Result = await api3(api2Result);
return api3Result;
}
In addition to the awesome answers above, 2 more points may be added:
1. Semantic difference:
Promises may be already resolved upon creation. This means they guarantee conditions rather than events. If they are resolved already, the resolved function passed to it is still called.
Conversely, callbacks handle events. So, if the event you are interested in has happened before the callback has been registered, the callback is not called.
2. Inversion of control
Callbacks involve inversion of control. When you register a callback function with any API, the Javascript runtime stores the callback function and calls it from the event loop once it is ready to be run.
Refer The Javascript Event loop for an explanation.
With Promises, control resides with the calling program. The .then() method may be called at any time if we store the promise object.
In addition to the other answers, the ES2015 syntax blends seamlessly with promises, reducing even more boilerplate code:
// Sequentially:
api1()
.then(r1 => api2(r1))
.then(r2 => api3(r2))
.then(r3 => {
// Done
});
// Parallel:
Promise.all([
api1(),
api2(),
api3()
]).then(([r1, r2, r3]) => {
// Done
});
Promises are not callbacks, both are programming idioms that facilitate async programming. Using an async/await-style of programming using coroutines or generators that return promises could be considered a 3rd such idiom. A comparison of these idioms across different programming languages (including Javascript) is here: https://github.com/KjellSchubert/promise-future-task
No, Not at all.
Callbacks are simply Functions In JavaScript which are to be called and then executed after the execution of another function has finished. So how it happens?
Actually, In JavaScript, functions are itself considered as objects and hence as all other objects, even functions can be sent as arguments to other functions. The most common and generic use case one can think of is setTimeout() function in JavaScript.
Promises are nothing but a much more improvised approach of handling and structuring asynchronous code in comparison to doing the same with callbacks.
The Promise receives two Callbacks in constructor function: resolve and reject. These callbacks inside promises provide us with fine-grained control over error handling and success cases. The resolve callback is used when the execution of promise performed successfully and the reject callback is used to handle the error cases.
No promises are just wrapper on callbacks
example
You can use javascript native promises with node js
my cloud 9 code link : https://ide.c9.io/adx2803/native-promises-in-node
/**
* Created by dixit-lab on 20/6/16.
*/
var express = require('express');
var request = require('request'); //Simplified HTTP request client.
var app = express();
function promisify(url) {
return new Promise(function (resolve, reject) {
request.get(url, function (error, response, body) {
if (!error && response.statusCode == 200) {
resolve(body);
}
else {
reject(error);
}
})
});
}
//get all the albums of a user who have posted post 100
app.get('/listAlbums', function (req, res) {
//get the post with post id 100
promisify('http://jsonplaceholder.typicode.com/posts/100').then(function (result) {
var obj = JSON.parse(result);
return promisify('http://jsonplaceholder.typicode.com/users/' + obj.userId + '/albums')
})
.catch(function (e) {
console.log(e);
})
.then(function (result) {
res.end(result);
}
)
})
var server = app.listen(8081, function () {
var host = server.address().address
var port = server.address().port
console.log("Example app listening at http://%s:%s", host, port)
})
//run webservice on browser : http://localhost:8081/listAlbums
JavaScript Promises actually use callback functions to determine what to do after a Promise has been resolved or rejected, therefore both are not fundamentally different. The main idea behind Promises is to take callbacks - especially nested callbacks where you want to perform a sort of actions, but it would be more readable.
Promises overview:
In JS we can wrap asynchronous operations (e.g database calls, AJAX calls) in promises. Usually we want to run some additional logic on the retrieved data. JS promises have handler functions which process the result of the asynchronous operations. The handler functions can even have other asynchronous operations within them which could rely on the value of the previous asynchronous operations.
A promise always has of the 3 following states:
pending: starting state of every promise, neither fulfilled nor rejected.
fulfilled: The operation completed successfully.
rejected: The operation failed.
A pending promise can be resolved/fullfilled or rejected with a value. Then the following handler methods which take callbacks as arguments are called:
Promise.prototype.then() : When the promise is resolved the callback argument of this function will be called.
Promise.prototype.catch() : When the promise is rejected the callback argument of this function will be called.
Although the above methods skill get callback arguments they are far superior than using
only callbacks here is an example that will clarify a lot:
Example
function createProm(resolveVal, rejectVal) {
return new Promise((resolve, reject) => {
setTimeout(() => {
if (Math.random() > 0.5) {
console.log("Resolved");
resolve(resolveVal);
} else {
console.log("Rejected");
reject(rejectVal);
}
}, 1000);
});
}
createProm(1, 2)
.then((resVal) => {
console.log(resVal);
return resVal + 1;
})
.then((resVal) => {
console.log(resVal);
return resVal + 2;
})
.catch((rejectVal) => {
console.log(rejectVal);
return rejectVal + 1;
})
.then((resVal) => {
console.log(resVal);
})
.finally(() => {
console.log("Promise done");
});
The createProm function creates a promises which is resolved or rejected based on a random Nr after 1 second
If the promise is resolved the first then method is called and the resolved value is passed in as an argument of the callback
If the promise is rejected the first catch method is called and the rejected value is passed in as an argument
The catch and then methods return promises that's why we can chain them. They wrap any returned value in Promise.resolve and any thrown value (using the throw keyword) in Promise.reject. So any value returned is transformed into a promise and on this promise we can again call a handler function.
Promise chains give us more fine tuned control and better overview than nested callbacks. For example the catch method handles all the errors which have occurred before the catch handler.
Promises allows programmers to write simpler and far more readable code than by using callbacks.
In a program, there are steps want to do in series.
function f() {
step_a();
step_b();
step_c();
...
}
There's usually information carried between each step.
function f() {
const a = step_a( );
const b = step_b( a );
const c = step_c( b );
...
}
Some of these steps can take a (relatively) long time, so sometimes you want to do them in parallel with other things. One way to do that is using threads. Another is asynchronous programming. (Both approaches has pros and cons, which won't be discussed here.) Here, we're talking about asynchronous programming.
The simple way to achieve the above when using asynchronous programming would be to provide a callback which is called once a step is complete.
// step_* calls the provided function with the returned value once complete.
function f() {
step_a(
function( a )
step_b(
function( b )
step_c(
...
)
},
)
},
)
}
That's quite hard to read. Promises offer a way to flatten the code.
// step_* returns a promise.
function f() {
step_a()
.then( step_b )
.then( step_c )
...
}
The object returned is called a promise because it represents the future result (i.e. promised result) of the function (which could be a value or an exception).
As much as promises help, it's still a bit complicated to use promises. This is where async and await come in. In a function declared as async, await can be used in lieu of then.
// step_* returns a promise.
async function f()
const a = await step_a( );
const b = await step_b( a );
const c = await step_c( b );
...
}
This is undeniably much much more readable than using callbacks.
I'm doing some unit testing. The test framework loads a page into an iFrame and then runs assertions against that page. Before each test begins, I create a Promise which sets the iFrame's onload event to call resolve(), sets the iFrame's src, and returns the promise.
So, I can just call loadUrl(url).then(myFunc), and it will wait for the page to load before executing whatever myFunc is.
I use this sort of pattern all over the place in my tests (not just for loading URLs), primarily in order to allow changes to the DOM to happen (e.g. mimick clicking a button, and wait for divs to hide and show).
The downside to this design is that I'm constantly writing anonymous functions with a few lines of code in them. Further, while I have a work-around (QUnit's assert.async()), the test function that defines the promises completes before the promise is run.
I'm wondering if there is any way to get a value from a Promise or wait (block/sleep) until it has resolved, similar to .NET's IAsyncResult.WaitHandle.WaitOne(). I know JavaScript is single-threaded, but I'm hoping that doesn't mean that a function can't yield.
In essence, is there a way to get the following to spit out results in the correct order?
function kickOff() {
return new Promise(function(resolve, reject) {
$("#output").append("start");
setTimeout(function() {
resolve();
}, 1000);
}).then(function() {
$("#output").append(" middle");
return " end";
});
};
function getResultFrom(promise) {
// todo
return " end";
}
var promise = kickOff();
var result = getResultFrom(promise);
$("#output").append(result);
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<div id="output"></div>
I'm wondering if there is any way to get a value from a Promise or
wait (block/sleep) until it has resolved, similar to .NET's
IAsyncResult.WaitHandle.WaitOne(). I know JavaScript is
single-threaded, but I'm hoping that doesn't mean that a function
can't yield.
The current generation of Javascript in browsers does not have a wait() or sleep() that allows other things to run. So, you simply can't do what you're asking. Instead, it has async operations that will do their thing and then call you when they're done (as you've been using promises for).
Part of this is because of Javascript's single threadedness. If the single thread is spinning, then no other Javascript can execute until that spinning thread is done. ES6 introduces yield and generators which will allow some cooperative tricks like that, but we're quite a ways from being able to use those in a wide swatch of installed browsers (they can be used in some server-side development where you control the JS engine that is being used).
Careful management of promise-based code can control the order of execution for many async operations.
I'm not sure I understand exactly what order you're trying to achieve in your code, but you could do something like this using your existing kickOff() function, and then attaching a .then() handler to it after calling it:
function kickOff() {
return new Promise(function(resolve, reject) {
$("#output").append("start");
setTimeout(function() {
resolve();
}, 1000);
}).then(function() {
$("#output").append(" middle");
return " end";
});
}
kickOff().then(function(result) {
// use the result here
$("#output").append(result);
});
This will return output in a guaranteed order - like this:
start
middle
end
Update in 2018 (three years after this answer was written):
If you either transpile your code or run your code in an environment that supports ES7 features such as async and await, you can now use await to make your code "appear" to wait for the result of a promise. It is still programming with promises. It does still not block all of Javascript, but it does allow you to write sequential operations in a friendlier syntax.
Instead of the ES6 way of doing things:
someFunc().then(someFunc2).then(result => {
// process result here
}).catch(err => {
// process error here
});
You can do this:
// returns a promise
async function wrapperFunc() {
try {
let r1 = await someFunc();
let r2 = await someFunc2(r1);
// now process r2
return someValue; // this will be the resolved value of the returned promise
} catch(e) {
console.log(e);
throw e; // let caller know the promise was rejected with this reason
}
}
wrapperFunc().then(result => {
// got final result
}).catch(err => {
// got error
});
async functions return a promise as soon as the first await is hit inside their function body so to the caller an async function is still non-blocking and the caller must still deal with a returned promise and get the result from that promise. But, inside the async function, you can write more sequential-like code using await on promises. Keep in mind that await only does something useful if you await a promise so in order to use async/await, your asynchronous operations must all be promise-based.
If using ES2016 you can use async and await and do something like:
(async () => {
const data = await fetch(url)
myFunc(data)
}())
If using ES2015 you can use Generators. If you don't like the syntax you can abstract it away using an async utility function as explained here.
If using ES5 you'll probably want a library like Bluebird to give you more control.
Finally, if your runtime supports ES2015 already execution order may be preserved with parallelism using Fetch Injection.
Another option is to use Promise.all to wait for an array of promises to resolve and then act on those.
Code below shows how to wait for all the promises to resolve and then deal with the results once they are all ready (as that seemed to be the objective of the question); Also for illustrative purposes, it shows output during execution (end finishes before middle).
function append_output(suffix, value) {
$("#output_"+suffix).append(value)
}
function kickOff() {
let start = new Promise((resolve, reject) => {
append_output("now", "start")
resolve("start")
})
let middle = new Promise((resolve, reject) => {
setTimeout(() => {
append_output("now", " middle")
resolve(" middle")
}, 1000)
})
let end = new Promise((resolve, reject) => {
append_output("now", " end")
resolve(" end")
})
Promise.all([start, middle, end]).then(results => {
results.forEach(
result => append_output("later", result))
})
}
kickOff()
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
Updated during execution: <div id="output_now"></div>
Updated after all have completed: <div id="output_later"></div>
I would like to get a deeper understanding of how Promises work internally.
Therefore I have some sample code:
var p1 = new Promise(
function(resolve, reject) {
window.setTimeout(
function() {
resolve('res called')
}, 2000);
});
var p2 = new Promise(
function(resolve, reject) {
window.setTimeout(
function() {
resolve('res called')
}, 2000);
});
function chainPromises() {
return p1.then(function(val) {
console.log("p1");
return p2.then(function(val) {
console.log("p2");
return val;
});
});
}
chainPromises().then(function(val) {
console.log(val);
});
Here a link to execute this code.
As you would predict, first p1 is resolved, afterwards p2 and in the end the final then prints the resolv value.
But the API ref states the following:
"then" returns a new promise equivalent to the value you return from
onFulfilled/onRejected after being passed through Promise.resolve
So it would be interesting to know WHEN exactly the "then" function is executed?
Because the final "then" in the code is chained to the chainPromises(), I first thought that
it would execute after the function chainPromises() returns something (in this case another promise).
If this would have been the case the "val" of the final "then" function would be the returned promise.
But instead, the final "then" waits until all promises inside the first "then" which are returned have been resolved.
This absolutely makes sense because in this way, the "then" functions can be stacked, but
I do not really get how this is done, since the API spec. does not really cover what "then" returns and when the "then" functions is executed.
Or in other words, why does the final "then" function wait until all the Promises are resolved inside the chainPromises() function instead of just waiting for the first returned object as the API doc says.
I hope I could make clear what I mean.. :)
About Promise resolution
The thing you're witnessing here is called recursive thenable resolution. The promise resolution process in the Promises/A+ specification contains the following clause:
onFulfilled or onRejected returns a value x, run the Promise Resolution Procedure [[Resolve]](promise2, x)
The ES6 promise specification (promises unwrapping) contains a similar clause.
This mandates that when a resolve operation occurs: either in the promise constructor, by calling Promise.resolve or in your case in a then chain a promise implementation must recursively unwrap the returned value if it is a promise.
In practice
This means that if onFulfilled (the then) returns a value, try to "resolve" the promise value yourself thus recursively waiting for the entire chain.
This means the following:
promiseReturning().then(function(){
alert(1);
return foo(); // foo returns a promise
}).then(function(){
alert(2); // will only run after the ENTIRE chain of `foo` resolved
// if foo OR ANY PART OF THE CHAIN rejects and it is not handled this
// will not run
});
So for example:
promiseReturning().then(function(){
alert(1);
return Promise.resolve().then(function(){ throw Error(); });
}).then(function(){
alert("This will never run");
});
And that:
promiseReturning().then(function(){
alert(1);
return Promise.resolve().then(function(){ return delay(2000); });
}).then(function(){
alert("This will only run after 2000 ms");
});
Is it a good idea?
It's been the topic of much debate in the promises specification process a second chain method that does not exhibit this behavior was discussed but decided against (still available in Chrome, but will be removed soon). You can read about the whole debate in this esdiscuss thread. This behavior is for pragmatic reasons so you wouldn't have to manually do it.
In other languages
It's worth mentioning that other languages do not do this, neither futures in Scala or tasks in C# have this property. For example in C# you'd have to call Task.Unwrap on a task in order to wait for its chain to resolve.
Let's start with an easy perspective: "chainPromises" returns a promise, so you could look at it this way:
// Do all internal promises
var cp = chainPromises();
// After everything is finished you execute the final "then".
cp.then(function(val) {
console.log(val);
});
Generally speaking, when returning a promise from within a "then" clause, the "then" function of the encapsulating promise will be marked as finished only after the internal "then" has finished.
So, if "a" is a promise, and "b" is a promise:
// "a"'s "then" function will only be marked as finished after "b"'s "then" function has finished.
var c = a.then(function () {
return b.then(function () {
console.log("B!");
};
};
// c is a promise, since "then" always returns a promise.
c.then(function() {
console.log("Done!");
};
So the output will be:
B!
Done!
Notice btw, that if you don't "return" the internal promise, this will not be the case:
// "a"'s "then" function will only be marked as finished without waiting for "b"'s "then" to finish.
var c = a.then(function () {
// Notice we're just calling b.then, and don't "return" it.
b.then(function () {
console.log("B!");
};
};
// c is a promise, since "then" always returns a promise.
c.then(function() {
console.log("Done!");
};
Here we can't know what would be outputted first. It could be either "B!" or "Done!".
Please check the below example regarding how promises works:
The Promise object represents the eventual completion (or failure) of an asynchronous operation, and its resulting value.
console.log('person1: shoe ticket');
console.log('person2: shoe ticket');
const promiseGirlFriendBringingTickets = new Promise((resolve, reject) => {
setTimeout(() => {
resolve('ticket');
}, 3000);
});
promiseGirlFriendBringingTickets.then((t) => {
console.log(`person3: show ${t}`);
})
console.log('person4: shoe ticket');
console.log('person5: shoe ticket');
Promise then return promise object, not promise's resolved value. I forked your JsFiddle, and added some of mine try this.
promise.then is executed right after that promise object is resolved.
I do not know how this is done in actual promises libraries, but I was able to re-create this functionality in the following way:
1) each promise has a waitingPromises property;
2) then method returns a new promise, and the original promise's waitingPromises property points to the new promise.
In this way, the chain of .then()s creates a structure that is similar to a linked list or rather a tree (each promise can have several waiting promises). A promise can be resolved only after its 'parent' promise has been resolved. The .then method itself is executed immediately, but the corresponding promise that it creates is resolved only later.
I am not sure this is a good explanation and would love to learn about other possible approaches.
Normally code is synchronous - one statement executes like (fileopen) and there is a guarantee that the next statement will execute immediately afterwards like filewrite()
but in asynchronous operations like nodejs, you should assume that
you have no idea when the operation will complete.
You can't even assume that just because you send out one request first, and another request second, that they will return in that order
Callbacks are the standard way of handling asynchrnous code in JavaScript
but promises are the best way to handle asynchronous code.
This is because callbacks make error handling difficult, and lead to ugly nested code.
which user and programmer not readble easily so promises is the way
You can think of Promise as a wrapper on some background task. It takes in a function which needs to be executed in the background.
The most appropriate place to use a promise is where some code is dependent on some background processing and it needs to know the status of the background task which was executed. For that, the background task itself accepts two callback resolve and reject in order to convey its status to the code which is dependent on it. In layman terms, this code is the one behind it in the promise chain.
When a background task invokes resolve callback with some parameter. it's marking the background operation successful and passing the result of the background operation to the next then block which will be executed next. and if it calls reject, marking it as unsuccessful then the first catch block will be executed.
In your custom promise, you can pass an error obj to the reject callback so that next catch block is aware of the error happened in the background task.