If I use CacheStorage.open() to get the same Cache in the UI thread as in a Worker thread, and begin reading/writing from/to it on both sides, is it safe? Or can there be race conditions? I'm hoping the Cache API is thread safe (I would assume that it is, like all else in JS).
is it safe?
Yes. All methods return Promises, as the Cache might be managed by another thread, the Promise then resolves if the other thread performed the operation. There cannot be concurrent modifications or other such weird things.
Or can there be race conditions?
Whenever there are multiple threads there can be race conditions, thats in the nature of things. That means that if you add() a cache entry while trying to retrieve it woth get() from another WebWorker in parallel might or might not get you a result.
Related
Surprisingly google had trouble returning the result for this question.
I'm wondering how many promises can or should be ran in parallel before queuing them and waiting for the next one to finish. I guess it might depend on the user's internet, but I figured it was worth asking.
If it's based on the user's ISP/connection type is there a way to test for the ideal amount of promises to send before starting a queue?
Also, I'm talking strictly from the client side. So, single thread js.
Example code:
function uploadToServer(requestData){
return Promise((...));
}
function sendRequests(requestArray){
var count = 0;
for(var requestData in requestArray){
if(count<idealAmount){
uploadToServer(idealAmount).then(count--);
count++;
}else{
// Logic to wait before attempting to fire event
}
}
}
Promises themselves have no particular coded limits. They are just a notification system and you could have millions of them just fine (as long as you had enough memory to hold those Javascript objects).
Now, if a promise represents an underlying asynchronous operation (which they usually do), there could very well be some limits to how many of that specific type of asynchronous operation can be in flight at the same time. For example, at some point you might run into limits of how many requests a single host would accept from you at the same time. Or, you might run into local resources issues with zillions of connections somewhere.
For things like node.js disk I/O operations, the underlying disk I/O sub-system already has a queuing system so that only a small number of operations are actually running at once and the rest are queued.
So, to answer a question about how many concurrent operations you can have, it can only be analyzed and answered in the context of a specific type of asynchronous request and sometimes even a specific type of receiving host.
If you know you're processing a large or potentially large array of requests and you'll be sending a network request for every item in the array, then it is common to code a limit yourself to avoid overwhelming either local resources or the target host resources. This is usually not done with a queue, but rather code that just launches N requests and then as one finishes, it launches the next one and so on. Both the Bluebird and Async libraries have methods for managing this for you. In Bluebird, it's the concurrency option for Promise.map(). I've also hand-coded loops that manage the number of concurrent connections several times myself and here are links to some of that code:
Promise.all consumes all my RAM
Javascript - how to control how many promises access network in parallel
Make several requests to an API that can only handle 20 request a minute
Loop through an api get request with variable URL
Choose proper async method for batch processing for max requests/sec
Nodejs: Async request with a list of URL
As #jfried00 mentioned there can't be any limits on a number of promises running, as there's no such thing as running a Promise. Once you run an async function or run a code like new Promise(res => something(res)), the method is run.
What you can do is limit the number of promise chains being resolved:
// ten promises ago:
let oldPromise = doSomethingAsync();
// and now:
oldPromise.then(doSomethingNewAsync());
But actually coding this on your own is gonna dye your hair grey rather quickly as my example has shown - error handling, finding the empty slots and keeping the flow in the right order will be hard.
That said it is possible and my framework, Scramjet, which I'll shamelessly plug here does what you need:
DataStream.from(requestArray)
.setOptions({maxParallel: 4})
.unorder(requestData => uploadToServer(requestData))
.run()
Scramjet will keep 4 promises resolving but won't try to keep order (there are other methods for that) and you can use any function - if it doesn't return a promise, it will work the same as if it did. Here's some more text on unordered transforms in scramjet. You can also peek at the source code if you'd rather do that yourself...
Can anyone help me understand the function of NodeJS and performance impact for the below scenario.
a. Making the request to Rest API end point "/api/XXX". In this request, i am returning the response triggering the asynchronous function like below.
function update(req, res) {
executeUpdate(req.body); //Asynchronous function
res.send(200);
}
b. In this, I send the response back without waiting for the function to complete and this function executing four mongodb updates of different collection.
Questions:
As I read, the NodeJS works on the single thread, how this
asynchronous function is executing?
If there are multiple requests for same end point, how will be the
performance impact of NodeJS?
How exactly the NodeJS handles the asynchronous function of each
request, because as the NodeJS is runs on the single thread, is there
any possibility of the memory issue?
In short, it depends on what you are doing in your function.
The synchronous functions in node are executed on main thread, thus,
they will not preempt and execute until end of the function or until
return statement is encountered.
The async functions, on the other hand, are removed from main thread,
and will only be executed when async tasks are completed on a
separate worker thread.
There are, I think, two different parts in the answer to your question.
Actual Performance - which includes CPU & memory performance. It also obviously includes speed.
Understanding as the previous poster said, Sync and Async.
In dealing with #1 - actual performance the real only way to test it is to create or use a testing environment on your code. In a rudimentary way based upon the system you are using you can view some of the information in top (linux) or Glances will give you a basic idea of performance, but in order to know exactly what is going on you will need to apply some of the various testing environments or writing your own tests.
Approaching #2 - It is not only sync and async processes you have to understand, but also the ramifications of both. This includes the use of callbacks and promises.
It really all depends on the current process you are attempting to code. For instance, many Node programmers seem to prefer using promises when they make calls to MongoDB, especially when one requires more than one call based upon the return of the cursor.
There is really no written-in-stone formula for when you use sync or async processes. Avoiding callback hell is something all Node programmers try to do. Catching errors etc. is something you always need to be careful about. As I said some programmers will always opt for Promises or Async when dealing with returns of data. The famous Async library coupled with Bluebird are the choice of many for certain scenarios.
All that being said, and remember your question is general and therefore so is my answer, in order to properly know the implications on your performance, in memory, cpu and speed as well as in return of information or passing to the browser, it is a good idea to understand as best as you can sync, async, callbacks, promises and error catching. You will discover certain situations are great for sync (and much faster), while others do require async and/or promises.
Hope this helps somewhat.
I'm wondering if there's a way to cause JavaScript to wait for some variable-length code execution to finish before continuing using events and loops. Before answering with using timeouts, callbacks or referencing this as a duplicate, hear me out.
I want to expose a large API to a web worker. I want this API to feel 'native' in the sense that you can access each member using a getter which gets the information from the other thread. My initial idea was to compile the API and rebuild the entire object on the worker. While this works (and was a really fun project), it's slow at startup and cannot show changes made to the API without it being sent to the worker again after modification. Observers would solve part of this, and web workers transferrable objects would solve all, but they aren't adopted widely yet.
Since worker round-trip calls happen in a matter of milliseconds, I think stalling the thread for a few milliseconds may be an alright solution. Of course I would think about terminating in cases where calls take too long, but I'm trying to create a proof of concept first.
Let's say I want to expose the api object to the worker. I would define a getter for self.api which would fetch the first layer of properties. Each property would then be another getter and the process would continue until the final object is found.
worker.js
self.addEventListener('message', function(event) {
self.dataRecieved = true;
self.data = event.data; // would actually build new getters here
});
Object.defineProperty(self, 'api', {
get: function() {
self.dataRecieved = false;
self.postMessage('request api first-layer properties');
while(!self.dataRecieved);
return self.data; // whatever properties were received from host
}
});
For experimentation, we'll do a simple round-trip with no data processing:
index.html (only JS part)
var worker = new Worker("worker.js");
worker.onmessage = function() {
worker.postMessage();
};
If onmessage would interrupt the loop, the script should theoretically work. Then the worker could access objects like window.document.body.style on the fly.
My question really boils down to: is there a way to guarantee that an event will interrupt an executing code block?
From my understanding of events in JavaScript, I thought they did interrupt the current thread. Does it not because it's executing a blank statement over and over? What if I generated code to be executed and kept doing that until the data returned?
is there a way to guarantee that an event will interrupt an executing code block
As #slebetman suggests in comments, no, not in Javascript running in a browser's web-worker (with one possible exception that I can think of, see suggestion 3. below).
My suggestions, in decreasing order of preference:
Give up the desire to feel "native" (or maybe "local" might be a better term). Something like the infinite while loop that you suggest also seems to be very much fighting agains the cooperative multitasking environment offered by Javascript, including when thinking about a single web worker.
Communication between workers in Javascript is asynchronous. Perhaps it can fail, take longer than just a few milliseconds. I'm not sure what your use case is, but my feeling is that when the project grows, you might want to use those milliseconds for something else.
You could change your defined property to return a promise, and then the caller would do a .then on the response to retrieve the value, just like any other asynchronous API.
Angular Protractor/Webdriver has an API that uses a control flow to simulate a synchronous environment using promises, by always passing promises about. Taking the code from https://stackoverflow.com/a/22697369/1319998
browser.get(url);
var title = browser.getTitle();
expect(title).toEqual('My Title');
By my understanding, each line above adds a promise to the control flow to execute asynchronously. title isn't actually the title, but a promise that resolves to the title for example. While it looks like synchronous code, the getting and testing all happens asynchronously later.
You could implement something similar in the web worker. However, I do wonder whether it will be worth the effort. There would be a lot of code to do this, and I can't help feeling that the main consequence would be that it would end up harder to write code using this, and not easier, as there would be a lot of hidden behaviour.
The only thing that I know of that can be made synchronous in Javascript, is XMLHttpRequest when setting the async parameter to false https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest#Parameters. I wonder if you could come up with some sort of way to request to the server that maintains a connection with the main thread and pass data along that way. I have to say, my instinct is that this is quite an awful idea, and would be much slower than just requesting data from the main thread.
For what I know, there is not something native in JS to do this but it is relatively easy to do something similar. I made one some time ago for myself: https://github.com/xpy/whener/blob/master/whener.js .
You use it like when( condition, callback ) where condition is a function that should return true when your condition is met, and callback is the function that you want to execute at that time.
I have some tasks I want to do in JS that are resource intensive. For this question, lets assume they are some heavy calculations, rather then system access. Now I want to run tasks A, B and C at the same time, and executing some function D when this is done.
The async library provides a nice scaffolding for this:
async.parallel([A, B, C], D);
If what I am doing is just calculations, then this will still run synchronously (unless the library is putting the tasks on different threads itself, which I expect is not the case). How do I make this be actually parallel? What is the thing done typically by async code to not block the caller (when working with NodeJS)? Is it starting a child process?
2022 notice: this answer predates the introduction of worker threads in Node.js
How do I make this be actually parallel?
First, you won't really be running in parallel while in a single node application. A node application runs on a single thread and only one event at a time is processed by node's event loop. Even when running on a multi-core box you won't get parallelism of processing within a node application.
That said, you can get processing parallelism on multicore machine via forking the code into separate node processes or by spawning child process. This, in effect, allows you to create multiple instances of node itself and to communicate with those processes in different ways (e.g. stdout, process fork IPC mechanism). Additionally, you could choose to separate the functions (by responsibility) into their own node app/server and call it via RPC.
What is the thing done typically by async code to not block the caller (when working with NodeJS)? Is it starting a child process?
It is not starting a new process. Underneath, when async.parallel is used in node.js, it is using process.nextTick(). And nextTick() allows you to avoid blocking the caller by deferring work onto a new stack so you can interleave cpu intensive tasks, etc.
Long story short
Node doesn't make it easy "out of the box" to achieve multiprocessor concurrency. Node instead gives you a non-blocking design and an event loop that leverages a thread without sharing memory. Multiple threads cannot share data/memory, therefore locks aren't needed. Node is lock free. One node process leverages one thread, and this makes node both safe and powerful.
When you need to split work up among multiple processes then use some sort of message passing to communicate with the other processes / servers. e.g. IPC/RPC.
For more see:
Awesome answer from SO on What is Node.js... with tons of goodness.
Understanding process.nextTick()
Asynchronous and parallel are not the same thing. Asynchronous means that you don't have to wait for synchronization. Parallel means that you can be doing multiple things at the same time. Node.js is only asynchronous, but its only ever 1 thread. It can only work on 1 thing at once. If you have a long running computation, you should start another process and then just have your node.js process asynchronously wait for results.
To do this you could use child_process.spawn and then read data from stdin.
http://nodejs.org/api/child_process.html#child_process_child_process_spawn_command_args_options
var spawn = require('child_process').spawn;
var process2 = spawn('sh', ['./computationProgram', 'parameter'] );
process2.stderr.on('data', function (data) {
//handle error input
});
process2.stdout.on('data', function (data) {
//handle data results
});
Keep in mind I/O is parallelized by Node.js; only your JavaScript callbacks are single threaded.
Assuming you are writing a server, an alternative to adding the complexity of spawning processes or forking is to simply build stateless node servers and run an instance per core, or better yet run many instances each in their own virtualized micro server. Coordinate incoming requests using a reverse proxy or load balancer.
You could also offload computation to another server, maybe MongoDB (using MapReduce) or Hadoop.
To be truly hardcore, you could write a Node plugin in C++ and have fine-grained control of parallelizing the computation code. The speed up from C++ might negate the need of parallelization anyway.
You can always write code to perform computationally intensive tasks in another language best suited for numeric computation, and e.g. expose them through a REST API.
Finally, you could perhaps run the code on the GPU using node-cuda or something similar depending on the type of computation (not all can be optimized for GPU).
Yes, you can fork and spawn other processes, but it seems to me one of the major advantages of node is to not much have to worry about parallelization and threading, and therefor bypass a great amount of complexity altogether.
Depending on your use case you can use something like
task.js Simplified interface for getting CPU intensive code to run on all cores (node.js, and web)
A example would be
function blocking (exampleArgument) {
// block thread
}
// turn blocking pure function into a worker task
const blockingAsync = task.wrap(blocking);
// run task on a autoscaling worker pool
blockingAsync('exampleArgumentValue').then(result => {
// do something with result
});
Just recently came across parallel.js but it seems to be actually using multi-core and also has map reduce type features.
http://adambom.github.io/parallel.js/
Read in a node.js related web document that it is a single threaded server. So it confuses me whether all data structures by default be thread-safe in a node server!
I have multiple call-backs accessing a global object like this :
callback1{
global_var['key'] = val;
}
callback2{
globalv_var['key'] = val;
}
'key' may be same at times and may be different as well. Will the global_var be thread-safe ?
callbacks, as intended gets called back as and when something is done, in no particular order.
Node.JS contains a "dispatcher." It accepts web requests and hands them off for asynchronous processing. That dispatcher is single threaded. But the dispatcher spins up a new thread for each task, and quickly hands off the task to the new thread, freeing the dispatcher's thread for servicing a new request.
To the extent that those task threads are kept separate (i.e. they don't modify each other's state), yes, they are threadsafe.
All of the javascript you write for your node.js applocation executes as if it were running in a single thread.
Any multithreading occurs behind the scenes, in the I/O code and in other native modules. So there's no need to worry about the thread safety of any application code, regardless.