findKey() - recreating lodash library method - javascript

I've got a problem with a CodeCademy task. I am to re-create the findKey lodash library method. Here there are the steps of how to do it, but I got stuck, especially at point 5.
Add a method to our _ object called findKey.
Add two parameters to this method: object and predicate. We will
name our predicate function parameter predicate since this is the
name used in the Lodash documentation.
Within the method, use a for ... in loop to iterate through each key
in object.
Within the loop, create a variable called value and set it equal to
the value at the current key in object.
Still within the loop, create another variable called
predicateReturnValue and set it equal to the result of calling
predicate with value.
Finally, still within the loop, use an if statement to check
if predicateReturnValue is truthy. If it is, return the current key
from the method.
Outside of the loop, return undefined to address all cases where no
truthy values were returned from predicate.
This is my code that doesn't work:
findKey(object, predicate) {
for (let key in object) {
let value = object[key];
let predicateReturnValue = predicate(value);
if (predicateReturnValue === 'true') {
return value;
};
};
return undefined;
}
I appreciate your help!

You need to return the key after the truty check of the call of predicate.
function findKey(object, predicate) {
for (let key in object) {
let value = object[key];
let predicateReturnValue = predicate(value);
if (predicateReturnValue) { // just take the value
return key; // return key
}
}
}
const
isStrictEqual = a => b => a === b,
object = { a: 'foo', b: 'bar', c: 'baz' }
console.log(findKey(object, isStrictEqual('bar')));
console.log(findKey(object, isStrictEqual('cat')));

Related

How to return an Object Value if you have a specific key in your Object? [duplicate]

How do I check if an object has a specific property in JavaScript?
Consider:
x = {'key': 1};
if ( x.hasOwnProperty('key') ) {
//Do this
}
Is that the best way to do it?
2022 UPDATE
Object.hasOwn()
Object.hasOwn() is recommended over Object.hasOwnProperty() because it works for objects created using Object.create(null) and with objects that have overridden the inherited hasOwnProperty() method. While it is possible to workaround these problems by calling Object.prototype.hasOwnProperty() on an external object, Object.hasOwn() is more intuitive.
Example
const object1 = {
prop: 'exists'
};
console.log(Object.hasOwn(object1, 'prop'));
// expected output: true
Original answer
I'm really confused by the answers that have been given - most of them are just outright incorrect. Of course you can have object properties that have undefined, null, or false values. So simply reducing the property check to typeof this[property] or, even worse, x.key will give you completely misleading results.
It depends on what you're looking for. If you want to know if an object physically contains a property (and it is not coming from somewhere up on the prototype chain) then object.hasOwnProperty is the way to go. All modern browsers support it. (It was missing in older versions of Safari - 2.0.1 and older - but those versions of the browser are rarely used any more.)
If what you're looking for is if an object has a property on it that is iterable (when you iterate over the properties of the object, it will appear) then doing: prop in object will give you your desired effect.
Since using hasOwnProperty is probably what you want, and considering that you may want a fallback method, I present to you the following solution:
var obj = {
a: undefined,
b: null,
c: false
};
// a, b, c all found
for ( var prop in obj ) {
document.writeln( "Object1: " + prop );
}
function Class(){
this.a = undefined;
this.b = null;
this.c = false;
}
Class.prototype = {
a: undefined,
b: true,
c: true,
d: true,
e: true
};
var obj2 = new Class();
// a, b, c, d, e found
for ( var prop in obj2 ) {
document.writeln( "Object2: " + prop );
}
function hasOwnProperty(obj, prop) {
var proto = obj.__proto__ || obj.constructor.prototype;
return (prop in obj) &&
(!(prop in proto) || proto[prop] !== obj[prop]);
}
if ( Object.prototype.hasOwnProperty ) {
var hasOwnProperty = function(obj, prop) {
return obj.hasOwnProperty(prop);
}
}
// a, b, c found in modern browsers
// b, c found in Safari 2.0.1 and older
for ( var prop in obj2 ) {
if ( hasOwnProperty(obj2, prop) ) {
document.writeln( "Object2 w/ hasOwn: " + prop );
}
}
The above is a working, cross-browser, solution to hasOwnProperty(), with one caveat: It is unable to distinguish between cases where an identical property is on the prototype and on the instance - it just assumes that it's coming from the prototype. You could shift it to be more lenient or strict, based upon your situation, but at the very least this should be more helpful.
With Underscore.js or (even better) Lodash:
_.has(x, 'key');
Which calls Object.prototype.hasOwnProperty, but (a) is shorter to type, and (b) uses "a safe reference to hasOwnProperty" (i.e. it works even if hasOwnProperty is overwritten).
In particular, Lodash defines _.has as:
function has(object, key) {
return object ? hasOwnProperty.call(object, key) : false;
}
// hasOwnProperty = Object.prototype.hasOwnProperty
You can use this (but read the warning below):
var x = {
'key': 1
};
if ('key' in x) {
console.log('has');
}
But be warned: 'constructor' in x will return true even if x is an empty object - same for 'toString' in x, and many others. It's better to use Object.hasOwn(x, 'key').
Note: the following is nowadays largely obsolete thanks to strict mode, and hasOwnProperty. The correct solution is to use strict mode and to check for the presence of a property using obj.hasOwnProperty. This answer predates both these things, at least as widely implemented (yes, it is that old). Take the following as a historical note.
Bear in mind that undefined is (unfortunately) not a reserved word in JavaScript if you’re not using strict mode. Therefore, someone (someone else, obviously) could have the grand idea of redefining it, breaking your code.
A more robust method is therefore the following:
if (typeof(x.attribute) !== 'undefined')
On the flip side, this method is much more verbose and also slower. :-/
A common alternative is to ensure that undefined is actually undefined, e.g. by putting the code into a function which accepts an additional parameter, called undefined, that isn’t passed a value. To ensure that it’s not passed a value, you could just call it yourself immediately, e.g.:
(function (undefined) {
… your code …
if (x.attribute !== undefined)
… mode code …
})();
if (x.key !== undefined)
Armin Ronacher seems to have already beat me to it, but:
Object.prototype.hasOwnProperty = function(property) {
return this[property] !== undefined;
};
x = {'key': 1};
if (x.hasOwnProperty('key')) {
alert('have key!');
}
if (!x.hasOwnProperty('bar')) {
alert('no bar!');
}
A safer, but slower solution, as pointed out by Konrad Rudolph and Armin Ronacher would be:
Object.prototype.hasOwnProperty = function(property) {
return typeof this[property] !== 'undefined';
};
Considering the following object in Javascript
const x = {key: 1};
You can use the in operator to check if the property exists on an object:
console.log("key" in x);
You can also loop through all the properties of the object using a for - in loop, and then check for the specific property:
for (const prop in x) {
if (prop === "key") {
//Do something
}
}
You must consider if this object property is enumerable or not, because non-enumerable properties will not show up in a for-in loop. Also, if the enumerable property is shadowing a non-enumerable property of the prototype, it will not show up in Internet Explorer 8 and earlier.
If you’d like a list of all instance properties, whether enumerable or not, you can use
Object.getOwnPropertyNames(x);
This will return an array of names of all properties that exist on an object.
Reflections provide methods that can be used to interact with Javascript objects. The static Reflect.has() method works like the in operator as a function.
console.log(Reflect.has(x, 'key'));
// expected output: true
console.log(Reflect.has(x, 'key2'));
// expected output: false
console.log(Reflect.has(object1, 'toString'));
// expected output: true
Finally, you can use the typeof operator to directly check the data type of the object property:
if (typeof x.key === "undefined") {
console.log("undefined");
}
If the property does not exist on the object, it will return the string undefined. Else it will return the appropriate property type. However, note that this is not always a valid way of checking if an object has a property or not, because you could have a property that is set to undefined, in which case, using typeof x.key would still return true (even though the key is still in the object).
Similarly, you can check if a property exists by comparing directly to the undefined Javascript property
if (x.key === undefined) {
console.log("undefined");
}
This should work unless key was specifically set to undefined on the x object
Let's cut through some confusion here. First, let's simplify by assuming hasOwnProperty already exists; this is true of the vast majority of current browsers in use.
hasOwnProperty returns true if the attribute name that is passed to it has been added to the object. It is entirely independent of the actual value assigned to it which may be exactly undefined.
Hence:
var o = {}
o.x = undefined
var a = o.hasOwnProperty('x') // a is true
var b = o.x === undefined // b is also true
However:
var o = {}
var a = o.hasOwnProperty('x') // a is now false
var b = o.x === undefined // b is still true
The problem is what happens when an object in the prototype chain has an attribute with the value of undefined? hasOwnProperty will be false for it, and so will !== undefined. Yet, for..in will still list it in the enumeration.
The bottom line is there is no cross-browser way (since Internet Explorer doesn't expose __prototype__) to determine that a specific identifier has not been attached to an object or anything in its prototype chain.
If you are searching for a property, then "no". You want:
if ('prop' in obj) { }
In general, you should not care whether or not the property comes from the prototype or the object.
However, because you used 'key' in your sample code, it looks like you are treating the object as a hash, in which case your answer would make sense. All of the hashes keys would be properties in the object, and you avoid the extra properties contributed by the prototype.
John Resig's answer was very comprehensive, but I thought it wasn't clear. Especially with when to use "'prop' in obj".
For testing simple objects, use:
if (obj[x] !== undefined)
If you don't know what object type it is, use:
if (obj.hasOwnProperty(x))
All other options are slower...
Details
A performance evaluation of 100,000,000 cycles under Node.js to the five options suggested by others here:
function hasKey1(k,o) { return (x in obj); }
function hasKey2(k,o) { return (obj[x]); }
function hasKey3(k,o) { return (obj[x] !== undefined); }
function hasKey4(k,o) { return (typeof(obj[x]) !== 'undefined'); }
function hasKey5(k,o) { return (obj.hasOwnProperty(x)); }
The evaluation tells us that unless we specifically want to check the object's prototype chain as well as the object itself, we should not use the common form:
if (X in Obj)...
It is between 2 to 6 times slower depending on the use case
hasKey1 execution time: 4.51 s
hasKey2 execution time: 0.90 s
hasKey3 execution time: 0.76 s
hasKey4 execution time: 0.93 s
hasKey5 execution time: 2.15 s
Bottom line, if your Obj is not necessarily a simple object and you wish to avoid checking the object's prototype chain and to ensure x is owned by Obj directly, use if (obj.hasOwnProperty(x))....
Otherwise, when using a simple object and not being worried about the object's prototype chain, using if (typeof(obj[x]) !== 'undefined')... is the safest and fastest way.
If you use a simple object as a hash table and never do anything kinky, I would use if (obj[x])... as I find it much more readable.
Yes it is :) I think you can also do Object.prototype.hasOwnProperty.call(x, 'key') which should also work if x has a property called hasOwnProperty :)
But that tests for own properties. If you want to check if it has an property that may also be inhered you can use typeof x.foo != 'undefined'.
if(x.hasOwnProperty("key")){
// …
}
because
if(x.key){
// …
}
fails if x.key is falsy (for example, x.key === "").
You can also use the ES6 Reflect object:
x = {'key': 1};
Reflect.has( x, 'key'); // returns true
Documentation on MDN for Reflect.has can be found here.
The static Reflect.has() method works like the in operator as a function.
Do not do this object.hasOwnProperty(key)). It's really bad because these methods may be shadowed by properties on the object in question - consider { hasOwnProperty: false } - or, the object may be a null object (Object.create(null)).
The best way is to do Object.prototype.hasOwnProperty.call(object, key) or:
const has = Object.prototype.hasOwnProperty; // Cache the lookup once, in module scope.
console.log(has.call(object, key));
/* Or */
import has from 'has'; // https://www.npmjs.com/package/has
console.log(has(object, key));
OK, it looks like I had the right answer unless if you don't want inherited properties:
if (x.hasOwnProperty('key'))
Here are some other options to include inherited properties:
if (x.key) // Quick and dirty, but it does the same thing as below.
if (x.key !== undefined)
Another relatively simple way is using Object.keys. This returns an array which means you get all of the features of an array.
var noInfo = {};
var info = {something: 'data'};
Object.keys(noInfo).length //returns 0 or false
Object.keys(info).length //returns 1 or true
Although we are in a world with great browser support. Because this question is so old I thought I'd add this:
This is safe to use as of JavaScript v1.8.5.
JavaScript is now evolving and growing as it now has good and even efficient ways to check it.
Here are some easy ways to check if object has a particular property:
Using hasOwnProperty()
const hero = {
name: 'Batman'
};
hero.hasOwnProperty('name'); // => true
hero.hasOwnProperty('realName'); // => false
Using keyword/operator in
const hero = {
name: 'Batman'
};
'name' in hero; // => true
'realName' in hero; // => false
Comparing with undefined keyword
const hero = {
name: 'Batman'
};
hero.name; // => 'Batman'
hero.realName; // => undefined
// So consider this
hero.realName == undefined // => true (which means property does not exists in object)
hero.name == undefined // => false (which means that property exists in object)
For more information, check here.
hasOwnProperty "can be used to determine whether an object has the specified property as a direct property of that object; unlike the in operator, this method does not check down the object's prototype chain."
So most probably, for what seems by your question, you don't want to use hasOwnProperty, which determines if the property exists as attached directly to the object itself,.
If you want to determine if the property exists in the prototype chain, you may want to use it like:
if (prop in object) { // Do something }
You can use the following approaches-
var obj = {a:1}
console.log('a' in obj) // 1
console.log(obj.hasOwnProperty('a')) // 2
console.log(Boolean(obj.a)) // 3
The difference between the following approaches are as follows-
In the first and third approach we are not just searching in object but its prototypal chain too. If the object does not have the property, but the property is present in its prototype chain it is going to give true.
var obj = {
a: 2,
__proto__ : {b: 2}
}
console.log('b' in obj)
console.log(Boolean(obj.b))
The second approach will check only for its own properties. Example -
var obj = {
a: 2,
__proto__ : {b: 2}
}
console.log(obj.hasOwnProperty('b'))
The difference between the first and the third is if there is a property which has value undefined the third approach is going to give false while first will give true.
var obj = {
b : undefined
}
console.log(Boolean(obj.b))
console.log('b' in obj);
Given myObject object and “myKey” as key name:
Object.keys(myObject).includes('myKey')
or
myObject.hasOwnProperty('myKey')
or
typeof myObject.myKey !== 'undefined'
The last was widely used, but (as pointed out in other answers and comments) it could also match on keys deriving from Object prototype.
Performance
Today 2020.12.17 I perform tests on MacOs HighSierra 10.13.6 on Chrome v87, Safari v13.1.2 and Firefox v83 for chosen solutions.
Results
I compare only solutions A-F because they give valid result for all cased used in snippet in details section. For all browsers
solution based on in (A) is fast or fastest
solution (E) is fastest for chrome for big objects and fastest for firefox for small arrays if key not exists
solution (F) is fastest (~ >10x than other solutions) for small arrays
solutions (D,E) are quite fast
solution based on losash has (B) is slowest
Details
I perform 4 tests cases:
when object has 10 fields and searched key exists - you can run it HERE
when object has 10 fields and searched key not exists - you can run it HERE
when object has 10000 fields and searched key exists - you can run it HERE
when object has 10000 fields and searched key exists - you can run it HERE
Below snippet presents differences between solutions
A
B
C
D
E
F
G
H
I
J
K
// SO https://stackoverflow.com/q/135448/860099
// src: https://stackoverflow.com/a/14664748/860099
function A(x) {
return 'key' in x
}
// src: https://stackoverflow.com/a/11315692/860099
function B(x) {
return _.has(x, 'key')
}
// src: https://stackoverflow.com/a/40266120/860099
function C(x) {
return Reflect.has( x, 'key')
}
// src: https://stackoverflow.com/q/135448/860099
function D(x) {
return x.hasOwnProperty('key')
}
// src: https://stackoverflow.com/a/11315692/860099
function E(x) {
return Object.prototype.hasOwnProperty.call(x, 'key')
}
// src: https://stackoverflow.com/a/136411/860099
function F(x) {
function hasOwnProperty(obj, prop) {
var proto = obj.__proto__ || obj.constructor.prototype;
return (prop in obj) &&
(!(prop in proto) || proto[prop] !== obj[prop]);
}
return hasOwnProperty(x,'key')
}
// src: https://stackoverflow.com/a/135568/860099
function G(x) {
return typeof(x.key) !== 'undefined'
}
// src: https://stackoverflow.com/a/22740939/860099
function H(x) {
return x.key !== undefined
}
// src: https://stackoverflow.com/a/38332171/860099
function I(x) {
return !!x.key
}
// src: https://stackoverflow.com/a/41184688/860099
function J(x) {
return !!x['key']
}
// src: https://stackoverflow.com/a/54196605/860099
function K(x) {
return Boolean(x.key)
}
// --------------------
// TEST
// --------------------
let x1 = {'key': 1};
let x2 = {'key': "1"};
let x3 = {'key': true};
let x4 = {'key': []};
let x5 = {'key': {}};
let x6 = {'key': ()=>{}};
let x7 = {'key': ''};
let x8 = {'key': 0};
let x9 = {'key': false};
let x10= {'key': undefined};
let x11= {'nokey': 1};
let b= x=> x ? 1:0;
console.log(' 1 2 3 4 5 6 7 8 9 10 11');
[A,B,C,D,E,F,G,H,I,J,K ].map(f=> {
console.log(
`${f.name} ${b(f(x1))} ${b(f(x2))} ${b(f(x3))} ${b(f(x4))} ${b(f(x5))} ${b(f(x6))} ${b(f(x7))} ${b(f(x8))} ${b(f(x9))} ${b(f(x10))} ${b(f(x11))} `
)})
console.log('\nLegend: Columns (cases)');
console.log('1. key = 1 ');
console.log('2. key = "1" ');
console.log('3. key = true ');
console.log('4. key = [] ');
console.log('5. key = {} ');
console.log('6. key = ()=>{} ');
console.log('7. key = "" ');
console.log('8. key = 0 ');
console.log('9. key = false ');
console.log('10. key = undefined ');
console.log('11. no-key ');
<script src="https://cdnjs.cloudflare.com/ajax/libs/lodash.js/4.17.20/lodash.min.js" integrity="sha512-90vH1Z83AJY9DmlWa8WkjkV79yfS2n2Oxhsi2dZbIv0nC4E6m5AbH8Nh156kkM7JePmqD6tcZsfad1ueoaovww==" crossorigin="anonymous"> </script>
This shippet only presents functions used in performance tests - it not perform tests itself!
And here are example results for chrome
Now with ECMAScript22 we can use hasOwn instead of hasOwnProperty (Because this feature has pitfalls )
Object.hasOwn(obj, propKey)
Here is another option for a specific case. :)
If you want to test for a member on an object and want to know if it has been set to something other than:
''
false
null
undefined
0
...
then you can use:
var foo = {};
foo.bar = "Yes, this is a proper value!";
if (!!foo.bar) {
// member is set, do something
}
some easier and short options depending on the specific use case:
to check if the property exists, regardless of value, use the in operator ("a" in b)
to check a property value from a variable, use bracket notation (obj[v])
to check a property value as truthy, use optional
chaining (?.)
to check a property value boolean, use double-not / bang-bang / (!!)
to set a default value for null / undefined check, use nullish coalescing operator (??)
to set a default value for falsey value check, use short-circuit logical OR operator (||)
run the code snippet to see results:
let obj1 = {prop:undefined};
console.log(1,"prop" in obj1);
console.log(1,obj1?.prop);
let obj2 = undefined;
//console.log(2,"prop" in obj2); would throw because obj2 undefined
console.log(2,"prop" in (obj2 ?? {}))
console.log(2,obj2?.prop);
let obj3 = {prop:false};
console.log(3,"prop" in obj3);
console.log(3,!!obj3?.prop);
let obj4 = {prop:null};
let look = "prop"
console.log(4,"prop" in obj4);
console.log(4,obj4?.[look]);
let obj5 = {prop:true};
console.log(5,"prop" in obj5);
console.log(5,obj5?.prop === true);
let obj6 = {otherProp:true};
look = "otherProp"
console.log(6,"prop" in obj6);
console.log(6,obj6.look); //should have used bracket notation
let obj7 = {prop:""};
console.log(7,"prop" in obj7);
console.log(7,obj7?.prop || "empty");
I see very few instances where hasOwn is used properly, especially given its inheritance issues
There is a method, "hasOwnProperty", that exists on an object, but it's not recommended to call this method directly, because it might be sometimes that the object is null or some property exist on the object like: { hasOwnProperty: false }
So a better way would be:
// Good
var obj = {"bar": "here bar desc"}
console.log(Object.prototype.hasOwnProperty.call(obj, "bar"));
// Best
const has = Object.prototype.hasOwnProperty; // Cache the lookup once, in module scope.
console.log(has.call(obj, "bar"));
An ECMAScript 6 solution with reflection. Create a wrapper like:
/**
Gets an argument from array or object.
The possible outcome:
- If the key exists the value is returned.
- If no key exists the default value is returned.
- If no default value is specified an empty string is returned.
#param obj The object or array to be searched.
#param key The name of the property or key.
#param defVal Optional default version of the command-line parameter [default ""]
#return The default value in case of an error else the found parameter.
*/
function getSafeReflectArg( obj, key, defVal) {
"use strict";
var retVal = (typeof defVal === 'undefined' ? "" : defVal);
if ( Reflect.has( obj, key) ) {
return Reflect.get( obj, key);
}
return retVal;
} // getSafeReflectArg
Showing how to use this answer
const object= {key1: 'data', key2: 'data2'};
Object.keys(object).includes('key1') //returns true
We can use indexOf as well, I prefer includes
You need to use the method object.hasOwnProperty(property). It returns true if the object has the property and false if the object doesn't.
The hasOwnProperty() method returns a boolean indicating whether the object has the specified property as its own property (as opposed to inheriting it).
const object1 = {};
object1.property1 = 42;
console.log(object1.hasOwnProperty('property1'));
// expected output: true
console.log(object1.hasOwnProperty('toString'));
// expected output: false
console.log(object1.hasOwnProperty('hasOwnProperty'));
// expected output: false
Know more
Don't over-complicate things when you can do:
var isProperty = (objectname.keyname || "") ? true : false;
It Is simple and clear for most cases...
A Better approach for iterating on object's own properties:
If you want to iterate on object's properties without using hasOwnProperty() check,
use for(let key of Object.keys(stud)){} method:
for(let key of Object.keys(stud)){
console.log(key); // will only log object's Own properties
}
full Example and comparison with for-in with hasOwnProperty()
function Student() {
this.name = "nitin";
}
Student.prototype = {
grade: 'A'
}
let stud = new Student();
// for-in approach
for(let key in stud){
if(stud.hasOwnProperty(key)){
console.log(key); // only outputs "name"
}
}
//Object.keys() approach
for(let key of Object.keys(stud)){
console.log(key);
}

how to group an array based on a specific function?

Here, I am new to JavaScript. I am solving questions; however, I am having a problem understanding chaining more than one method together. I have been trying to understand this solution, but it took me a lot of time, and I still don't get it.
I understand that I will input the array that I needed to change according to the specific function, which I opted. I understand all of methods functions, but I don't understand their syntax here, so can someone please explain each step to me ?
const group_By = (arr, fn) =>
arr.map(typeof fn === 'function' ? fn : val => val[fn]).reduce((acc, val, i) => {
acc[val] = (acc[val] || []).concat(arr[i]);
return acc;
}, {});
In as few words as possible.
Firstly they compute a ternary expression, here they are checking if the input is a function, if it is they pass it as is, otherwise they create an anonymous function that tries to access the given property. The arrow function after the colon can seem a little confusing but it's still just a function. It takes one argument called val, and returns property which key is inside the fn variable.
typeof fn === 'function' ? fn : val => val[fn]
The next step is to create a new array with new values for each of the elements. Output of this step is just a list of values to group elements on.
For instance calling it on array ["a", "bb"] with a fn='length' would return [1,2]
arr.map(typeof fn === 'function' ? fn : val => val[fn])
Then they call the .reduce function on the output array. The purpose of the reduce function is to create a single value out of all the elements slowly iterating over it. You can tell that the last step returns accumulator value back, and that it is passed as a first argument to the function called on the next element. The empty object at the end is just an initial value of the accumulator.
.reduce((acc, val, i) => {
...
return acc;
}, {});
And finally for the step that does the accumulation. Here firstly the val from the result of the map, is used to access property of the newly created object. If the value does not exist it replaced with an empty array || []. That has the element of the initial array at the same index concatenated onto it. If there were some elements it just adds new ones to it and reassigns the value.
acc[val] = (acc[val] || []).concat(arr[i]);
Okay, what I understood from your query is that you are trying to chain multiple functions together.
function Chained() {
// this reference.
const _this_ = this
this.Function1 = () => // do something and return _this_
this.Function2 = () => // do something here and return _this_
}
Above you can see that chain is a simple object which returns "this" as context. and on context, we already have Function1 and Function2. so due to this following will be valid.
const _ExecuteChained = new Chained()
// Now you can run _ExecuteChained.Function1().Function2() and so on.
Now coming to your code.
const group_By = (arr, fn) =>
arr.map(typeof fn === 'function' ? fn : val => val[fn]).reduce((acc, val,
i) => {
acc[val] = (acc[val] || []).concat(arr[i]);
return acc;
}, {});
Here you are just running a loop on arr and validating if the second param is a function or not if function then return it as is (Since you are using a map it will be stored at the given index. else just get the value of the function at the given key and return it.
Reduce.
in Reduce you are trying to accumulate a given value with (contact or merge or extend) value at a given index of arr in this case function.

Can you explain the diffrence between two javascript code snippets below?

i was asked to write out a piece of code that inverts all key value pairs from an object passed in. this is what i wrote out.
invert(object){
let newObj = {};
for(let key in object){
const original = object[key];
newObj = {original : key}
}
return newObj;
}
aparently that dosent work ( and i cant figure out why). the answer to the question was
invert(object){
let invertedObject = {};
for(let key in object){
const originalValue = object[key];
invertedObject = {originalValue : key}
}
return invertedObject;
}
when ran with with a test file, my code fails while the answer code passes. reasoning was mine is returning undefined.
error code from test :
Failed: _.invert({originalKey: "originalValue"})["originalValue"])
returned undefined instead of originalKey
Difference is in the following statement:
newObj = {original : key}
In your code, when you use original as a key in the newObj, instead of using the value of the original variable as a key, 'original' is used literally as a key.
The original variable is unused in your code.
You can fix the problem by using computed property name as:
newObj = { [original]: key };
Without using the computed property, newObj will be:
{
original:"originalKey"
}
but with computed property name, newObj will be:
{
originalValue:"originalKey"
}
The second code example works because in the following statement
invertedObject = {originalValue : key}
they have used the value of the originalKey as the name of the key. So the key of the returned object will be 'originalValue'.
Also note that the following statement in the second code example
const originalValue = object[key];
is unnecessary because originalValue variable is not being used. Second code example will also work without the above statement.
If second code example uses computed property name as:
invertedObject = { [originalValue] : key }
then you need the statement that declares the originalValue variable.
Personally, I think second code example is error prone and is really easy to break; its also not practical for making a reusable function because:
objects passed to this function won't always have a single key
you won't always know the value of each key in the object and even if you do know the values, if the object has multiple keys, this approach won't work
You should use computed property name which doesn't depends on a variable name being the same as the value of a key in the object.
that inverts all key value pairs from an object passed in
You have to add each property to the same object and not create new object for each property.
function invert(object) {
let newObj = {};
for(let key in object){
const original = object[key];
newObj[original] = key; // add property to same 'newObj' object
}
return newObj;
}
console.log(invert({originalKey: "originalValue", anotherKey: "anotherValue"}))

How do I assign my .reduce function output to a variable?

Given an object and a key, getElementsThatEqual10AtProperty returns an array containing all the elements of the array located at the given key that are equal to ten.
I want to assign what my .reduce method outputs to a variable then use that variable inside my if statement. My code evaluates to NaN.
function getElementsThatEqual10AtProperty(obj, key) {
var arrayTotal = 0;
obj[key].reduce(function(a,b){
arrayTotal = a + b;
});
if(arrayTotal === 10) {
return obj[key];
}
};
You're approaching reduce incorrectly. You're almost using it like Array#forEach. Remember that callbacks are functions. They expect to return an actual value.
When you read the docs, you'll see that reduce also needs an accumulator, that is an argument after the callback.
const sum = obj[key].reduce(function(a,b){
return a + b
}, 0)
Or if you want the newer and prettier version:
const sum = obj[key].reduce((a,b) => a + b, 0)
When you have a one liner, return is implicit, which means it's implied, as opposed to explicit.
The accumulator is what your value starts at while it totals up the values.
Array.reduce(callback, accumulator)

Get an object just by a property value

Let´s assume I have an object property which is passed into a function. In this case 'name' is filled with 'myObject.name' (which has the value 'Tom') - so basically 'Tom' gets passed into the function as the 'name'
function(name) {
do something //non-essential for my question
}
Is it possible to get the object, where 'Tom' is the property of, just by having the information 'Tom'? Basically I´m looking to get myObject.
Thanks :)
No, that's not possible.
All that the function knows is that one of its parameters was pointed to the string "Tom", not what else points to that string somewhere else in memory.
You can store objects within an array, filter the array to match property name of object to parameter passed to function using for..of loop, Object.entries(), which returns an array of property, values of an object.
const data = Array();
const setObjectPropertyName = _name => {
data.push({[_name]:_name});
return data
}
const getObjectByPropertyName = prop => {
let res = `${prop} property not found in data`;
for (let obj of data) {
for (let [key] of Object.entries(obj)) {
if(key === prop) return obj;
}
}
return res;
}
let s = setObjectPropertyName("Tom");
let g = getObjectByPropertyName("Tom");
let not = getObjectByPropertyName("Tome");
console.log(s,"\n", g, "\n", not);
Disclaimer: you absolutely should not do this. I'm only posting this because it is in fact possible (with some caveats), just really not advisable.
Going on the assumption that this is running in the browser and it's all running in the global scope (like in a script tag), you could technically iterate over the window object, check any objects in window for a name property and determine if their name property matches the name passed to your function.
var myObject = {
name: 'Tom',
thisIs: 'so awful',
imSorry: true,
};
function doSomethingWithName(name) {
for (var obj in window) {
var tmp = window[obj];
if (Object(tmp) === tmp && tmp.name === name) {
return tmp;
}
}
}
console.log(doSomethingWithName(myObject.name));

Categories