Coin Change Algorithm JS - javascript

I have been trying to come up with a solution for this algorithm for 3-4 days but nothing seems to work and the available solutions are a bit more advanced for me. It has to be solved with conditionals only so no recursion or dynamic programming.
I need to determine the least amount of coins necessary to give change given the following denominations: 1, 0.5, 0.2, 0.1, 0.05, 0.02 and 0.01.
Input is the following:
Price of an item
Sum paid by customer
Current ideas:
let price = +gets();
let paidSum = +gets();
//gets is used to accept number input
let change = paidSum - price;
I figured I could use Math.floor to isolate the integer part and subtract it but then I have no idea what to do with the remaining sum.
Would modulo work to test whether the remaining sum contains any of the remaining values for change and then subtract again until I reach zero?
I do realize this isn't the best formulated question but I am at a loss here and I've done every other task apart from this. Thanks.

Simpler, reverse and map the denominations in cents and return a new array with the number of coins you need for each denomination.
const coinsCents = [1, 2, 5, 10, 20, 50, 100]
const getChange = (amountInCents) => {
return coinsCents.reverse().map(coin => {
let amountCoin = Math.floor(amountInCents/coin)
amountInCents -= amountCoin * coin
return amountCoin
}).reverse()
}

With the denominations you have specified, the problem is simpler than the general change making problem. In this actual case we can be sure that using the largest denomination, that is not greater than the amount to pay, always leads to an optimal solution.
So then there is no need for recursion or dynamic programming. Just a simple loop will do.
I will here ignore the additional "layer" of getting the price of the bill and the amount that the customer pays. In the end the only thing that counts is the change amount to pay back to the customer. So this snippet asks for that change amount and returns the coins that need to be given as change.
function getChange(amount) {
amount *= 100; // Convert to number of cents
var denominations = [1, 2, 5, 10, 20, 50, 100]; // cents
var result = [];
while (amount > 0) {
var coin = denominations.pop(); // Get next greatest coin
var count = Math.floor(amount/coin); // See how many times I need that coin
amount -= count * coin; // Reduce the amount with that number of coins
if (count) result.push([coin/100, count]); // Store count & coin
}
return result;
}
// I/O management
change.oninput = function () {
var coins = getChange(this.value);
result.textContent = coins.map(([coin, count]) => `${count} x $${coin}`).join(" + ");
};
To be paid to customer: <input id="change">
<div>Coins to pay: <span id="result"></span></div>

var coins;
var coinArray = {};
var output = {};
/* Method to get coin value without decimal point - it is required because
* javascript will consider 5.6 as 6 if we do Math.round()
*/
function getRoundFigureCoinValue(x) {
return (x * 10 - ((x * 10) % 10)) / 10;
}
// Method to calculate possible combination of coins
function calculateCoins(input) {
let largestPossibleCoin = 1;
if (input) {
coins.forEach((x) => {
if (input >= x) {
largestPossibleCoin = x;
}
});
let remainingCents = input % largestPossibleCoin;
output[largestPossibleCoin] = getRoundFigureCoinValue(
(input / largestPossibleCoin).toFixed(1)
);
if (remainingCents && input > 1) {
calculateCoins(remainingCents);
}
return largestPossibleCoin;
}
}
// Method to be called to get output.
function calculatePossibleCoinCombinations(value) {
if (isNaN(value) || +value <= 0) {
console.log('Invalid input');
return;
} else {
console.log('Possible combinations are:')
value = +value;
}
coins = [1, 5, 10, 25];
while (coins.length) {
let largestPossibleCoin = calculateCoins(value) || 0;
let outputString = '';
coins = coins.filter((x) => x < largestPossibleCoin);
Object.keys(output).forEach((key) => {
outputString += `${output[key]} - ${key} cents; `;
})
console.log(outputString);
output = {};
}
}
/*
Sample inputs:
calculatePossibleCoinCombinations('89');
calculatePossibleCoinCombinations(10);
calculatePossibleCoinCombinations(0);
calculatePossibleCoinCombinations('someString');
calculatePossibleCoinCombinations(-10)
*/

Related

Choosing a random element from an array with weights [duplicate]

I'm trying to devise a (good) way to choose a random number from a range of possible numbers where each number in the range is given a weight. To put it simply: given the range of numbers (0,1,2) choose a number where 0 has an 80% probability of being selected, 1 has a 10% chance and 2 has a 10% chance.
It's been about 8 years since my college stats class, so you can imagine the proper formula for this escapes me at the moment.
Here's the 'cheap and dirty' method that I came up with. This solution uses ColdFusion. Yours may use whatever language you'd like. I'm a programmer, I think I can handle porting it. Ultimately my solution needs to be in Groovy - I wrote this one in ColdFusion because it's easy to quickly write/test in CF.
public function weightedRandom( Struct options ) {
var tempArr = [];
for( var o in arguments.options )
{
var weight = arguments.options[ o ] * 10;
for ( var i = 1; i<= weight; i++ )
{
arrayAppend( tempArr, o );
}
}
return tempArr[ randRange( 1, arrayLen( tempArr ) ) ];
}
// test it
opts = { 0=.8, 1=.1, 2=.1 };
for( x = 1; x<=10; x++ )
{
writeDump( weightedRandom( opts ) );
}
I'm looking for better solutions, please suggest improvements or alternatives.
Rejection sampling (such as in your solution) is the first thing that comes to mind, whereby you build a lookup table with elements populated by their weight distribution, then pick a random location in the table and return it. As an implementation choice, I would make a higher order function which takes a spec and returns a function which returns values based on the distribution in the spec, this way you avoid having to build the table for each call. The downsides are that the algorithmic performance of building the table is linear by the number of items and there could potentially be a lot of memory usage for large specs (or those with members with very small or precise weights, e.g. {0:0.99999, 1:0.00001}). The upside is that picking a value has constant time, which might be desirable if performance is critical. In JavaScript:
function weightedRand(spec) {
var i, j, table=[];
for (i in spec) {
// The constant 10 below should be computed based on the
// weights in the spec for a correct and optimal table size.
// E.g. the spec {0:0.999, 1:0.001} will break this impl.
for (j=0; j<spec[i]*10; j++) {
table.push(i);
}
}
return function() {
return table[Math.floor(Math.random() * table.length)];
}
}
var rand012 = weightedRand({0:0.8, 1:0.1, 2:0.1});
rand012(); // random in distribution...
Another strategy is to pick a random number in [0,1) and iterate over the weight specification summing the weights, if the random number is less than the sum then return the associated value. Of course, this assumes that the weights sum to one. This solution has no up-front costs but has average algorithmic performance linear by the number of entries in the spec. For example, in JavaScript:
function weightedRand2(spec) {
var i, sum=0, r=Math.random();
for (i in spec) {
sum += spec[i];
if (r <= sum) return i;
}
}
weightedRand2({0:0.8, 1:0.1, 2:0.1}); // random in distribution...
Generate a random number R between 0 and 1.
If R in [0, 0.1) -> 1
If R in [0.1, 0.2) -> 2
If R in [0.2, 1] -> 3
If you can't directly get a number between 0 and 1, generate a number in a range that will produce as much precision as you want. For example, if you have the weights for
(1, 83.7%) and (2, 16.3%), roll a number from 1 to 1000. 1-837 is a 1. 838-1000 is 2.
I use the following
function weightedRandom(min, max) {
return Math.round(max / (Math.random() * max + min));
}
This is my go-to "weighted" random, where I use an inverse function of "x" (where x is a random between min and max) to generate a weighted result, where the minimum is the most heavy element, and the maximum the lightest (least chances of getting the result)
So basically, using weightedRandom(1, 5) means the chances of getting a 1 are higher than a 2 which are higher than a 3, which are higher than a 4, which are higher than a 5.
Might not be useful for your use case but probably useful for people googling this same question.
After a 100 iterations try, it gave me:
==================
| Result | Times |
==================
| 1 | 55 |
| 2 | 28 |
| 3 | 8 |
| 4 | 7 |
| 5 | 2 |
==================
Here are 3 solutions in javascript since I'm not sure which language you want it in. Depending on your needs one of the first two might work, but the the third one is probably the easiest to implement with large sets of numbers.
function randomSimple(){
return [0,0,0,0,0,0,0,0,1,2][Math.floor(Math.random()*10)];
}
function randomCase(){
var n=Math.floor(Math.random()*100)
switch(n){
case n<80:
return 0;
case n<90:
return 1;
case n<100:
return 2;
}
}
function randomLoop(weight,num){
var n=Math.floor(Math.random()*100),amt=0;
for(var i=0;i<weight.length;i++){
//amt+=weight[i]; *alternative method
//if(n<amt){
if(n<weight[i]){
return num[i];
}
}
}
weight=[80,90,100];
//weight=[80,10,10]; *alternative method
num=[0,1,2]
8 years late but here's my solution in 4 lines.
Prepare an array of probability mass function such that
pmf[array_index] = P(X=array_index):
var pmf = [0.8, 0.1, 0.1]
Prepare an array for the corresponding cumulative distribution function such that
cdf[array_index] = F(X=array_index):
var cdf = pmf.map((sum => value => sum += value)(0))
// [0.8, 0.9, 1]
3a) Generate a random number.
3b) Get an array of elements that are more than or equal to this number.
3c) Return its length.
var r = Math.random()
cdf.filter(el => r >= el).length
This is more or less a generic-ized version of what #trinithis wrote, in Java: I did it with ints rather than floats to avoid messy rounding errors.
static class Weighting {
int value;
int weighting;
public Weighting(int v, int w) {
this.value = v;
this.weighting = w;
}
}
public static int weightedRandom(List<Weighting> weightingOptions) {
//determine sum of all weightings
int total = 0;
for (Weighting w : weightingOptions) {
total += w.weighting;
}
//select a random value between 0 and our total
int random = new Random().nextInt(total);
//loop thru our weightings until we arrive at the correct one
int current = 0;
for (Weighting w : weightingOptions) {
current += w.weighting;
if (random < current)
return w.value;
}
//shouldn't happen.
return -1;
}
public static void main(String[] args) {
List<Weighting> weightings = new ArrayList<Weighting>();
weightings.add(new Weighting(0, 8));
weightings.add(new Weighting(1, 1));
weightings.add(new Weighting(2, 1));
for (int i = 0; i < 100; i++) {
System.out.println(weightedRandom(weightings));
}
}
How about
int [ ] numbers = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 2 } ;
then you can randomly select from numbers and 0 will have an 80% chance, 1 10%, and 2 10%
This one is in Mathematica, but it's easy to copy to another language, I use it in my games and it can handle decimal weights:
weights = {0.5,1,2}; // The weights
weights = N#weights/Total#weights // Normalize weights so that the list's sum is always 1.
min = 0; // First min value should be 0
max = weights[[1]]; // First max value should be the first element of the newly created weights list. Note that in Mathematica the first element has index of 1, not 0.
random = RandomReal[]; // Generate a random float from 0 to 1;
For[i = 1, i <= Length#weights, i++,
If[random >= min && random < max,
Print["Chosen index number: " <> ToString#i]
];
min += weights[[i]];
If[i == Length#weights,
max = 1,
max += weights[[i + 1]]
]
]
(Now I'm talking with a lists first element's index equals 0) The idea behind this is that having a normalized list weights there is a chance of weights[n] to return the index n, so the distances between the min and max at step n should be weights[n]. The total distance from the minimum min (which we put it to be 0) and the maximum max is the sum of the list weights.
The good thing behind this is that you don't append to any array or nest for loops, and that increases heavily the execution time.
Here is the code in C# without needing to normalize the weights list and deleting some code:
int WeightedRandom(List<float> weights) {
float total = 0f;
foreach (float weight in weights) {
total += weight;
}
float max = weights [0],
random = Random.Range(0f, total);
for (int index = 0; index < weights.Count; index++) {
if (random < max) {
return index;
} else if (index == weights.Count - 1) {
return weights.Count-1;
}
max += weights[index+1];
}
return -1;
}
I suggest to use a continuous check of the probability and the rest of the random number.
This function sets first the return value to the last possible index and iterates until the rest of the random value is smaller than the actual probability.
The probabilities have to sum to one.
function getRandomIndexByProbability(probabilities) {
var r = Math.random(),
index = probabilities.length - 1;
probabilities.some(function (probability, i) {
if (r < probability) {
index = i;
return true;
}
r -= probability;
});
return index;
}
var i,
probabilities = [0.8, 0.1, 0.1],
count = probabilities.map(function () { return 0; });
for (i = 0; i < 1e6; i++) {
count[getRandomIndexByProbability(probabilities)]++;
}
console.log(count);
.as-console-wrapper { max-height: 100% !important; top: 0; }
Thanks all, this was a helpful thread. I encapsulated it into a convenience function (Typescript). Tests below (sinon, jest). Could definitely be a bit tighter, but hopefully it's readable.
export type WeightedOptions = {
[option: string]: number;
};
// Pass in an object like { a: 10, b: 4, c: 400 } and it'll return either "a", "b", or "c", factoring in their respective
// weight. So in this example, "c" is likely to be returned 400 times out of 414
export const getRandomWeightedValue = (options: WeightedOptions) => {
const keys = Object.keys(options);
const totalSum = keys.reduce((acc, item) => acc + options[item], 0);
let runningTotal = 0;
const cumulativeValues = keys.map((key) => {
const relativeValue = options[key]/totalSum;
const cv = {
key,
value: relativeValue + runningTotal
};
runningTotal += relativeValue;
return cv;
});
const r = Math.random();
return cumulativeValues.find(({ key, value }) => r <= value)!.key;
};
Tests:
describe('getRandomWeightedValue', () => {
// Out of 1, the relative and cumulative values for these are:
// a: 0.1666 -> 0.16666
// b: 0.3333 -> 0.5
// c: 0.5 -> 1
const values = { a: 10, b: 20, c: 30 };
it('returns appropriate values for particular random value', () => {
// any random number under 0.166666 should return "a"
const stub1 = sinon.stub(Math, 'random').returns(0);
const result1 = randomUtils.getRandomWeightedValue(values);
expect(result1).toEqual('a');
stub1.restore();
const stub2 = sinon.stub(Math, 'random').returns(0.1666);
const result2 = randomUtils.getRandomWeightedValue(values);
expect(result2).toEqual('a');
stub2.restore();
// any random number between 0.166666 and 0.5 should return "b"
const stub3 = sinon.stub(Math, 'random').returns(0.17);
const result3 = randomUtils.getRandomWeightedValue(values);
expect(result3).toEqual('b');
stub3.restore();
const stub4 = sinon.stub(Math, 'random').returns(0.3333);
const result4 = randomUtils.getRandomWeightedValue(values);
expect(result4).toEqual('b');
stub4.restore();
const stub5 = sinon.stub(Math, 'random').returns(0.5);
const result5 = randomUtils.getRandomWeightedValue(values);
expect(result5).toEqual('b');
stub5.restore();
// any random number above 0.5 should return "c"
const stub6 = sinon.stub(Math, 'random').returns(0.500001);
const result6 = randomUtils.getRandomWeightedValue(values);
expect(result6).toEqual('c');
stub6.restore();
const stub7 = sinon.stub(Math, 'random').returns(1);
const result7 = randomUtils.getRandomWeightedValue(values);
expect(result7).toEqual('c');
stub7.restore();
});
});
Shortest solution in modern JavaScript
Note: all weights need to be integers
function weightedRandom(items){
let table = Object.entries(items)
.flatMap(([item, weight]) => Array(item).fill(weight))
return table[Math.floor(Math.random() * table.length)]
}
const key = weightedRandom({
"key1": 1,
"key2": 4,
"key3": 8
}) // returns e.g. "key1"
here is the input and ratios : 0 (80%), 1(10%) , 2 (10%)
lets draw them out so its easy to visualize.
0 1 2
-------------------------------------________+++++++++
lets add up the total weight and call it TR for total ratio. so in this case 100.
lets randomly get a number from (0-TR) or (0 to 100 in this case) . 100 being your weights total. Call it RN for random number.
so now we have TR as the total weight and RN as the random number between 0 and TR.
so lets imagine we picked a random # from 0 to 100. Say 21. so thats actually 21%.
WE MUST CONVERT/MATCH THIS TO OUR INPUT NUMBERS BUT HOW ?
lets loop over each weight (80, 10, 10) and keep the sum of the weights we already visit.
the moment the sum of the weights we are looping over is greater then the random number RN (21 in this case), we stop the loop & return that element position.
double sum = 0;
int position = -1;
for(double weight : weight){
position ++;
sum = sum + weight;
if(sum > 21) //(80 > 21) so break on first pass
break;
}
//position will be 0 so we return array[0]--> 0
lets say the random number (between 0 and 100) is 83. Lets do it again:
double sum = 0;
int position = -1;
for(double weight : weight){
position ++;
sum = sum + weight;
if(sum > 83) //(90 > 83) so break
break;
}
//we did two passes in the loop so position is 1 so we return array[1]---> 1
I have a slotmachine and I used the code below to generate random numbers. In probabilitiesSlotMachine the keys are the output in the slotmachine, and the values represent the weight.
const probabilitiesSlotMachine = [{0 : 1000}, {1 : 100}, {2 : 50}, {3 : 30}, {4 : 20}, {5 : 10}, {6 : 5}, {7 : 4}, {8 : 2}, {9 : 1}]
var allSlotMachineResults = []
probabilitiesSlotMachine.forEach(function(obj, index){
for (var key in obj){
for (var loop = 0; loop < obj[key]; loop ++){
allSlotMachineResults.push(key)
}
}
});
Now to generate a random output, I use this code:
const random = allSlotMachineResults[Math.floor(Math.random() * allSlotMachineResults.length)]
Enjoy the O(1) (constant time) solution for your problem.
If the input array is small, it can be easily implemented.
const number = Math.floor(Math.random() * 99); // Generate a random number from 0 to 99
let element;
if (number >= 0 && number <= 79) {
/*
In the range of 0 to 99, every number has equal probability
of occurring. Therefore, if you gather 80 numbers (0 to 79) and
make a "sub-group" of them, then their probabilities will get added.
Hence, what you get is an 80% chance that the number will fall in this
range.
So, quite naturally, there is 80% probability that this code will run.
Now, manually choose / assign element of your array to this variable.
*/
element = 0;
}
else if (number >= 80 && number <= 89) {
// 10% chance that this code runs.
element = 1;
}
else if (number >= 90 && number <= 99) {
// 10% chance that this code runs.
element = 2;
}

How to loop through an array of numbers to see which numbers are relevant to another number?

I'm trying to write a simple program in vanilla JavaScript for weightlifting. The user inputs a certain amount of weight and it returns the specific weight plates to put on each side of the barbell.
I then take that number into a function which subtracts 45 from it to account for the barbell weight then divides that number by 2 which is the amount of weight to put on each side of the bar.
const num = document.getElementById("weightAmount").value;
function getWeightAmount (num) {
const newNum = num - 45;
const halfNum = newNum / 2;
return getWeights(halfNum);
}
I have an array with each weight plate:
let plates = [44, 33, 22, 11, 5.5, 2.75];
I'm having trouble correctly looping through the array to get what I want. If I need, say, 60.5 lbs on each side, it should return 44, 11, 5.5. So I need to figure out which numbers in the plate array fit in the number returned from my first function.
I have an empty array called weights which I want to push the numbers from the plates array into that work with the weight which then is returned.
My question is how do I loop through the plates array to figure out which weights are needed?
A possible solution to this is iterating indefinitely until either
you have a solution
the problem becomes unsolvable given the set of weights
Every iteration step, you subtract the highest possible weight times the highest possible factor, store both in a suitable data structure (my implementation simply uses an Object) and continue.
const plates = [44, 33, 22, 11, 5.5, 2.75];
// We assume that plates is always sorted
const determineWeights = (totalWeight) => {
let factor = 0;
let weights = {};
while (totalWeight > 0) {
weight = plates.find(weight => Math.floor(totalWeight / weight) > 0);
// There is no weight we can subtract from the total weight to solve the problem
// Hence, the problem is unsolvable and we return null to indicate that no solution exists
if (!weight) { return null; }
// Determine the factor with which to multiply the weight before we subtract from the total weight an subtract the product
factor = Math.floor(totalWeight / weight);
totalWeight = totalWeight - factor * weight;
// Store weight and factor
weights[weight] = factor;
}
return weights;
}
console.log(determineWeights(104.5)); // { "11": 1, "44": 2, "5.5": 1 }
console.log(determineWeights(60.5)); // { "11": 1, "44": 1, "5.5": 1 }
console.log(determineWeights(5.0)); // null
The problem is essentially an instance of the Knapsack problem.
Note that we assume that plates is sorted. Otherwise, Array.find will not necessarily retrieve the maximum weight that can be subtracted from the total weight.
I have a simple solution below if value of the target weight will always be the sum of the available plates. Assuming the weights array are sorted in a descending order. I loop thought all available weights and will only proceed to the next weight if the total exceeds the total weight you require.
function getWeights(targeWeight) {
let plates = [44, 33, 22, 11, 5.5, 2.75];
let totalWeight = 0;
let neededPlates = [];
let i = 0;
while(i < plates.length){
var pweight = totalWeight + plates[i];
if (pweight > targeWeight) {
i++;
continue;
}
totalWeight += plates[i];
neededPlates.push(plates[i]);
}
return neededPlates;
}
console.log(getWeights(60.5)); // [44, 11, 5.5]
console.log(getWeights(104.5)); //[44, 44, 11, 5.5]
Here's a solution. In the event that the available plates don't add up to the target weight, it will return the combination of available plates that add up closest to the target. Adapted from this answer.
function createSubsets(numbers, target) {
// filter out all items larger than target
numbers = numbers.filter(function (value) {
return value <= target;
});
// sort from largest to smallest
numbers.sort(function (a, b) {
return b - a;
});
var i;
var sum = 0;
var addedIndices = [];
// go from the largest to the smallest number and
// add as many of them as long as the sum isn't above target
for (i = 0; i < numbers.length; i++) {
if (sum + numbers[i] <= target) {
sum += numbers[i];
addedIndices.push(i);
}
}
return addedIndices.map(n => numbers[n]);
}

Javascript pick winner from random numbers with percentage [duplicate]

I'm trying to devise a (good) way to choose a random number from a range of possible numbers where each number in the range is given a weight. To put it simply: given the range of numbers (0,1,2) choose a number where 0 has an 80% probability of being selected, 1 has a 10% chance and 2 has a 10% chance.
It's been about 8 years since my college stats class, so you can imagine the proper formula for this escapes me at the moment.
Here's the 'cheap and dirty' method that I came up with. This solution uses ColdFusion. Yours may use whatever language you'd like. I'm a programmer, I think I can handle porting it. Ultimately my solution needs to be in Groovy - I wrote this one in ColdFusion because it's easy to quickly write/test in CF.
public function weightedRandom( Struct options ) {
var tempArr = [];
for( var o in arguments.options )
{
var weight = arguments.options[ o ] * 10;
for ( var i = 1; i<= weight; i++ )
{
arrayAppend( tempArr, o );
}
}
return tempArr[ randRange( 1, arrayLen( tempArr ) ) ];
}
// test it
opts = { 0=.8, 1=.1, 2=.1 };
for( x = 1; x<=10; x++ )
{
writeDump( weightedRandom( opts ) );
}
I'm looking for better solutions, please suggest improvements or alternatives.
Rejection sampling (such as in your solution) is the first thing that comes to mind, whereby you build a lookup table with elements populated by their weight distribution, then pick a random location in the table and return it. As an implementation choice, I would make a higher order function which takes a spec and returns a function which returns values based on the distribution in the spec, this way you avoid having to build the table for each call. The downsides are that the algorithmic performance of building the table is linear by the number of items and there could potentially be a lot of memory usage for large specs (or those with members with very small or precise weights, e.g. {0:0.99999, 1:0.00001}). The upside is that picking a value has constant time, which might be desirable if performance is critical. In JavaScript:
function weightedRand(spec) {
var i, j, table=[];
for (i in spec) {
// The constant 10 below should be computed based on the
// weights in the spec for a correct and optimal table size.
// E.g. the spec {0:0.999, 1:0.001} will break this impl.
for (j=0; j<spec[i]*10; j++) {
table.push(i);
}
}
return function() {
return table[Math.floor(Math.random() * table.length)];
}
}
var rand012 = weightedRand({0:0.8, 1:0.1, 2:0.1});
rand012(); // random in distribution...
Another strategy is to pick a random number in [0,1) and iterate over the weight specification summing the weights, if the random number is less than the sum then return the associated value. Of course, this assumes that the weights sum to one. This solution has no up-front costs but has average algorithmic performance linear by the number of entries in the spec. For example, in JavaScript:
function weightedRand2(spec) {
var i, sum=0, r=Math.random();
for (i in spec) {
sum += spec[i];
if (r <= sum) return i;
}
}
weightedRand2({0:0.8, 1:0.1, 2:0.1}); // random in distribution...
Generate a random number R between 0 and 1.
If R in [0, 0.1) -> 1
If R in [0.1, 0.2) -> 2
If R in [0.2, 1] -> 3
If you can't directly get a number between 0 and 1, generate a number in a range that will produce as much precision as you want. For example, if you have the weights for
(1, 83.7%) and (2, 16.3%), roll a number from 1 to 1000. 1-837 is a 1. 838-1000 is 2.
I use the following
function weightedRandom(min, max) {
return Math.round(max / (Math.random() * max + min));
}
This is my go-to "weighted" random, where I use an inverse function of "x" (where x is a random between min and max) to generate a weighted result, where the minimum is the most heavy element, and the maximum the lightest (least chances of getting the result)
So basically, using weightedRandom(1, 5) means the chances of getting a 1 are higher than a 2 which are higher than a 3, which are higher than a 4, which are higher than a 5.
Might not be useful for your use case but probably useful for people googling this same question.
After a 100 iterations try, it gave me:
==================
| Result | Times |
==================
| 1 | 55 |
| 2 | 28 |
| 3 | 8 |
| 4 | 7 |
| 5 | 2 |
==================
Here are 3 solutions in javascript since I'm not sure which language you want it in. Depending on your needs one of the first two might work, but the the third one is probably the easiest to implement with large sets of numbers.
function randomSimple(){
return [0,0,0,0,0,0,0,0,1,2][Math.floor(Math.random()*10)];
}
function randomCase(){
var n=Math.floor(Math.random()*100)
switch(n){
case n<80:
return 0;
case n<90:
return 1;
case n<100:
return 2;
}
}
function randomLoop(weight,num){
var n=Math.floor(Math.random()*100),amt=0;
for(var i=0;i<weight.length;i++){
//amt+=weight[i]; *alternative method
//if(n<amt){
if(n<weight[i]){
return num[i];
}
}
}
weight=[80,90,100];
//weight=[80,10,10]; *alternative method
num=[0,1,2]
8 years late but here's my solution in 4 lines.
Prepare an array of probability mass function such that
pmf[array_index] = P(X=array_index):
var pmf = [0.8, 0.1, 0.1]
Prepare an array for the corresponding cumulative distribution function such that
cdf[array_index] = F(X=array_index):
var cdf = pmf.map((sum => value => sum += value)(0))
// [0.8, 0.9, 1]
3a) Generate a random number.
3b) Get an array of elements that are more than or equal to this number.
3c) Return its length.
var r = Math.random()
cdf.filter(el => r >= el).length
This is more or less a generic-ized version of what #trinithis wrote, in Java: I did it with ints rather than floats to avoid messy rounding errors.
static class Weighting {
int value;
int weighting;
public Weighting(int v, int w) {
this.value = v;
this.weighting = w;
}
}
public static int weightedRandom(List<Weighting> weightingOptions) {
//determine sum of all weightings
int total = 0;
for (Weighting w : weightingOptions) {
total += w.weighting;
}
//select a random value between 0 and our total
int random = new Random().nextInt(total);
//loop thru our weightings until we arrive at the correct one
int current = 0;
for (Weighting w : weightingOptions) {
current += w.weighting;
if (random < current)
return w.value;
}
//shouldn't happen.
return -1;
}
public static void main(String[] args) {
List<Weighting> weightings = new ArrayList<Weighting>();
weightings.add(new Weighting(0, 8));
weightings.add(new Weighting(1, 1));
weightings.add(new Weighting(2, 1));
for (int i = 0; i < 100; i++) {
System.out.println(weightedRandom(weightings));
}
}
How about
int [ ] numbers = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 2 } ;
then you can randomly select from numbers and 0 will have an 80% chance, 1 10%, and 2 10%
This one is in Mathematica, but it's easy to copy to another language, I use it in my games and it can handle decimal weights:
weights = {0.5,1,2}; // The weights
weights = N#weights/Total#weights // Normalize weights so that the list's sum is always 1.
min = 0; // First min value should be 0
max = weights[[1]]; // First max value should be the first element of the newly created weights list. Note that in Mathematica the first element has index of 1, not 0.
random = RandomReal[]; // Generate a random float from 0 to 1;
For[i = 1, i <= Length#weights, i++,
If[random >= min && random < max,
Print["Chosen index number: " <> ToString#i]
];
min += weights[[i]];
If[i == Length#weights,
max = 1,
max += weights[[i + 1]]
]
]
(Now I'm talking with a lists first element's index equals 0) The idea behind this is that having a normalized list weights there is a chance of weights[n] to return the index n, so the distances between the min and max at step n should be weights[n]. The total distance from the minimum min (which we put it to be 0) and the maximum max is the sum of the list weights.
The good thing behind this is that you don't append to any array or nest for loops, and that increases heavily the execution time.
Here is the code in C# without needing to normalize the weights list and deleting some code:
int WeightedRandom(List<float> weights) {
float total = 0f;
foreach (float weight in weights) {
total += weight;
}
float max = weights [0],
random = Random.Range(0f, total);
for (int index = 0; index < weights.Count; index++) {
if (random < max) {
return index;
} else if (index == weights.Count - 1) {
return weights.Count-1;
}
max += weights[index+1];
}
return -1;
}
I suggest to use a continuous check of the probability and the rest of the random number.
This function sets first the return value to the last possible index and iterates until the rest of the random value is smaller than the actual probability.
The probabilities have to sum to one.
function getRandomIndexByProbability(probabilities) {
var r = Math.random(),
index = probabilities.length - 1;
probabilities.some(function (probability, i) {
if (r < probability) {
index = i;
return true;
}
r -= probability;
});
return index;
}
var i,
probabilities = [0.8, 0.1, 0.1],
count = probabilities.map(function () { return 0; });
for (i = 0; i < 1e6; i++) {
count[getRandomIndexByProbability(probabilities)]++;
}
console.log(count);
.as-console-wrapper { max-height: 100% !important; top: 0; }
Thanks all, this was a helpful thread. I encapsulated it into a convenience function (Typescript). Tests below (sinon, jest). Could definitely be a bit tighter, but hopefully it's readable.
export type WeightedOptions = {
[option: string]: number;
};
// Pass in an object like { a: 10, b: 4, c: 400 } and it'll return either "a", "b", or "c", factoring in their respective
// weight. So in this example, "c" is likely to be returned 400 times out of 414
export const getRandomWeightedValue = (options: WeightedOptions) => {
const keys = Object.keys(options);
const totalSum = keys.reduce((acc, item) => acc + options[item], 0);
let runningTotal = 0;
const cumulativeValues = keys.map((key) => {
const relativeValue = options[key]/totalSum;
const cv = {
key,
value: relativeValue + runningTotal
};
runningTotal += relativeValue;
return cv;
});
const r = Math.random();
return cumulativeValues.find(({ key, value }) => r <= value)!.key;
};
Tests:
describe('getRandomWeightedValue', () => {
// Out of 1, the relative and cumulative values for these are:
// a: 0.1666 -> 0.16666
// b: 0.3333 -> 0.5
// c: 0.5 -> 1
const values = { a: 10, b: 20, c: 30 };
it('returns appropriate values for particular random value', () => {
// any random number under 0.166666 should return "a"
const stub1 = sinon.stub(Math, 'random').returns(0);
const result1 = randomUtils.getRandomWeightedValue(values);
expect(result1).toEqual('a');
stub1.restore();
const stub2 = sinon.stub(Math, 'random').returns(0.1666);
const result2 = randomUtils.getRandomWeightedValue(values);
expect(result2).toEqual('a');
stub2.restore();
// any random number between 0.166666 and 0.5 should return "b"
const stub3 = sinon.stub(Math, 'random').returns(0.17);
const result3 = randomUtils.getRandomWeightedValue(values);
expect(result3).toEqual('b');
stub3.restore();
const stub4 = sinon.stub(Math, 'random').returns(0.3333);
const result4 = randomUtils.getRandomWeightedValue(values);
expect(result4).toEqual('b');
stub4.restore();
const stub5 = sinon.stub(Math, 'random').returns(0.5);
const result5 = randomUtils.getRandomWeightedValue(values);
expect(result5).toEqual('b');
stub5.restore();
// any random number above 0.5 should return "c"
const stub6 = sinon.stub(Math, 'random').returns(0.500001);
const result6 = randomUtils.getRandomWeightedValue(values);
expect(result6).toEqual('c');
stub6.restore();
const stub7 = sinon.stub(Math, 'random').returns(1);
const result7 = randomUtils.getRandomWeightedValue(values);
expect(result7).toEqual('c');
stub7.restore();
});
});
Shortest solution in modern JavaScript
Note: all weights need to be integers
function weightedRandom(items){
let table = Object.entries(items)
.flatMap(([item, weight]) => Array(item).fill(weight))
return table[Math.floor(Math.random() * table.length)]
}
const key = weightedRandom({
"key1": 1,
"key2": 4,
"key3": 8
}) // returns e.g. "key1"
here is the input and ratios : 0 (80%), 1(10%) , 2 (10%)
lets draw them out so its easy to visualize.
0 1 2
-------------------------------------________+++++++++
lets add up the total weight and call it TR for total ratio. so in this case 100.
lets randomly get a number from (0-TR) or (0 to 100 in this case) . 100 being your weights total. Call it RN for random number.
so now we have TR as the total weight and RN as the random number between 0 and TR.
so lets imagine we picked a random # from 0 to 100. Say 21. so thats actually 21%.
WE MUST CONVERT/MATCH THIS TO OUR INPUT NUMBERS BUT HOW ?
lets loop over each weight (80, 10, 10) and keep the sum of the weights we already visit.
the moment the sum of the weights we are looping over is greater then the random number RN (21 in this case), we stop the loop & return that element position.
double sum = 0;
int position = -1;
for(double weight : weight){
position ++;
sum = sum + weight;
if(sum > 21) //(80 > 21) so break on first pass
break;
}
//position will be 0 so we return array[0]--> 0
lets say the random number (between 0 and 100) is 83. Lets do it again:
double sum = 0;
int position = -1;
for(double weight : weight){
position ++;
sum = sum + weight;
if(sum > 83) //(90 > 83) so break
break;
}
//we did two passes in the loop so position is 1 so we return array[1]---> 1
I have a slotmachine and I used the code below to generate random numbers. In probabilitiesSlotMachine the keys are the output in the slotmachine, and the values represent the weight.
const probabilitiesSlotMachine = [{0 : 1000}, {1 : 100}, {2 : 50}, {3 : 30}, {4 : 20}, {5 : 10}, {6 : 5}, {7 : 4}, {8 : 2}, {9 : 1}]
var allSlotMachineResults = []
probabilitiesSlotMachine.forEach(function(obj, index){
for (var key in obj){
for (var loop = 0; loop < obj[key]; loop ++){
allSlotMachineResults.push(key)
}
}
});
Now to generate a random output, I use this code:
const random = allSlotMachineResults[Math.floor(Math.random() * allSlotMachineResults.length)]
Enjoy the O(1) (constant time) solution for your problem.
If the input array is small, it can be easily implemented.
const number = Math.floor(Math.random() * 99); // Generate a random number from 0 to 99
let element;
if (number >= 0 && number <= 79) {
/*
In the range of 0 to 99, every number has equal probability
of occurring. Therefore, if you gather 80 numbers (0 to 79) and
make a "sub-group" of them, then their probabilities will get added.
Hence, what you get is an 80% chance that the number will fall in this
range.
So, quite naturally, there is 80% probability that this code will run.
Now, manually choose / assign element of your array to this variable.
*/
element = 0;
}
else if (number >= 80 && number <= 89) {
// 10% chance that this code runs.
element = 1;
}
else if (number >= 90 && number <= 99) {
// 10% chance that this code runs.
element = 2;
}

Javascript / JQuery - Favor Number Range In Math.random() [duplicate]

I'm trying to devise a (good) way to choose a random number from a range of possible numbers where each number in the range is given a weight. To put it simply: given the range of numbers (0,1,2) choose a number where 0 has an 80% probability of being selected, 1 has a 10% chance and 2 has a 10% chance.
It's been about 8 years since my college stats class, so you can imagine the proper formula for this escapes me at the moment.
Here's the 'cheap and dirty' method that I came up with. This solution uses ColdFusion. Yours may use whatever language you'd like. I'm a programmer, I think I can handle porting it. Ultimately my solution needs to be in Groovy - I wrote this one in ColdFusion because it's easy to quickly write/test in CF.
public function weightedRandom( Struct options ) {
var tempArr = [];
for( var o in arguments.options )
{
var weight = arguments.options[ o ] * 10;
for ( var i = 1; i<= weight; i++ )
{
arrayAppend( tempArr, o );
}
}
return tempArr[ randRange( 1, arrayLen( tempArr ) ) ];
}
// test it
opts = { 0=.8, 1=.1, 2=.1 };
for( x = 1; x<=10; x++ )
{
writeDump( weightedRandom( opts ) );
}
I'm looking for better solutions, please suggest improvements or alternatives.
Rejection sampling (such as in your solution) is the first thing that comes to mind, whereby you build a lookup table with elements populated by their weight distribution, then pick a random location in the table and return it. As an implementation choice, I would make a higher order function which takes a spec and returns a function which returns values based on the distribution in the spec, this way you avoid having to build the table for each call. The downsides are that the algorithmic performance of building the table is linear by the number of items and there could potentially be a lot of memory usage for large specs (or those with members with very small or precise weights, e.g. {0:0.99999, 1:0.00001}). The upside is that picking a value has constant time, which might be desirable if performance is critical. In JavaScript:
function weightedRand(spec) {
var i, j, table=[];
for (i in spec) {
// The constant 10 below should be computed based on the
// weights in the spec for a correct and optimal table size.
// E.g. the spec {0:0.999, 1:0.001} will break this impl.
for (j=0; j<spec[i]*10; j++) {
table.push(i);
}
}
return function() {
return table[Math.floor(Math.random() * table.length)];
}
}
var rand012 = weightedRand({0:0.8, 1:0.1, 2:0.1});
rand012(); // random in distribution...
Another strategy is to pick a random number in [0,1) and iterate over the weight specification summing the weights, if the random number is less than the sum then return the associated value. Of course, this assumes that the weights sum to one. This solution has no up-front costs but has average algorithmic performance linear by the number of entries in the spec. For example, in JavaScript:
function weightedRand2(spec) {
var i, sum=0, r=Math.random();
for (i in spec) {
sum += spec[i];
if (r <= sum) return i;
}
}
weightedRand2({0:0.8, 1:0.1, 2:0.1}); // random in distribution...
Generate a random number R between 0 and 1.
If R in [0, 0.1) -> 1
If R in [0.1, 0.2) -> 2
If R in [0.2, 1] -> 3
If you can't directly get a number between 0 and 1, generate a number in a range that will produce as much precision as you want. For example, if you have the weights for
(1, 83.7%) and (2, 16.3%), roll a number from 1 to 1000. 1-837 is a 1. 838-1000 is 2.
I use the following
function weightedRandom(min, max) {
return Math.round(max / (Math.random() * max + min));
}
This is my go-to "weighted" random, where I use an inverse function of "x" (where x is a random between min and max) to generate a weighted result, where the minimum is the most heavy element, and the maximum the lightest (least chances of getting the result)
So basically, using weightedRandom(1, 5) means the chances of getting a 1 are higher than a 2 which are higher than a 3, which are higher than a 4, which are higher than a 5.
Might not be useful for your use case but probably useful for people googling this same question.
After a 100 iterations try, it gave me:
==================
| Result | Times |
==================
| 1 | 55 |
| 2 | 28 |
| 3 | 8 |
| 4 | 7 |
| 5 | 2 |
==================
Here are 3 solutions in javascript since I'm not sure which language you want it in. Depending on your needs one of the first two might work, but the the third one is probably the easiest to implement with large sets of numbers.
function randomSimple(){
return [0,0,0,0,0,0,0,0,1,2][Math.floor(Math.random()*10)];
}
function randomCase(){
var n=Math.floor(Math.random()*100)
switch(n){
case n<80:
return 0;
case n<90:
return 1;
case n<100:
return 2;
}
}
function randomLoop(weight,num){
var n=Math.floor(Math.random()*100),amt=0;
for(var i=0;i<weight.length;i++){
//amt+=weight[i]; *alternative method
//if(n<amt){
if(n<weight[i]){
return num[i];
}
}
}
weight=[80,90,100];
//weight=[80,10,10]; *alternative method
num=[0,1,2]
8 years late but here's my solution in 4 lines.
Prepare an array of probability mass function such that
pmf[array_index] = P(X=array_index):
var pmf = [0.8, 0.1, 0.1]
Prepare an array for the corresponding cumulative distribution function such that
cdf[array_index] = F(X=array_index):
var cdf = pmf.map((sum => value => sum += value)(0))
// [0.8, 0.9, 1]
3a) Generate a random number.
3b) Get an array of elements that are more than or equal to this number.
3c) Return its length.
var r = Math.random()
cdf.filter(el => r >= el).length
This is more or less a generic-ized version of what #trinithis wrote, in Java: I did it with ints rather than floats to avoid messy rounding errors.
static class Weighting {
int value;
int weighting;
public Weighting(int v, int w) {
this.value = v;
this.weighting = w;
}
}
public static int weightedRandom(List<Weighting> weightingOptions) {
//determine sum of all weightings
int total = 0;
for (Weighting w : weightingOptions) {
total += w.weighting;
}
//select a random value between 0 and our total
int random = new Random().nextInt(total);
//loop thru our weightings until we arrive at the correct one
int current = 0;
for (Weighting w : weightingOptions) {
current += w.weighting;
if (random < current)
return w.value;
}
//shouldn't happen.
return -1;
}
public static void main(String[] args) {
List<Weighting> weightings = new ArrayList<Weighting>();
weightings.add(new Weighting(0, 8));
weightings.add(new Weighting(1, 1));
weightings.add(new Weighting(2, 1));
for (int i = 0; i < 100; i++) {
System.out.println(weightedRandom(weightings));
}
}
How about
int [ ] numbers = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 2 } ;
then you can randomly select from numbers and 0 will have an 80% chance, 1 10%, and 2 10%
This one is in Mathematica, but it's easy to copy to another language, I use it in my games and it can handle decimal weights:
weights = {0.5,1,2}; // The weights
weights = N#weights/Total#weights // Normalize weights so that the list's sum is always 1.
min = 0; // First min value should be 0
max = weights[[1]]; // First max value should be the first element of the newly created weights list. Note that in Mathematica the first element has index of 1, not 0.
random = RandomReal[]; // Generate a random float from 0 to 1;
For[i = 1, i <= Length#weights, i++,
If[random >= min && random < max,
Print["Chosen index number: " <> ToString#i]
];
min += weights[[i]];
If[i == Length#weights,
max = 1,
max += weights[[i + 1]]
]
]
(Now I'm talking with a lists first element's index equals 0) The idea behind this is that having a normalized list weights there is a chance of weights[n] to return the index n, so the distances between the min and max at step n should be weights[n]. The total distance from the minimum min (which we put it to be 0) and the maximum max is the sum of the list weights.
The good thing behind this is that you don't append to any array or nest for loops, and that increases heavily the execution time.
Here is the code in C# without needing to normalize the weights list and deleting some code:
int WeightedRandom(List<float> weights) {
float total = 0f;
foreach (float weight in weights) {
total += weight;
}
float max = weights [0],
random = Random.Range(0f, total);
for (int index = 0; index < weights.Count; index++) {
if (random < max) {
return index;
} else if (index == weights.Count - 1) {
return weights.Count-1;
}
max += weights[index+1];
}
return -1;
}
I suggest to use a continuous check of the probability and the rest of the random number.
This function sets first the return value to the last possible index and iterates until the rest of the random value is smaller than the actual probability.
The probabilities have to sum to one.
function getRandomIndexByProbability(probabilities) {
var r = Math.random(),
index = probabilities.length - 1;
probabilities.some(function (probability, i) {
if (r < probability) {
index = i;
return true;
}
r -= probability;
});
return index;
}
var i,
probabilities = [0.8, 0.1, 0.1],
count = probabilities.map(function () { return 0; });
for (i = 0; i < 1e6; i++) {
count[getRandomIndexByProbability(probabilities)]++;
}
console.log(count);
.as-console-wrapper { max-height: 100% !important; top: 0; }
Thanks all, this was a helpful thread. I encapsulated it into a convenience function (Typescript). Tests below (sinon, jest). Could definitely be a bit tighter, but hopefully it's readable.
export type WeightedOptions = {
[option: string]: number;
};
// Pass in an object like { a: 10, b: 4, c: 400 } and it'll return either "a", "b", or "c", factoring in their respective
// weight. So in this example, "c" is likely to be returned 400 times out of 414
export const getRandomWeightedValue = (options: WeightedOptions) => {
const keys = Object.keys(options);
const totalSum = keys.reduce((acc, item) => acc + options[item], 0);
let runningTotal = 0;
const cumulativeValues = keys.map((key) => {
const relativeValue = options[key]/totalSum;
const cv = {
key,
value: relativeValue + runningTotal
};
runningTotal += relativeValue;
return cv;
});
const r = Math.random();
return cumulativeValues.find(({ key, value }) => r <= value)!.key;
};
Tests:
describe('getRandomWeightedValue', () => {
// Out of 1, the relative and cumulative values for these are:
// a: 0.1666 -> 0.16666
// b: 0.3333 -> 0.5
// c: 0.5 -> 1
const values = { a: 10, b: 20, c: 30 };
it('returns appropriate values for particular random value', () => {
// any random number under 0.166666 should return "a"
const stub1 = sinon.stub(Math, 'random').returns(0);
const result1 = randomUtils.getRandomWeightedValue(values);
expect(result1).toEqual('a');
stub1.restore();
const stub2 = sinon.stub(Math, 'random').returns(0.1666);
const result2 = randomUtils.getRandomWeightedValue(values);
expect(result2).toEqual('a');
stub2.restore();
// any random number between 0.166666 and 0.5 should return "b"
const stub3 = sinon.stub(Math, 'random').returns(0.17);
const result3 = randomUtils.getRandomWeightedValue(values);
expect(result3).toEqual('b');
stub3.restore();
const stub4 = sinon.stub(Math, 'random').returns(0.3333);
const result4 = randomUtils.getRandomWeightedValue(values);
expect(result4).toEqual('b');
stub4.restore();
const stub5 = sinon.stub(Math, 'random').returns(0.5);
const result5 = randomUtils.getRandomWeightedValue(values);
expect(result5).toEqual('b');
stub5.restore();
// any random number above 0.5 should return "c"
const stub6 = sinon.stub(Math, 'random').returns(0.500001);
const result6 = randomUtils.getRandomWeightedValue(values);
expect(result6).toEqual('c');
stub6.restore();
const stub7 = sinon.stub(Math, 'random').returns(1);
const result7 = randomUtils.getRandomWeightedValue(values);
expect(result7).toEqual('c');
stub7.restore();
});
});
Shortest solution in modern JavaScript
Note: all weights need to be integers
function weightedRandom(items){
let table = Object.entries(items)
.flatMap(([item, weight]) => Array(item).fill(weight))
return table[Math.floor(Math.random() * table.length)]
}
const key = weightedRandom({
"key1": 1,
"key2": 4,
"key3": 8
}) // returns e.g. "key1"
here is the input and ratios : 0 (80%), 1(10%) , 2 (10%)
lets draw them out so its easy to visualize.
0 1 2
-------------------------------------________+++++++++
lets add up the total weight and call it TR for total ratio. so in this case 100.
lets randomly get a number from (0-TR) or (0 to 100 in this case) . 100 being your weights total. Call it RN for random number.
so now we have TR as the total weight and RN as the random number between 0 and TR.
so lets imagine we picked a random # from 0 to 100. Say 21. so thats actually 21%.
WE MUST CONVERT/MATCH THIS TO OUR INPUT NUMBERS BUT HOW ?
lets loop over each weight (80, 10, 10) and keep the sum of the weights we already visit.
the moment the sum of the weights we are looping over is greater then the random number RN (21 in this case), we stop the loop & return that element position.
double sum = 0;
int position = -1;
for(double weight : weight){
position ++;
sum = sum + weight;
if(sum > 21) //(80 > 21) so break on first pass
break;
}
//position will be 0 so we return array[0]--> 0
lets say the random number (between 0 and 100) is 83. Lets do it again:
double sum = 0;
int position = -1;
for(double weight : weight){
position ++;
sum = sum + weight;
if(sum > 83) //(90 > 83) so break
break;
}
//we did two passes in the loop so position is 1 so we return array[1]---> 1
I have a slotmachine and I used the code below to generate random numbers. In probabilitiesSlotMachine the keys are the output in the slotmachine, and the values represent the weight.
const probabilitiesSlotMachine = [{0 : 1000}, {1 : 100}, {2 : 50}, {3 : 30}, {4 : 20}, {5 : 10}, {6 : 5}, {7 : 4}, {8 : 2}, {9 : 1}]
var allSlotMachineResults = []
probabilitiesSlotMachine.forEach(function(obj, index){
for (var key in obj){
for (var loop = 0; loop < obj[key]; loop ++){
allSlotMachineResults.push(key)
}
}
});
Now to generate a random output, I use this code:
const random = allSlotMachineResults[Math.floor(Math.random() * allSlotMachineResults.length)]
Enjoy the O(1) (constant time) solution for your problem.
If the input array is small, it can be easily implemented.
const number = Math.floor(Math.random() * 99); // Generate a random number from 0 to 99
let element;
if (number >= 0 && number <= 79) {
/*
In the range of 0 to 99, every number has equal probability
of occurring. Therefore, if you gather 80 numbers (0 to 79) and
make a "sub-group" of them, then their probabilities will get added.
Hence, what you get is an 80% chance that the number will fall in this
range.
So, quite naturally, there is 80% probability that this code will run.
Now, manually choose / assign element of your array to this variable.
*/
element = 0;
}
else if (number >= 80 && number <= 89) {
// 10% chance that this code runs.
element = 1;
}
else if (number >= 90 && number <= 99) {
// 10% chance that this code runs.
element = 2;
}

It's the weight! How to return weighted probabilities? (Javascript) [duplicate]

I'm trying to devise a (good) way to choose a random number from a range of possible numbers where each number in the range is given a weight. To put it simply: given the range of numbers (0,1,2) choose a number where 0 has an 80% probability of being selected, 1 has a 10% chance and 2 has a 10% chance.
It's been about 8 years since my college stats class, so you can imagine the proper formula for this escapes me at the moment.
Here's the 'cheap and dirty' method that I came up with. This solution uses ColdFusion. Yours may use whatever language you'd like. I'm a programmer, I think I can handle porting it. Ultimately my solution needs to be in Groovy - I wrote this one in ColdFusion because it's easy to quickly write/test in CF.
public function weightedRandom( Struct options ) {
var tempArr = [];
for( var o in arguments.options )
{
var weight = arguments.options[ o ] * 10;
for ( var i = 1; i<= weight; i++ )
{
arrayAppend( tempArr, o );
}
}
return tempArr[ randRange( 1, arrayLen( tempArr ) ) ];
}
// test it
opts = { 0=.8, 1=.1, 2=.1 };
for( x = 1; x<=10; x++ )
{
writeDump( weightedRandom( opts ) );
}
I'm looking for better solutions, please suggest improvements or alternatives.
Rejection sampling (such as in your solution) is the first thing that comes to mind, whereby you build a lookup table with elements populated by their weight distribution, then pick a random location in the table and return it. As an implementation choice, I would make a higher order function which takes a spec and returns a function which returns values based on the distribution in the spec, this way you avoid having to build the table for each call. The downsides are that the algorithmic performance of building the table is linear by the number of items and there could potentially be a lot of memory usage for large specs (or those with members with very small or precise weights, e.g. {0:0.99999, 1:0.00001}). The upside is that picking a value has constant time, which might be desirable if performance is critical. In JavaScript:
function weightedRand(spec) {
var i, j, table=[];
for (i in spec) {
// The constant 10 below should be computed based on the
// weights in the spec for a correct and optimal table size.
// E.g. the spec {0:0.999, 1:0.001} will break this impl.
for (j=0; j<spec[i]*10; j++) {
table.push(i);
}
}
return function() {
return table[Math.floor(Math.random() * table.length)];
}
}
var rand012 = weightedRand({0:0.8, 1:0.1, 2:0.1});
rand012(); // random in distribution...
Another strategy is to pick a random number in [0,1) and iterate over the weight specification summing the weights, if the random number is less than the sum then return the associated value. Of course, this assumes that the weights sum to one. This solution has no up-front costs but has average algorithmic performance linear by the number of entries in the spec. For example, in JavaScript:
function weightedRand2(spec) {
var i, sum=0, r=Math.random();
for (i in spec) {
sum += spec[i];
if (r <= sum) return i;
}
}
weightedRand2({0:0.8, 1:0.1, 2:0.1}); // random in distribution...
Generate a random number R between 0 and 1.
If R in [0, 0.1) -> 1
If R in [0.1, 0.2) -> 2
If R in [0.2, 1] -> 3
If you can't directly get a number between 0 and 1, generate a number in a range that will produce as much precision as you want. For example, if you have the weights for
(1, 83.7%) and (2, 16.3%), roll a number from 1 to 1000. 1-837 is a 1. 838-1000 is 2.
I use the following
function weightedRandom(min, max) {
return Math.round(max / (Math.random() * max + min));
}
This is my go-to "weighted" random, where I use an inverse function of "x" (where x is a random between min and max) to generate a weighted result, where the minimum is the most heavy element, and the maximum the lightest (least chances of getting the result)
So basically, using weightedRandom(1, 5) means the chances of getting a 1 are higher than a 2 which are higher than a 3, which are higher than a 4, which are higher than a 5.
Might not be useful for your use case but probably useful for people googling this same question.
After a 100 iterations try, it gave me:
==================
| Result | Times |
==================
| 1 | 55 |
| 2 | 28 |
| 3 | 8 |
| 4 | 7 |
| 5 | 2 |
==================
Here are 3 solutions in javascript since I'm not sure which language you want it in. Depending on your needs one of the first two might work, but the the third one is probably the easiest to implement with large sets of numbers.
function randomSimple(){
return [0,0,0,0,0,0,0,0,1,2][Math.floor(Math.random()*10)];
}
function randomCase(){
var n=Math.floor(Math.random()*100)
switch(n){
case n<80:
return 0;
case n<90:
return 1;
case n<100:
return 2;
}
}
function randomLoop(weight,num){
var n=Math.floor(Math.random()*100),amt=0;
for(var i=0;i<weight.length;i++){
//amt+=weight[i]; *alternative method
//if(n<amt){
if(n<weight[i]){
return num[i];
}
}
}
weight=[80,90,100];
//weight=[80,10,10]; *alternative method
num=[0,1,2]
8 years late but here's my solution in 4 lines.
Prepare an array of probability mass function such that
pmf[array_index] = P(X=array_index):
var pmf = [0.8, 0.1, 0.1]
Prepare an array for the corresponding cumulative distribution function such that
cdf[array_index] = F(X=array_index):
var cdf = pmf.map((sum => value => sum += value)(0))
// [0.8, 0.9, 1]
3a) Generate a random number.
3b) Get an array of elements that are more than or equal to this number.
3c) Return its length.
var r = Math.random()
cdf.filter(el => r >= el).length
This is more or less a generic-ized version of what #trinithis wrote, in Java: I did it with ints rather than floats to avoid messy rounding errors.
static class Weighting {
int value;
int weighting;
public Weighting(int v, int w) {
this.value = v;
this.weighting = w;
}
}
public static int weightedRandom(List<Weighting> weightingOptions) {
//determine sum of all weightings
int total = 0;
for (Weighting w : weightingOptions) {
total += w.weighting;
}
//select a random value between 0 and our total
int random = new Random().nextInt(total);
//loop thru our weightings until we arrive at the correct one
int current = 0;
for (Weighting w : weightingOptions) {
current += w.weighting;
if (random < current)
return w.value;
}
//shouldn't happen.
return -1;
}
public static void main(String[] args) {
List<Weighting> weightings = new ArrayList<Weighting>();
weightings.add(new Weighting(0, 8));
weightings.add(new Weighting(1, 1));
weightings.add(new Weighting(2, 1));
for (int i = 0; i < 100; i++) {
System.out.println(weightedRandom(weightings));
}
}
How about
int [ ] numbers = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 2 } ;
then you can randomly select from numbers and 0 will have an 80% chance, 1 10%, and 2 10%
This one is in Mathematica, but it's easy to copy to another language, I use it in my games and it can handle decimal weights:
weights = {0.5,1,2}; // The weights
weights = N#weights/Total#weights // Normalize weights so that the list's sum is always 1.
min = 0; // First min value should be 0
max = weights[[1]]; // First max value should be the first element of the newly created weights list. Note that in Mathematica the first element has index of 1, not 0.
random = RandomReal[]; // Generate a random float from 0 to 1;
For[i = 1, i <= Length#weights, i++,
If[random >= min && random < max,
Print["Chosen index number: " <> ToString#i]
];
min += weights[[i]];
If[i == Length#weights,
max = 1,
max += weights[[i + 1]]
]
]
(Now I'm talking with a lists first element's index equals 0) The idea behind this is that having a normalized list weights there is a chance of weights[n] to return the index n, so the distances between the min and max at step n should be weights[n]. The total distance from the minimum min (which we put it to be 0) and the maximum max is the sum of the list weights.
The good thing behind this is that you don't append to any array or nest for loops, and that increases heavily the execution time.
Here is the code in C# without needing to normalize the weights list and deleting some code:
int WeightedRandom(List<float> weights) {
float total = 0f;
foreach (float weight in weights) {
total += weight;
}
float max = weights [0],
random = Random.Range(0f, total);
for (int index = 0; index < weights.Count; index++) {
if (random < max) {
return index;
} else if (index == weights.Count - 1) {
return weights.Count-1;
}
max += weights[index+1];
}
return -1;
}
I suggest to use a continuous check of the probability and the rest of the random number.
This function sets first the return value to the last possible index and iterates until the rest of the random value is smaller than the actual probability.
The probabilities have to sum to one.
function getRandomIndexByProbability(probabilities) {
var r = Math.random(),
index = probabilities.length - 1;
probabilities.some(function (probability, i) {
if (r < probability) {
index = i;
return true;
}
r -= probability;
});
return index;
}
var i,
probabilities = [0.8, 0.1, 0.1],
count = probabilities.map(function () { return 0; });
for (i = 0; i < 1e6; i++) {
count[getRandomIndexByProbability(probabilities)]++;
}
console.log(count);
.as-console-wrapper { max-height: 100% !important; top: 0; }
Thanks all, this was a helpful thread. I encapsulated it into a convenience function (Typescript). Tests below (sinon, jest). Could definitely be a bit tighter, but hopefully it's readable.
export type WeightedOptions = {
[option: string]: number;
};
// Pass in an object like { a: 10, b: 4, c: 400 } and it'll return either "a", "b", or "c", factoring in their respective
// weight. So in this example, "c" is likely to be returned 400 times out of 414
export const getRandomWeightedValue = (options: WeightedOptions) => {
const keys = Object.keys(options);
const totalSum = keys.reduce((acc, item) => acc + options[item], 0);
let runningTotal = 0;
const cumulativeValues = keys.map((key) => {
const relativeValue = options[key]/totalSum;
const cv = {
key,
value: relativeValue + runningTotal
};
runningTotal += relativeValue;
return cv;
});
const r = Math.random();
return cumulativeValues.find(({ key, value }) => r <= value)!.key;
};
Tests:
describe('getRandomWeightedValue', () => {
// Out of 1, the relative and cumulative values for these are:
// a: 0.1666 -> 0.16666
// b: 0.3333 -> 0.5
// c: 0.5 -> 1
const values = { a: 10, b: 20, c: 30 };
it('returns appropriate values for particular random value', () => {
// any random number under 0.166666 should return "a"
const stub1 = sinon.stub(Math, 'random').returns(0);
const result1 = randomUtils.getRandomWeightedValue(values);
expect(result1).toEqual('a');
stub1.restore();
const stub2 = sinon.stub(Math, 'random').returns(0.1666);
const result2 = randomUtils.getRandomWeightedValue(values);
expect(result2).toEqual('a');
stub2.restore();
// any random number between 0.166666 and 0.5 should return "b"
const stub3 = sinon.stub(Math, 'random').returns(0.17);
const result3 = randomUtils.getRandomWeightedValue(values);
expect(result3).toEqual('b');
stub3.restore();
const stub4 = sinon.stub(Math, 'random').returns(0.3333);
const result4 = randomUtils.getRandomWeightedValue(values);
expect(result4).toEqual('b');
stub4.restore();
const stub5 = sinon.stub(Math, 'random').returns(0.5);
const result5 = randomUtils.getRandomWeightedValue(values);
expect(result5).toEqual('b');
stub5.restore();
// any random number above 0.5 should return "c"
const stub6 = sinon.stub(Math, 'random').returns(0.500001);
const result6 = randomUtils.getRandomWeightedValue(values);
expect(result6).toEqual('c');
stub6.restore();
const stub7 = sinon.stub(Math, 'random').returns(1);
const result7 = randomUtils.getRandomWeightedValue(values);
expect(result7).toEqual('c');
stub7.restore();
});
});
Shortest solution in modern JavaScript
Note: all weights need to be integers
function weightedRandom(items){
let table = Object.entries(items)
.flatMap(([item, weight]) => Array(item).fill(weight))
return table[Math.floor(Math.random() * table.length)]
}
const key = weightedRandom({
"key1": 1,
"key2": 4,
"key3": 8
}) // returns e.g. "key1"
here is the input and ratios : 0 (80%), 1(10%) , 2 (10%)
lets draw them out so its easy to visualize.
0 1 2
-------------------------------------________+++++++++
lets add up the total weight and call it TR for total ratio. so in this case 100.
lets randomly get a number from (0-TR) or (0 to 100 in this case) . 100 being your weights total. Call it RN for random number.
so now we have TR as the total weight and RN as the random number between 0 and TR.
so lets imagine we picked a random # from 0 to 100. Say 21. so thats actually 21%.
WE MUST CONVERT/MATCH THIS TO OUR INPUT NUMBERS BUT HOW ?
lets loop over each weight (80, 10, 10) and keep the sum of the weights we already visit.
the moment the sum of the weights we are looping over is greater then the random number RN (21 in this case), we stop the loop & return that element position.
double sum = 0;
int position = -1;
for(double weight : weight){
position ++;
sum = sum + weight;
if(sum > 21) //(80 > 21) so break on first pass
break;
}
//position will be 0 so we return array[0]--> 0
lets say the random number (between 0 and 100) is 83. Lets do it again:
double sum = 0;
int position = -1;
for(double weight : weight){
position ++;
sum = sum + weight;
if(sum > 83) //(90 > 83) so break
break;
}
//we did two passes in the loop so position is 1 so we return array[1]---> 1
I have a slotmachine and I used the code below to generate random numbers. In probabilitiesSlotMachine the keys are the output in the slotmachine, and the values represent the weight.
const probabilitiesSlotMachine = [{0 : 1000}, {1 : 100}, {2 : 50}, {3 : 30}, {4 : 20}, {5 : 10}, {6 : 5}, {7 : 4}, {8 : 2}, {9 : 1}]
var allSlotMachineResults = []
probabilitiesSlotMachine.forEach(function(obj, index){
for (var key in obj){
for (var loop = 0; loop < obj[key]; loop ++){
allSlotMachineResults.push(key)
}
}
});
Now to generate a random output, I use this code:
const random = allSlotMachineResults[Math.floor(Math.random() * allSlotMachineResults.length)]
Enjoy the O(1) (constant time) solution for your problem.
If the input array is small, it can be easily implemented.
const number = Math.floor(Math.random() * 99); // Generate a random number from 0 to 99
let element;
if (number >= 0 && number <= 79) {
/*
In the range of 0 to 99, every number has equal probability
of occurring. Therefore, if you gather 80 numbers (0 to 79) and
make a "sub-group" of them, then their probabilities will get added.
Hence, what you get is an 80% chance that the number will fall in this
range.
So, quite naturally, there is 80% probability that this code will run.
Now, manually choose / assign element of your array to this variable.
*/
element = 0;
}
else if (number >= 80 && number <= 89) {
// 10% chance that this code runs.
element = 1;
}
else if (number >= 90 && number <= 99) {
// 10% chance that this code runs.
element = 2;
}

Categories