Using a callback parameter to get the value in the Anonymous Function - javascript

I came across the following code for a callback function. I understand the code, but I can't wrap my head around it. It just seems so counterintuitive.
function greet(name,callback1){
callback1(name)
}
greet("John Cena", function (somerandomName) {
console.log(somerandomName);
return someRandomName;
}); // Output is John Cena and undefined.
This is what I have understood from the code:
We define a function greet, which takes 2 parameters name and callback1. Then we say that callback1's parameter is name. We don't return anything in the greet function, why?
And when we invoke the greet function we pass the 2nd parameter as an Anonymous function whose parameter is someRandomName. Then we console.log(someRandomName).
I added the return someRandomName, but this return did not work and I got the printed statement followed by undefined
Can someone please explain this in simple words, This just seems so counterintuitive.

So I think it is important to understand that functions themselves can be parameters.
In this example you pass a string as the first parameter and then a function that takes that string as a parameter as the second parameter.
Functions do not always need to return something. Often a function might perform a manipulation on the dom, fetch data, configure something or alter pre existing variables. Of course you can return something if that is what is needed.
Adding return like you did does not do much. In order to actually return the name value you would have to write the original function like this.
function greet(name,callback1){
return callback1(name)
}
Then you could do something like this
var wrestler = greet("John Cena", function (somerandomName) {
console.log(somerandomName);
return somerandomName;
});
console.log(wrestler) // prints John Cena
Its sort of an weird example since it serves no real purpose. Something like this might help you see whats going on.
function greet(name, callback) {
callback(name)
}
greet('John Cena', function(name){
console.log('Hello ' + name) // prints Hello John Cena
})
OR return something and use it to manipulate dom
function greet(name, callback) {
return callback(name)
}
var greeting = greet('John Cena', function(name){
return 'Hello ' + name
})
document.getElementById('message').innerHTML = greeting
// somewhere in HTML...
<h1 id='message'></h1>
Either way at least we are doing something to the first parameter now. And the things that you can do with callbacks are limitless.
Callbacks are a fundamental feature of javascript. They come into play alot when the first part of the function is asynchronous, such as a call to an api or database. In this case the first part would be the call to the database and the callback will not be fired until a value is obtained from the initial call. Recently, this callback pattern is being used less due to Promises, but callbacks are still useful.
So an example of a generic api call from a frontend to a backend. This would typically be done using the Fetch Api or with a library like Request or Axios. Just remember, the first function that is calling an endpoint takes some amount of time to execute and get data. The callback will not fire until that data is returned. Of course there would be a function on the backend that sends either an error or data back to the callback. I dont want to over complicate things, rather just give an idea of what callbacks are often used for.
function getDataFromBackend(endPoint, callback) {
callback(error, data)
}
getDataFromBackend('/api/user', function(error, data) {
if (error) {
// handle error - show user error message in ui, etc
}
// do something with data - such as display welcome message to user, etc
})
I would suggest working with callbacks for practice. I find that when I use Node, or build an app with a frontend and backend I implement callbacks a lot for, since there is a lot of asynchronous communication happening. Hope I answered your questions.

First, you have return someRandomName but your parameter is called somerandomName. Variables are case sensitive; that's why your return value is different from what you want.
Your question is Why don't we return anything in the greet function. The answer is "I have no idea." You could return something. Some functions return things; some functions don't. That has nothing to do with the callback arrangement here.
function greet(name,callback1){
return callback1(name)
}
var finalResult = greet("John Cena", function (someRandomName) {
console.log(someRandomName);
return someRandomName;
});
Now finalResult will be "John Cena".
If it helps at all, anywhere you're using an anonymous function, you could just as easily use a named function. (It's often uglier in practice, but for the sake of understanding the concepts...)
function greet(name,callback1){
return callback1(name)
}
function myGreeterFunction(someRandomName) {
console.log(someRandomName);
return someRandomName;
});
var finalResult = greet("John Cena", myGreeterFunction);
Now it's perhaps easier to see that callback1(name) is the same thing as saying myGreeterFunction(name) in this case.

This is a pretty dated approach to JavaScript and you are totally right that it's counter intuitive. In this particular example there's no advantage of writing this with a callback and probably should be written as a promise,
greet("John Cena")
.then(() => {
return 'Next Action'
})
.then(nextAction => {
console.log(nextAction)
})
And as #mark-meyer pointed out this approach would be required if you had an asynchronous event.
Actually an AWS Lamda function actually has an optional callback defined as it's third argument. exports.myHandler = function(event, context, callback) {}. Which to be brutally honest I think is only there to cover cases where third party libraries aren't promised based.
Whilst passing a callback to a function is probably never the correct approach, there's still cases where passing a function to a function is valuable. Perhaps in a pub/sub system.
const events = {}
function subscribe (event, func) {
if (events[event]) {
events[event].push(func)
} else {
events[event] = [func]
}
}
function publish (event) {
if (events[events]) {
events[event].forEach(func => func())
}
}
And if you are writing with a fp approach link in RamdaJs chaining functions is going to be a huge part of what you write.
Does that clear things up a bit #pi2018?

The general technique is called continuation-passing style – contrast with direct style.
The technique does allow for some interesting programs to emerge. Below, we have two ordinary functions add and mult. We write two programs using cont which allows us to string these functions together, where each step is
the continuation of the one before it.
const cont = x => k =>
cont (k (x))
const add = x => y =>
x + y
const mult = x => y =>
x * y
cont (1) (add (2)) (mult (3)) (console.log) // 9
// 1 ->
// x => 2 + x
// cont (3) ->
// x => 3 * x
// cont (9) ->
// x => console.log (x)
// cont (undefined)
We can sequence as many operations as needed –
const cont = x => k =>
cont (k (x))
const add = x => y =>
x + y
const mult = x => y =>
x * y
cont (2) (mult (2)) (mult (2)) (mult (2)) (mult (2)) (console.log) // 32
// 2 ->
// x => 2 * x
// cont (4) ->
// x => 2 * x
// cont (8) ->
// x => 2 * x
// cont (16) ->
// x => 2 * x
// cont (32) ->
// x => console.log (x)
// cont (undefined)
Continuation-passing style can be used to implement concurrent programs, but JavaScript provides a better native concurrency primitive now, Promise. There's even new async and await syntax to make working with Promises easier.
As wikipedia notes, continuation-passing style is used more by compilers and less by programmers. If you're trying to write concurrent programs, I would highly recommend you use Promises instead. Later versions of Node include util.promisify which allows users to convert a continuation-passing style function to a Promise-returning async function.

Related

How to understand JavaScript “functions returning functions”? [duplicate]

I've seen references to curried functions in several articles and blogs but I can't find a good explanation (or at least one that makes sense!)
Currying is when you break down a function that takes multiple arguments into a series of functions that each take only one argument. Here's an example in JavaScript:
function add (a, b) {
return a + b;
}
add(3, 4); // returns 7
This is a function that takes two arguments, a and b, and returns their sum. We will now curry this function:
function add (a) {
return function (b) {
return a + b;
}
}
This is a function that takes one argument, a, and returns a function that takes another argument, b, and that function returns their sum.
add(3)(4); // returns 7
var add3 = add(3); // returns a function
add3(4); // returns 7
The first statement returns 7, like the add(3, 4) statement.
The second statement defines a new function called add3 that will
add 3 to its argument. (This is what some may call a closure.)
The third statement uses the add3 operation to add 3 to 4, again
producing 7 as a result.
In an algebra of functions, dealing with functions that take multiple arguments (or equivalent one argument that's an N-tuple) is somewhat inelegant -- but, as Moses Schönfinkel (and, independently, Haskell Curry) proved, it's not needed: all you need are functions that take one argument.
So how do you deal with something you'd naturally express as, say, f(x,y)? Well, you take that as equivalent to f(x)(y) -- f(x), call it g, is a function, and you apply that function to y. In other words, you only have functions that take one argument -- but some of those functions return other functions (which ALSO take one argument;-).
As usual, wikipedia has a nice summary entry about this, with many useful pointers (probably including ones regarding your favorite languages;-) as well as slightly more rigorous mathematical treatment.
Here's a concrete example:
Suppose you have a function that calculates the gravitational force acting on an object. If you don't know the formula, you can find it here. This function takes in the three necessary parameters as arguments.
Now, being on the earth, you only want to calculate forces for objects on this planet. In a functional language, you could pass in the mass of the earth to the function and then partially evaluate it. What you'd get back is another function that takes only two arguments and calculates the gravitational force of objects on earth. This is called currying.
It can be a way to use functions to make other functions.
In javascript:
let add = function(x){
return function(y){
return x + y
};
};
Would allow us to call it like so:
let addTen = add(10);
When this runs the 10 is passed in as x;
let add = function(10){
return function(y){
return 10 + y
};
};
which means we are returned this function:
function(y) { return 10 + y };
So when you call
addTen();
you are really calling:
function(y) { return 10 + y };
So if you do this:
addTen(4)
it's the same as:
function(4) { return 10 + 4} // 14
So our addTen() always adds ten to whatever we pass in. We can make similar functions in the same way:
let addTwo = add(2) // addTwo(); will add two to whatever you pass in
let addSeventy = add(70) // ... and so on...
Now the obvious follow up question is why on earth would you ever want to do that? It turns what was an eager operation x + y into one that can be stepped through lazily, meaning we can do at least two things
1. cache expensive operations
2. achieve abstractions in the functional paradigm.
Imagine our curried function looked like this:
let doTheHardStuff = function(x) {
let z = doSomethingComputationallyExpensive(x)
return function (y){
z + y
}
}
We could call this function once, then pass around the result to be used in lots of places, meaning we only do the computationally expensive stuff once:
let finishTheJob = doTheHardStuff(10)
finishTheJob(20)
finishTheJob(30)
We can get abstractions in a similar way.
Currying is a transformation that can be applied to functions to allow them to take one less argument than previously.
For example, in F# you can define a function thus:-
let f x y z = x + y + z
Here function f takes parameters x, y and z and sums them together so:-
f 1 2 3
Returns 6.
From our definition we can can therefore define the curry function for f:-
let curry f = fun x -> f x
Where 'fun x -> f x' is a lambda function equivilent to x => f(x) in C#. This function inputs the function you wish to curry and returns a function which takes a single argument and returns the specified function with the first argument set to the input argument.
Using our previous example we can obtain a curry of f thus:-
let curryf = curry f
We can then do the following:-
let f1 = curryf 1
Which provides us with a function f1 which is equivilent to f1 y z = 1 + y + z. This means we can do the following:-
f1 2 3
Which returns 6.
This process is often confused with 'partial function application' which can be defined thus:-
let papply f x = f x
Though we can extend it to more than one parameter, i.e.:-
let papply2 f x y = f x y
let papply3 f x y z = f x y z
etc.
A partial application will take the function and parameter(s) and return a function that requires one or more less parameters, and as the previous two examples show is implemented directly in the standard F# function definition so we could achieve the previous result thus:-
let f1 = f 1
f1 2 3
Which will return a result of 6.
In conclusion:-
The difference between currying and partial function application is that:-
Currying takes a function and provides a new function accepting a single argument, and returning the specified function with its first argument set to that argument. This allows us to represent functions with multiple parameters as a series of single argument functions. Example:-
let f x y z = x + y + z
let curryf = curry f
let f1 = curryf 1
let f2 = curryf 2
f1 2 3
6
f2 1 3
6
Partial function application is more direct - it takes a function and one or more arguments and returns a function with the first n arguments set to the n arguments specified. Example:-
let f x y z = x + y + z
let f1 = f 1
let f2 = f 2
f1 2 3
6
f2 1 3
6
A curried function is a function of several arguments rewritten such that it accepts the first argument and returns a function that accepts the second argument and so on. This allows functions of several arguments to have some of their initial arguments partially applied.
Currying means to convert a function of N arity into N functions of arity 1. The arity of the function is the number of arguments it requires.
Here is the formal definition:
curry(f) :: (a,b,c) -> f(a) -> f(b)-> f(c)
Here is a real world example that makes sense:
You go to ATM to get some money. You swipe your card, enter pin number and make your selection and then press enter to submit the "amount" alongside the request.
here is the normal function for withdrawing money.
const withdraw=(cardInfo,pinNumber,request){
// process it
return request.amount
}
In this implementation function expects us entering all arguments at once. We were going to swipe the card, enter the pin and make the request, then function would run. If any of those steps had issue, you would find out after you enter all the arguments. With curried function, we would create higher arity, pure and simple functions. Pure functions will help us easily debug our code.
this is Atm with curried function:
const withdraw=(cardInfo)=>(pinNumber)=>(request)=>request.amount
ATM, takes the card as input and returns a function that expects pinNumber and this function returns a function that accepts the request object and after the successful process, you get the amount that you requested. Each step, if you had an error, you will easily predict what went wrong. Let's say you enter the card and got error, you know that it is either related to the card or machine but not the pin number. Or if you entered the pin and if it does not get accepted you know that you entered the pin number wrong. You will easily debug the error.
Also, each function here is reusable, so you can use the same functions in different parts of your project.
Currying is translating a function from callable as f(a, b, c) into callable as f(a)(b)(c).
Otherwise currying is when you break down a function that takes multiple arguments into a series of functions that take part of the arguments.
Literally, currying is a transformation of functions: from one way of calling into another. In JavaScript, we usually make a wrapper to keep the original function.
Currying doesn’t call a function. It just transforms it.
Let’s make curry function that performs currying for two-argument functions. In other words, curry(f) for two-argument f(a, b) translates it into f(a)(b)
function curry(f) { // curry(f) does the currying transform
return function(a) {
return function(b) {
return f(a, b);
};
};
}
// usage
function sum(a, b) {
return a + b;
}
let carriedSum = curry(sum);
alert( carriedSum(1)(2) ); // 3
As you can see, the implementation is a series of wrappers.
The result of curry(func) is a wrapper function(a).
When it is called like sum(1), the argument is saved in the Lexical Environment, and a new wrapper is returned function(b).
Then sum(1)(2) finally calls function(b) providing 2, and it passes the call to the original multi-argument sum.
Here's a toy example in Python:
>>> from functools import partial as curry
>>> # Original function taking three parameters:
>>> def display_quote(who, subject, quote):
print who, 'said regarding', subject + ':'
print '"' + quote + '"'
>>> display_quote("hoohoo", "functional languages",
"I like Erlang, not sure yet about Haskell.")
hoohoo said regarding functional languages:
"I like Erlang, not sure yet about Haskell."
>>> # Let's curry the function to get another that always quotes Alex...
>>> am_quote = curry(display_quote, "Alex Martelli")
>>> am_quote("currying", "As usual, wikipedia has a nice summary...")
Alex Martelli said regarding currying:
"As usual, wikipedia has a nice summary..."
(Just using concatenation via + to avoid distraction for non-Python programmers.)
Editing to add:
See http://docs.python.org/library/functools.html?highlight=partial#functools.partial,
which also shows the partial object vs. function distinction in the way Python implements this.
Here is the example of generic and the shortest version for function currying with n no. of params.
const add = a => b => b ? add(a + b) : a;
const add = a => b => b ? add(a + b) : a;
console.log(add(1)(2)(3)(4)());
Currying is one of the higher-order functions of Java Script.
Currying is a function of many arguments which is rewritten such that it takes the first argument and return a function which in turns uses the remaining arguments and returns the value.
Confused?
Let see an example,
function add(a,b)
{
return a+b;
}
add(5,6);
This is similar to the following currying function,
function add(a)
{
return function(b){
return a+b;
}
}
var curryAdd = add(5);
curryAdd(6);
So what does this code means?
Now read the definition again,
Currying is a function of many arguments which is rewritten such that it takes first argument and return a function which in turns uses the remaining arguments and returns the value.
Still, Confused?
Let me explain in deep!
When you call this function,
var curryAdd = add(5);
It will return you a function like this,
curryAdd=function(y){return 5+y;}
So, this is called higher-order functions. Meaning, Invoking one function in turns returns another function is an exact definition for higher-order function. This is the greatest advantage for the legend, Java Script.
So come back to the currying,
This line will pass the second argument to the curryAdd function.
curryAdd(6);
which in turns results,
curryAdd=function(6){return 5+6;}
// Which results in 11
Hope you understand the usage of currying here.
So, Coming to the advantages,
Why Currying?
It makes use of code reusability.
Less code, Less Error.
You may ask how it is less code?
I can prove it with ECMA script 6 new feature arrow functions.
Yes! ECMA 6, provide us with the wonderful feature called arrow functions,
function add(a)
{
return function(b){
return a+b;
}
}
With the help of the arrow function, we can write the above function as follows,
x=>y=>x+y
Cool right?
So, Less Code and Fewer bugs!!
With the help of these higher-order function one can easily develop a bug-free code.
I challenge you!
Hope, you understood what is currying. Please feel free to comment over here if you need any clarifications.
Thanks, Have a nice day!
If you understand partial you're halfway there. The idea of partial is to preapply arguments to a function and give back a new function that wants only the remaining arguments. When this new function is called it includes the preloaded arguments along with whatever arguments were supplied to it.
In Clojure + is a function but to make things starkly clear:
(defn add [a b] (+ a b))
You may be aware that the inc function simply adds 1 to whatever number it's passed.
(inc 7) # => 8
Let's build it ourselves using partial:
(def inc (partial add 1))
Here we return another function that has 1 loaded into the first argument of add. As add takes two arguments the new inc function wants only the b argument -- not 2 arguments as before since 1 has already been partially applied. Thus partial is a tool from which to create new functions with default values presupplied. That is why in a functional language functions often order arguments from general to specific. This makes it easier to reuse such functions from which to construct other functions.
Now imagine if the language were smart enough to understand introspectively that add wanted two arguments. When we passed it one argument, rather than balking, what if the function partially applied the argument we passed it on our behalf understanding that we probably meant to provide the other argument later? We could then define inc without explicitly using partial.
(def inc (add 1)) #partial is implied
This is the way some languages behave. It is exceptionally useful when one wishes to compose functions into larger transformations. This would lead one to transducers.
Curry can simplify your code. This is one of the main reasons to use this. Currying is a process of converting a function that accepts n arguments into n functions that accept only one argument.
The principle is to pass the arguments of the passed function, using the closure (closure) property, to store them in another function and treat it as a return value, and these functions form a chain, and the final arguments are passed in to complete the operation.
The benefit of this is that it can simplify the processing of parameters by dealing with one parameter at a time, which can also improve the flexibility and readability of the program. This also makes the program more manageable. Also dividing the code into smaller pieces would make it reuse-friendly.
For example:
function curryMinus(x)
{
return function(y)
{
return x - y;
}
}
var minus5 = curryMinus(1);
minus5(3);
minus5(5);
I can also do...
var minus7 = curryMinus(7);
minus7(3);
minus7(5);
This is very great for making complex code neat and handling of unsynchronized methods etc.
I found this article, and the article it references, useful, to better understand currying:
http://blogs.msdn.com/wesdyer/archive/2007/01/29/currying-and-partial-function-application.aspx
As the others mentioned, it is just a way to have a one parameter function.
This is useful in that you don't have to assume how many parameters will be passed in, so you don't need a 2 parameter, 3 parameter and 4 parameter functions.
As all other answers currying helps to create partially applied functions. Javascript does not provide native support for automatic currying. So the examples provided above may not help in practical coding. There is some excellent example in livescript (Which essentially compiles to js)
http://livescript.net/
times = (x, y) --> x * y
times 2, 3 #=> 6 (normal use works as expected)
double = times 2
double 5 #=> 10
In above example when you have given less no of arguments livescript generates new curried function for you (double)
A curried function is applied to multiple argument lists, instead of just
one.
Here is a regular, non-curried function, which adds two Int
parameters, x and y:
scala> def plainOldSum(x: Int, y: Int) = x + y
plainOldSum: (x: Int,y: Int)Int
scala> plainOldSum(1, 2)
res4: Int = 3
Here is similar function that’s curried. Instead
of one list of two Int parameters, you apply this function to two lists of one
Int parameter each:
scala> def curriedSum(x: Int)(y: Int) = x + y
curriedSum: (x: Int)(y: Int)Intscala> second(2)
res6: Int = 3
scala> curriedSum(1)(2)
res5: Int = 3
What’s happening here is that when you invoke curriedSum, you actually get two traditional function invocations back to back. The first function
invocation takes a single Int parameter named x , and returns a function
value for the second function. This second function takes the Int parameter
y.
Here’s a function named first that does in spirit what the first traditional
function invocation of curriedSum would do:
scala> def first(x: Int) = (y: Int) => x + y
first: (x: Int)(Int) => Int
Applying 1 to the first function—in other words, invoking the first function
and passing in 1 —yields the second function:
scala> val second = first(1)
second: (Int) => Int = <function1>
Applying 2 to the second function yields the result:
scala> second(2)
res6: Int = 3
An example of currying would be when having functions you only know one of the parameters at the moment:
For example:
func aFunction(str: String) {
let callback = callback(str) // signature now is `NSData -> ()`
performAsyncRequest(callback)
}
func callback(str: String, data: NSData) {
// Callback code
}
func performAsyncRequest(callback: NSData -> ()) {
// Async code that will call callback with NSData as parameter
}
Here, since you don't know the second parameter for callback when sending it to performAsyncRequest(_:) you would have to create another lambda / closure to send that one to the function.
Most of the examples in this thread are contrived (adding numbers). These are useful for illustrating the concept, but don't motivate when you might actually use currying in an app.
Here's a practical example from React, the JavaScript user interface library. Currying here illustrates the closure property.
As is typical in most user interface libraries, when the user clicks a button, a function is called to handle the event. The handler typically modifies the application's state and triggers the interface to re-render.
Lists of items are common user interface components. Each item might have an identifier associated with it (usually related to a database record). When the user clicks a button to, for example, "like" an item in the list, the handler needs to know which button was clicked.
Currying is one approach for achieving the binding between id and handler. In the code below, makeClickHandler is a function that accepts an id and returns a handler function that has the id in its scope.
The inner function's workings aren't important for this discussion. But if you're curious, it searches through the array of items to find an item by id and increments its "likes", triggering another render by setting the state. State is immutable in React so it takes a bit more work to modify the one value than you might expect.
You can think of invoking the curried function as "stripping" off the outer function to expose an inner function ready to be called. That new inner function is the actual handler passed to React's onClick. The outer function is a closure for the loop body to specify the id that will be in scope of a particular inner handler function.
const List = () => {
const [items, setItems] = React.useState([
{name: "foo", likes: 0},
{name: "bar", likes: 0},
{name: "baz", likes: 0},
].map(e => ({...e, id: crypto.randomUUID()})));
// .----------. outer func inner func
// | currying | | |
// `----------` V V
const makeClickHandler = (id) => (event) => {
setItems(prev => {
const i = prev.findIndex(e => e.id === id);
const cpy = {...prev[i]};
cpy.likes++;
return [
...prev.slice(0, i),
cpy,
...prev.slice(i + 1)
];
});
};
return (
<ul>
{items.map(({name, likes, id}) =>
<li key={id}>
<button
onClick={
/* strip off first function layer to get a click
handler bound to `id` and pass it to onClick */
makeClickHandler(id)
}
>
{name} ({likes} likes)
</button>
</li>
)}
</ul>
);
};
ReactDOM.createRoot(document.querySelector("#app"))
.render(<List />);
button {
font-family: monospace;
font-size: 2em;
}
<script crossorigin src="https://unpkg.com/react#18/umd/react.development.js"></script>
<script crossorigin src="https://unpkg.com/react-dom#18/umd/react-dom.development.js"></script>
<div id="app"></div>
Here you can find a simple explanation of currying implementation in C#. In the comments, I have tried to show how currying can be useful:
public static class FuncExtensions {
public static Func<T1, Func<T2, TResult>> Curry<T1, T2, TResult>(this Func<T1, T2, TResult> func)
{
return x1 => x2 => func(x1, x2);
}
}
//Usage
var add = new Func<int, int, int>((x, y) => x + y).Curry();
var func = add(1);
//Obtaining the next parameter here, calling later the func with next parameter.
//Or you can prepare some base calculations at the previous step and then
//use the result of those calculations when calling the func multiple times
//with different input parameters.
int result = func(1);
"Currying" is the process of taking the function of multiple arguments and converting it into a series of functions that each take a single argument and return a function of a single argument, or in the case of the final function, return the actual result.
The other answers have said what currying is: passing fewer arguments to a curried function than it expects is not an error, but instead returns a function that expects the rest of the arguments and returns the same result as if you had passed them all in at once.
I’ll try to motivate why it’s useful. It’s one of those tools that you never realized you needed until you do. Currying is above all a way to make your programs more expressive - you can combine operations together with less code.
For example, if you have a curried function add, you can write the equivalent of JS x => k + x (or Python lambda x: k + x or Ruby { |x| k + x } or Lisp (lambda (x) (+ k x)) or …) as just add(k). In Haskelll you can even use the operator: (k +) or (+ k) (The two forms let you curry either way for non-commutative operators: (/ 9) is a function that divides a number by 9, which is probably the more common use case, but you also have (9 /) for a function that divides 9 by its argument.) Besides being shorter, the curried version contains no made-up parameter name like the x found in all the other versions. It’s not needed. You’re defining a function that adds some constant k to a number, and you don’t need to give that number a name just to talk about the function. Or even to define it. This is an example of what’s called “point-free style”. You can combine operations together given nothing but the operations themselves. You don’t have to declare anonymous functions that do nothing but apply some operation to their argument, because *that’s what the operations already are.
This becomes very handy with higher-order functions when they’re defined in a currying-friendly way. For instance, a curried map(fn, list) let’s you define a mapper with just map(fn) that can be applied it to any list later. But currying a map defined instead as map(list, fn) just lets you define a function that will apply some other function to a constant list, which is probably less generally useful.
Currying reduces the need for things like pipes and threading. In Clojure, you might define a temperature conversion function using the threading macro ->: (defn f2c (deg) (-> deg (- 32) (* 5) (/ 9)). That’s cool, it reads nicely left to right (“subtract 32, multiply by 5 and divide by 9.”) and you only have to mention the parameter twice instead of once for every suboperation… but it only works because -> is a macro that transforms the whole form syntactically before anything is evaluated. It turns into a regular nested expression behind the scenes: (/ (* (- deg 32) 5) 9). If the math ops were curried, you wouldn’t need a macro to combine them so nicely, as in Haskell let f2c = (subtract 32) & (* 5) & (/ 9). (Although it would admittedly be more idiomatic to use function composition, which reads right to left: (/ 9) . (* 5) . (subtract 32).)
Again, it’s hard to find good demo examples; currying is most useful in complex cases where it really helps the readability of the solution, but those take so much explanation just to get you to understand the problem that the overall lesson about currying can get lost in the noise.
There is an example of "Currying in ReasonML".
let run = () => {
Js.log("Curryed function: ");
let sum = (x, y) => x + y;
Printf.printf("sum(2, 3) : %d\n", sum(2, 3));
let per2 = sum(2);
Printf.printf("per2(3) : %d\n", per2(3));
};
Below is one of currying example in JavaScript, here the multiply return the function which is used to multiply x by two.
const multiply = (presetConstant) => {
return (x) => {
return presetConstant * x;
};
};
const multiplyByTwo = multiply(2);
// now multiplyByTwo is like below function & due to closure property in JavaScript it will always be able to access 'presetConstant' value
// const multiplyByTwo = (x) => {
// return presetConstant * x;
// };
console.log(`multiplyByTwo(8) : ${multiplyByTwo(8)}`);
Output
multiplyByTwo(8) : 16

what these parenthesis in this require works? [duplicate]

I've seen references to curried functions in several articles and blogs but I can't find a good explanation (or at least one that makes sense!)
Currying is when you break down a function that takes multiple arguments into a series of functions that each take only one argument. Here's an example in JavaScript:
function add (a, b) {
return a + b;
}
add(3, 4); // returns 7
This is a function that takes two arguments, a and b, and returns their sum. We will now curry this function:
function add (a) {
return function (b) {
return a + b;
}
}
This is a function that takes one argument, a, and returns a function that takes another argument, b, and that function returns their sum.
add(3)(4); // returns 7
var add3 = add(3); // returns a function
add3(4); // returns 7
The first statement returns 7, like the add(3, 4) statement.
The second statement defines a new function called add3 that will
add 3 to its argument. (This is what some may call a closure.)
The third statement uses the add3 operation to add 3 to 4, again
producing 7 as a result.
In an algebra of functions, dealing with functions that take multiple arguments (or equivalent one argument that's an N-tuple) is somewhat inelegant -- but, as Moses Schönfinkel (and, independently, Haskell Curry) proved, it's not needed: all you need are functions that take one argument.
So how do you deal with something you'd naturally express as, say, f(x,y)? Well, you take that as equivalent to f(x)(y) -- f(x), call it g, is a function, and you apply that function to y. In other words, you only have functions that take one argument -- but some of those functions return other functions (which ALSO take one argument;-).
As usual, wikipedia has a nice summary entry about this, with many useful pointers (probably including ones regarding your favorite languages;-) as well as slightly more rigorous mathematical treatment.
Here's a concrete example:
Suppose you have a function that calculates the gravitational force acting on an object. If you don't know the formula, you can find it here. This function takes in the three necessary parameters as arguments.
Now, being on the earth, you only want to calculate forces for objects on this planet. In a functional language, you could pass in the mass of the earth to the function and then partially evaluate it. What you'd get back is another function that takes only two arguments and calculates the gravitational force of objects on earth. This is called currying.
It can be a way to use functions to make other functions.
In javascript:
let add = function(x){
return function(y){
return x + y
};
};
Would allow us to call it like so:
let addTen = add(10);
When this runs the 10 is passed in as x;
let add = function(10){
return function(y){
return 10 + y
};
};
which means we are returned this function:
function(y) { return 10 + y };
So when you call
addTen();
you are really calling:
function(y) { return 10 + y };
So if you do this:
addTen(4)
it's the same as:
function(4) { return 10 + 4} // 14
So our addTen() always adds ten to whatever we pass in. We can make similar functions in the same way:
let addTwo = add(2) // addTwo(); will add two to whatever you pass in
let addSeventy = add(70) // ... and so on...
Now the obvious follow up question is why on earth would you ever want to do that? It turns what was an eager operation x + y into one that can be stepped through lazily, meaning we can do at least two things
1. cache expensive operations
2. achieve abstractions in the functional paradigm.
Imagine our curried function looked like this:
let doTheHardStuff = function(x) {
let z = doSomethingComputationallyExpensive(x)
return function (y){
z + y
}
}
We could call this function once, then pass around the result to be used in lots of places, meaning we only do the computationally expensive stuff once:
let finishTheJob = doTheHardStuff(10)
finishTheJob(20)
finishTheJob(30)
We can get abstractions in a similar way.
Currying is a transformation that can be applied to functions to allow them to take one less argument than previously.
For example, in F# you can define a function thus:-
let f x y z = x + y + z
Here function f takes parameters x, y and z and sums them together so:-
f 1 2 3
Returns 6.
From our definition we can can therefore define the curry function for f:-
let curry f = fun x -> f x
Where 'fun x -> f x' is a lambda function equivilent to x => f(x) in C#. This function inputs the function you wish to curry and returns a function which takes a single argument and returns the specified function with the first argument set to the input argument.
Using our previous example we can obtain a curry of f thus:-
let curryf = curry f
We can then do the following:-
let f1 = curryf 1
Which provides us with a function f1 which is equivilent to f1 y z = 1 + y + z. This means we can do the following:-
f1 2 3
Which returns 6.
This process is often confused with 'partial function application' which can be defined thus:-
let papply f x = f x
Though we can extend it to more than one parameter, i.e.:-
let papply2 f x y = f x y
let papply3 f x y z = f x y z
etc.
A partial application will take the function and parameter(s) and return a function that requires one or more less parameters, and as the previous two examples show is implemented directly in the standard F# function definition so we could achieve the previous result thus:-
let f1 = f 1
f1 2 3
Which will return a result of 6.
In conclusion:-
The difference between currying and partial function application is that:-
Currying takes a function and provides a new function accepting a single argument, and returning the specified function with its first argument set to that argument. This allows us to represent functions with multiple parameters as a series of single argument functions. Example:-
let f x y z = x + y + z
let curryf = curry f
let f1 = curryf 1
let f2 = curryf 2
f1 2 3
6
f2 1 3
6
Partial function application is more direct - it takes a function and one or more arguments and returns a function with the first n arguments set to the n arguments specified. Example:-
let f x y z = x + y + z
let f1 = f 1
let f2 = f 2
f1 2 3
6
f2 1 3
6
A curried function is a function of several arguments rewritten such that it accepts the first argument and returns a function that accepts the second argument and so on. This allows functions of several arguments to have some of their initial arguments partially applied.
Currying means to convert a function of N arity into N functions of arity 1. The arity of the function is the number of arguments it requires.
Here is the formal definition:
curry(f) :: (a,b,c) -> f(a) -> f(b)-> f(c)
Here is a real world example that makes sense:
You go to ATM to get some money. You swipe your card, enter pin number and make your selection and then press enter to submit the "amount" alongside the request.
here is the normal function for withdrawing money.
const withdraw=(cardInfo,pinNumber,request){
// process it
return request.amount
}
In this implementation function expects us entering all arguments at once. We were going to swipe the card, enter the pin and make the request, then function would run. If any of those steps had issue, you would find out after you enter all the arguments. With curried function, we would create higher arity, pure and simple functions. Pure functions will help us easily debug our code.
this is Atm with curried function:
const withdraw=(cardInfo)=>(pinNumber)=>(request)=>request.amount
ATM, takes the card as input and returns a function that expects pinNumber and this function returns a function that accepts the request object and after the successful process, you get the amount that you requested. Each step, if you had an error, you will easily predict what went wrong. Let's say you enter the card and got error, you know that it is either related to the card or machine but not the pin number. Or if you entered the pin and if it does not get accepted you know that you entered the pin number wrong. You will easily debug the error.
Also, each function here is reusable, so you can use the same functions in different parts of your project.
Currying is translating a function from callable as f(a, b, c) into callable as f(a)(b)(c).
Otherwise currying is when you break down a function that takes multiple arguments into a series of functions that take part of the arguments.
Literally, currying is a transformation of functions: from one way of calling into another. In JavaScript, we usually make a wrapper to keep the original function.
Currying doesn’t call a function. It just transforms it.
Let’s make curry function that performs currying for two-argument functions. In other words, curry(f) for two-argument f(a, b) translates it into f(a)(b)
function curry(f) { // curry(f) does the currying transform
return function(a) {
return function(b) {
return f(a, b);
};
};
}
// usage
function sum(a, b) {
return a + b;
}
let carriedSum = curry(sum);
alert( carriedSum(1)(2) ); // 3
As you can see, the implementation is a series of wrappers.
The result of curry(func) is a wrapper function(a).
When it is called like sum(1), the argument is saved in the Lexical Environment, and a new wrapper is returned function(b).
Then sum(1)(2) finally calls function(b) providing 2, and it passes the call to the original multi-argument sum.
Here's a toy example in Python:
>>> from functools import partial as curry
>>> # Original function taking three parameters:
>>> def display_quote(who, subject, quote):
print who, 'said regarding', subject + ':'
print '"' + quote + '"'
>>> display_quote("hoohoo", "functional languages",
"I like Erlang, not sure yet about Haskell.")
hoohoo said regarding functional languages:
"I like Erlang, not sure yet about Haskell."
>>> # Let's curry the function to get another that always quotes Alex...
>>> am_quote = curry(display_quote, "Alex Martelli")
>>> am_quote("currying", "As usual, wikipedia has a nice summary...")
Alex Martelli said regarding currying:
"As usual, wikipedia has a nice summary..."
(Just using concatenation via + to avoid distraction for non-Python programmers.)
Editing to add:
See http://docs.python.org/library/functools.html?highlight=partial#functools.partial,
which also shows the partial object vs. function distinction in the way Python implements this.
Here is the example of generic and the shortest version for function currying with n no. of params.
const add = a => b => b ? add(a + b) : a;
const add = a => b => b ? add(a + b) : a;
console.log(add(1)(2)(3)(4)());
Currying is one of the higher-order functions of Java Script.
Currying is a function of many arguments which is rewritten such that it takes the first argument and return a function which in turns uses the remaining arguments and returns the value.
Confused?
Let see an example,
function add(a,b)
{
return a+b;
}
add(5,6);
This is similar to the following currying function,
function add(a)
{
return function(b){
return a+b;
}
}
var curryAdd = add(5);
curryAdd(6);
So what does this code means?
Now read the definition again,
Currying is a function of many arguments which is rewritten such that it takes first argument and return a function which in turns uses the remaining arguments and returns the value.
Still, Confused?
Let me explain in deep!
When you call this function,
var curryAdd = add(5);
It will return you a function like this,
curryAdd=function(y){return 5+y;}
So, this is called higher-order functions. Meaning, Invoking one function in turns returns another function is an exact definition for higher-order function. This is the greatest advantage for the legend, Java Script.
So come back to the currying,
This line will pass the second argument to the curryAdd function.
curryAdd(6);
which in turns results,
curryAdd=function(6){return 5+6;}
// Which results in 11
Hope you understand the usage of currying here.
So, Coming to the advantages,
Why Currying?
It makes use of code reusability.
Less code, Less Error.
You may ask how it is less code?
I can prove it with ECMA script 6 new feature arrow functions.
Yes! ECMA 6, provide us with the wonderful feature called arrow functions,
function add(a)
{
return function(b){
return a+b;
}
}
With the help of the arrow function, we can write the above function as follows,
x=>y=>x+y
Cool right?
So, Less Code and Fewer bugs!!
With the help of these higher-order function one can easily develop a bug-free code.
I challenge you!
Hope, you understood what is currying. Please feel free to comment over here if you need any clarifications.
Thanks, Have a nice day!
If you understand partial you're halfway there. The idea of partial is to preapply arguments to a function and give back a new function that wants only the remaining arguments. When this new function is called it includes the preloaded arguments along with whatever arguments were supplied to it.
In Clojure + is a function but to make things starkly clear:
(defn add [a b] (+ a b))
You may be aware that the inc function simply adds 1 to whatever number it's passed.
(inc 7) # => 8
Let's build it ourselves using partial:
(def inc (partial add 1))
Here we return another function that has 1 loaded into the first argument of add. As add takes two arguments the new inc function wants only the b argument -- not 2 arguments as before since 1 has already been partially applied. Thus partial is a tool from which to create new functions with default values presupplied. That is why in a functional language functions often order arguments from general to specific. This makes it easier to reuse such functions from which to construct other functions.
Now imagine if the language were smart enough to understand introspectively that add wanted two arguments. When we passed it one argument, rather than balking, what if the function partially applied the argument we passed it on our behalf understanding that we probably meant to provide the other argument later? We could then define inc without explicitly using partial.
(def inc (add 1)) #partial is implied
This is the way some languages behave. It is exceptionally useful when one wishes to compose functions into larger transformations. This would lead one to transducers.
Curry can simplify your code. This is one of the main reasons to use this. Currying is a process of converting a function that accepts n arguments into n functions that accept only one argument.
The principle is to pass the arguments of the passed function, using the closure (closure) property, to store them in another function and treat it as a return value, and these functions form a chain, and the final arguments are passed in to complete the operation.
The benefit of this is that it can simplify the processing of parameters by dealing with one parameter at a time, which can also improve the flexibility and readability of the program. This also makes the program more manageable. Also dividing the code into smaller pieces would make it reuse-friendly.
For example:
function curryMinus(x)
{
return function(y)
{
return x - y;
}
}
var minus5 = curryMinus(1);
minus5(3);
minus5(5);
I can also do...
var minus7 = curryMinus(7);
minus7(3);
minus7(5);
This is very great for making complex code neat and handling of unsynchronized methods etc.
I found this article, and the article it references, useful, to better understand currying:
http://blogs.msdn.com/wesdyer/archive/2007/01/29/currying-and-partial-function-application.aspx
As the others mentioned, it is just a way to have a one parameter function.
This is useful in that you don't have to assume how many parameters will be passed in, so you don't need a 2 parameter, 3 parameter and 4 parameter functions.
As all other answers currying helps to create partially applied functions. Javascript does not provide native support for automatic currying. So the examples provided above may not help in practical coding. There is some excellent example in livescript (Which essentially compiles to js)
http://livescript.net/
times = (x, y) --> x * y
times 2, 3 #=> 6 (normal use works as expected)
double = times 2
double 5 #=> 10
In above example when you have given less no of arguments livescript generates new curried function for you (double)
A curried function is applied to multiple argument lists, instead of just
one.
Here is a regular, non-curried function, which adds two Int
parameters, x and y:
scala> def plainOldSum(x: Int, y: Int) = x + y
plainOldSum: (x: Int,y: Int)Int
scala> plainOldSum(1, 2)
res4: Int = 3
Here is similar function that’s curried. Instead
of one list of two Int parameters, you apply this function to two lists of one
Int parameter each:
scala> def curriedSum(x: Int)(y: Int) = x + y
curriedSum: (x: Int)(y: Int)Intscala> second(2)
res6: Int = 3
scala> curriedSum(1)(2)
res5: Int = 3
What’s happening here is that when you invoke curriedSum, you actually get two traditional function invocations back to back. The first function
invocation takes a single Int parameter named x , and returns a function
value for the second function. This second function takes the Int parameter
y.
Here’s a function named first that does in spirit what the first traditional
function invocation of curriedSum would do:
scala> def first(x: Int) = (y: Int) => x + y
first: (x: Int)(Int) => Int
Applying 1 to the first function—in other words, invoking the first function
and passing in 1 —yields the second function:
scala> val second = first(1)
second: (Int) => Int = <function1>
Applying 2 to the second function yields the result:
scala> second(2)
res6: Int = 3
An example of currying would be when having functions you only know one of the parameters at the moment:
For example:
func aFunction(str: String) {
let callback = callback(str) // signature now is `NSData -> ()`
performAsyncRequest(callback)
}
func callback(str: String, data: NSData) {
// Callback code
}
func performAsyncRequest(callback: NSData -> ()) {
// Async code that will call callback with NSData as parameter
}
Here, since you don't know the second parameter for callback when sending it to performAsyncRequest(_:) you would have to create another lambda / closure to send that one to the function.
Most of the examples in this thread are contrived (adding numbers). These are useful for illustrating the concept, but don't motivate when you might actually use currying in an app.
Here's a practical example from React, the JavaScript user interface library. Currying here illustrates the closure property.
As is typical in most user interface libraries, when the user clicks a button, a function is called to handle the event. The handler typically modifies the application's state and triggers the interface to re-render.
Lists of items are common user interface components. Each item might have an identifier associated with it (usually related to a database record). When the user clicks a button to, for example, "like" an item in the list, the handler needs to know which button was clicked.
Currying is one approach for achieving the binding between id and handler. In the code below, makeClickHandler is a function that accepts an id and returns a handler function that has the id in its scope.
The inner function's workings aren't important for this discussion. But if you're curious, it searches through the array of items to find an item by id and increments its "likes", triggering another render by setting the state. State is immutable in React so it takes a bit more work to modify the one value than you might expect.
You can think of invoking the curried function as "stripping" off the outer function to expose an inner function ready to be called. That new inner function is the actual handler passed to React's onClick. The outer function is a closure for the loop body to specify the id that will be in scope of a particular inner handler function.
const List = () => {
const [items, setItems] = React.useState([
{name: "foo", likes: 0},
{name: "bar", likes: 0},
{name: "baz", likes: 0},
].map(e => ({...e, id: crypto.randomUUID()})));
// .----------. outer func inner func
// | currying | | |
// `----------` V V
const makeClickHandler = (id) => (event) => {
setItems(prev => {
const i = prev.findIndex(e => e.id === id);
const cpy = {...prev[i]};
cpy.likes++;
return [
...prev.slice(0, i),
cpy,
...prev.slice(i + 1)
];
});
};
return (
<ul>
{items.map(({name, likes, id}) =>
<li key={id}>
<button
onClick={
/* strip off first function layer to get a click
handler bound to `id` and pass it to onClick */
makeClickHandler(id)
}
>
{name} ({likes} likes)
</button>
</li>
)}
</ul>
);
};
ReactDOM.createRoot(document.querySelector("#app"))
.render(<List />);
button {
font-family: monospace;
font-size: 2em;
}
<script crossorigin src="https://unpkg.com/react#18/umd/react.development.js"></script>
<script crossorigin src="https://unpkg.com/react-dom#18/umd/react-dom.development.js"></script>
<div id="app"></div>
Here you can find a simple explanation of currying implementation in C#. In the comments, I have tried to show how currying can be useful:
public static class FuncExtensions {
public static Func<T1, Func<T2, TResult>> Curry<T1, T2, TResult>(this Func<T1, T2, TResult> func)
{
return x1 => x2 => func(x1, x2);
}
}
//Usage
var add = new Func<int, int, int>((x, y) => x + y).Curry();
var func = add(1);
//Obtaining the next parameter here, calling later the func with next parameter.
//Or you can prepare some base calculations at the previous step and then
//use the result of those calculations when calling the func multiple times
//with different input parameters.
int result = func(1);
"Currying" is the process of taking the function of multiple arguments and converting it into a series of functions that each take a single argument and return a function of a single argument, or in the case of the final function, return the actual result.
The other answers have said what currying is: passing fewer arguments to a curried function than it expects is not an error, but instead returns a function that expects the rest of the arguments and returns the same result as if you had passed them all in at once.
I’ll try to motivate why it’s useful. It’s one of those tools that you never realized you needed until you do. Currying is above all a way to make your programs more expressive - you can combine operations together with less code.
For example, if you have a curried function add, you can write the equivalent of JS x => k + x (or Python lambda x: k + x or Ruby { |x| k + x } or Lisp (lambda (x) (+ k x)) or …) as just add(k). In Haskelll you can even use the operator: (k +) or (+ k) (The two forms let you curry either way for non-commutative operators: (/ 9) is a function that divides a number by 9, which is probably the more common use case, but you also have (9 /) for a function that divides 9 by its argument.) Besides being shorter, the curried version contains no made-up parameter name like the x found in all the other versions. It’s not needed. You’re defining a function that adds some constant k to a number, and you don’t need to give that number a name just to talk about the function. Or even to define it. This is an example of what’s called “point-free style”. You can combine operations together given nothing but the operations themselves. You don’t have to declare anonymous functions that do nothing but apply some operation to their argument, because *that’s what the operations already are.
This becomes very handy with higher-order functions when they’re defined in a currying-friendly way. For instance, a curried map(fn, list) let’s you define a mapper with just map(fn) that can be applied it to any list later. But currying a map defined instead as map(list, fn) just lets you define a function that will apply some other function to a constant list, which is probably less generally useful.
Currying reduces the need for things like pipes and threading. In Clojure, you might define a temperature conversion function using the threading macro ->: (defn f2c (deg) (-> deg (- 32) (* 5) (/ 9)). That’s cool, it reads nicely left to right (“subtract 32, multiply by 5 and divide by 9.”) and you only have to mention the parameter twice instead of once for every suboperation… but it only works because -> is a macro that transforms the whole form syntactically before anything is evaluated. It turns into a regular nested expression behind the scenes: (/ (* (- deg 32) 5) 9). If the math ops were curried, you wouldn’t need a macro to combine them so nicely, as in Haskell let f2c = (subtract 32) & (* 5) & (/ 9). (Although it would admittedly be more idiomatic to use function composition, which reads right to left: (/ 9) . (* 5) . (subtract 32).)
Again, it’s hard to find good demo examples; currying is most useful in complex cases where it really helps the readability of the solution, but those take so much explanation just to get you to understand the problem that the overall lesson about currying can get lost in the noise.
There is an example of "Currying in ReasonML".
let run = () => {
Js.log("Curryed function: ");
let sum = (x, y) => x + y;
Printf.printf("sum(2, 3) : %d\n", sum(2, 3));
let per2 = sum(2);
Printf.printf("per2(3) : %d\n", per2(3));
};
Below is one of currying example in JavaScript, here the multiply return the function which is used to multiply x by two.
const multiply = (presetConstant) => {
return (x) => {
return presetConstant * x;
};
};
const multiplyByTwo = multiply(2);
// now multiplyByTwo is like below function & due to closure property in JavaScript it will always be able to access 'presetConstant' value
// const multiplyByTwo = (x) => {
// return presetConstant * x;
// };
console.log(`multiplyByTwo(8) : ${multiplyByTwo(8)}`);
Output
multiplyByTwo(8) : 16

Elaborate this in detail [duplicate]

I've seen references to curried functions in several articles and blogs but I can't find a good explanation (or at least one that makes sense!)
Currying is when you break down a function that takes multiple arguments into a series of functions that each take only one argument. Here's an example in JavaScript:
function add (a, b) {
return a + b;
}
add(3, 4); // returns 7
This is a function that takes two arguments, a and b, and returns their sum. We will now curry this function:
function add (a) {
return function (b) {
return a + b;
}
}
This is a function that takes one argument, a, and returns a function that takes another argument, b, and that function returns their sum.
add(3)(4); // returns 7
var add3 = add(3); // returns a function
add3(4); // returns 7
The first statement returns 7, like the add(3, 4) statement.
The second statement defines a new function called add3 that will
add 3 to its argument. (This is what some may call a closure.)
The third statement uses the add3 operation to add 3 to 4, again
producing 7 as a result.
In an algebra of functions, dealing with functions that take multiple arguments (or equivalent one argument that's an N-tuple) is somewhat inelegant -- but, as Moses Schönfinkel (and, independently, Haskell Curry) proved, it's not needed: all you need are functions that take one argument.
So how do you deal with something you'd naturally express as, say, f(x,y)? Well, you take that as equivalent to f(x)(y) -- f(x), call it g, is a function, and you apply that function to y. In other words, you only have functions that take one argument -- but some of those functions return other functions (which ALSO take one argument;-).
As usual, wikipedia has a nice summary entry about this, with many useful pointers (probably including ones regarding your favorite languages;-) as well as slightly more rigorous mathematical treatment.
Here's a concrete example:
Suppose you have a function that calculates the gravitational force acting on an object. If you don't know the formula, you can find it here. This function takes in the three necessary parameters as arguments.
Now, being on the earth, you only want to calculate forces for objects on this planet. In a functional language, you could pass in the mass of the earth to the function and then partially evaluate it. What you'd get back is another function that takes only two arguments and calculates the gravitational force of objects on earth. This is called currying.
It can be a way to use functions to make other functions.
In javascript:
let add = function(x){
return function(y){
return x + y
};
};
Would allow us to call it like so:
let addTen = add(10);
When this runs the 10 is passed in as x;
let add = function(10){
return function(y){
return 10 + y
};
};
which means we are returned this function:
function(y) { return 10 + y };
So when you call
addTen();
you are really calling:
function(y) { return 10 + y };
So if you do this:
addTen(4)
it's the same as:
function(4) { return 10 + 4} // 14
So our addTen() always adds ten to whatever we pass in. We can make similar functions in the same way:
let addTwo = add(2) // addTwo(); will add two to whatever you pass in
let addSeventy = add(70) // ... and so on...
Now the obvious follow up question is why on earth would you ever want to do that? It turns what was an eager operation x + y into one that can be stepped through lazily, meaning we can do at least two things
1. cache expensive operations
2. achieve abstractions in the functional paradigm.
Imagine our curried function looked like this:
let doTheHardStuff = function(x) {
let z = doSomethingComputationallyExpensive(x)
return function (y){
z + y
}
}
We could call this function once, then pass around the result to be used in lots of places, meaning we only do the computationally expensive stuff once:
let finishTheJob = doTheHardStuff(10)
finishTheJob(20)
finishTheJob(30)
We can get abstractions in a similar way.
Currying is a transformation that can be applied to functions to allow them to take one less argument than previously.
For example, in F# you can define a function thus:-
let f x y z = x + y + z
Here function f takes parameters x, y and z and sums them together so:-
f 1 2 3
Returns 6.
From our definition we can can therefore define the curry function for f:-
let curry f = fun x -> f x
Where 'fun x -> f x' is a lambda function equivilent to x => f(x) in C#. This function inputs the function you wish to curry and returns a function which takes a single argument and returns the specified function with the first argument set to the input argument.
Using our previous example we can obtain a curry of f thus:-
let curryf = curry f
We can then do the following:-
let f1 = curryf 1
Which provides us with a function f1 which is equivilent to f1 y z = 1 + y + z. This means we can do the following:-
f1 2 3
Which returns 6.
This process is often confused with 'partial function application' which can be defined thus:-
let papply f x = f x
Though we can extend it to more than one parameter, i.e.:-
let papply2 f x y = f x y
let papply3 f x y z = f x y z
etc.
A partial application will take the function and parameter(s) and return a function that requires one or more less parameters, and as the previous two examples show is implemented directly in the standard F# function definition so we could achieve the previous result thus:-
let f1 = f 1
f1 2 3
Which will return a result of 6.
In conclusion:-
The difference between currying and partial function application is that:-
Currying takes a function and provides a new function accepting a single argument, and returning the specified function with its first argument set to that argument. This allows us to represent functions with multiple parameters as a series of single argument functions. Example:-
let f x y z = x + y + z
let curryf = curry f
let f1 = curryf 1
let f2 = curryf 2
f1 2 3
6
f2 1 3
6
Partial function application is more direct - it takes a function and one or more arguments and returns a function with the first n arguments set to the n arguments specified. Example:-
let f x y z = x + y + z
let f1 = f 1
let f2 = f 2
f1 2 3
6
f2 1 3
6
A curried function is a function of several arguments rewritten such that it accepts the first argument and returns a function that accepts the second argument and so on. This allows functions of several arguments to have some of their initial arguments partially applied.
Currying means to convert a function of N arity into N functions of arity 1. The arity of the function is the number of arguments it requires.
Here is the formal definition:
curry(f) :: (a,b,c) -> f(a) -> f(b)-> f(c)
Here is a real world example that makes sense:
You go to ATM to get some money. You swipe your card, enter pin number and make your selection and then press enter to submit the "amount" alongside the request.
here is the normal function for withdrawing money.
const withdraw=(cardInfo,pinNumber,request){
// process it
return request.amount
}
In this implementation function expects us entering all arguments at once. We were going to swipe the card, enter the pin and make the request, then function would run. If any of those steps had issue, you would find out after you enter all the arguments. With curried function, we would create higher arity, pure and simple functions. Pure functions will help us easily debug our code.
this is Atm with curried function:
const withdraw=(cardInfo)=>(pinNumber)=>(request)=>request.amount
ATM, takes the card as input and returns a function that expects pinNumber and this function returns a function that accepts the request object and after the successful process, you get the amount that you requested. Each step, if you had an error, you will easily predict what went wrong. Let's say you enter the card and got error, you know that it is either related to the card or machine but not the pin number. Or if you entered the pin and if it does not get accepted you know that you entered the pin number wrong. You will easily debug the error.
Also, each function here is reusable, so you can use the same functions in different parts of your project.
Currying is translating a function from callable as f(a, b, c) into callable as f(a)(b)(c).
Otherwise currying is when you break down a function that takes multiple arguments into a series of functions that take part of the arguments.
Literally, currying is a transformation of functions: from one way of calling into another. In JavaScript, we usually make a wrapper to keep the original function.
Currying doesn’t call a function. It just transforms it.
Let’s make curry function that performs currying for two-argument functions. In other words, curry(f) for two-argument f(a, b) translates it into f(a)(b)
function curry(f) { // curry(f) does the currying transform
return function(a) {
return function(b) {
return f(a, b);
};
};
}
// usage
function sum(a, b) {
return a + b;
}
let carriedSum = curry(sum);
alert( carriedSum(1)(2) ); // 3
As you can see, the implementation is a series of wrappers.
The result of curry(func) is a wrapper function(a).
When it is called like sum(1), the argument is saved in the Lexical Environment, and a new wrapper is returned function(b).
Then sum(1)(2) finally calls function(b) providing 2, and it passes the call to the original multi-argument sum.
Here's a toy example in Python:
>>> from functools import partial as curry
>>> # Original function taking three parameters:
>>> def display_quote(who, subject, quote):
print who, 'said regarding', subject + ':'
print '"' + quote + '"'
>>> display_quote("hoohoo", "functional languages",
"I like Erlang, not sure yet about Haskell.")
hoohoo said regarding functional languages:
"I like Erlang, not sure yet about Haskell."
>>> # Let's curry the function to get another that always quotes Alex...
>>> am_quote = curry(display_quote, "Alex Martelli")
>>> am_quote("currying", "As usual, wikipedia has a nice summary...")
Alex Martelli said regarding currying:
"As usual, wikipedia has a nice summary..."
(Just using concatenation via + to avoid distraction for non-Python programmers.)
Editing to add:
See http://docs.python.org/library/functools.html?highlight=partial#functools.partial,
which also shows the partial object vs. function distinction in the way Python implements this.
Here is the example of generic and the shortest version for function currying with n no. of params.
const add = a => b => b ? add(a + b) : a;
const add = a => b => b ? add(a + b) : a;
console.log(add(1)(2)(3)(4)());
Currying is one of the higher-order functions of Java Script.
Currying is a function of many arguments which is rewritten such that it takes the first argument and return a function which in turns uses the remaining arguments and returns the value.
Confused?
Let see an example,
function add(a,b)
{
return a+b;
}
add(5,6);
This is similar to the following currying function,
function add(a)
{
return function(b){
return a+b;
}
}
var curryAdd = add(5);
curryAdd(6);
So what does this code means?
Now read the definition again,
Currying is a function of many arguments which is rewritten such that it takes first argument and return a function which in turns uses the remaining arguments and returns the value.
Still, Confused?
Let me explain in deep!
When you call this function,
var curryAdd = add(5);
It will return you a function like this,
curryAdd=function(y){return 5+y;}
So, this is called higher-order functions. Meaning, Invoking one function in turns returns another function is an exact definition for higher-order function. This is the greatest advantage for the legend, Java Script.
So come back to the currying,
This line will pass the second argument to the curryAdd function.
curryAdd(6);
which in turns results,
curryAdd=function(6){return 5+6;}
// Which results in 11
Hope you understand the usage of currying here.
So, Coming to the advantages,
Why Currying?
It makes use of code reusability.
Less code, Less Error.
You may ask how it is less code?
I can prove it with ECMA script 6 new feature arrow functions.
Yes! ECMA 6, provide us with the wonderful feature called arrow functions,
function add(a)
{
return function(b){
return a+b;
}
}
With the help of the arrow function, we can write the above function as follows,
x=>y=>x+y
Cool right?
So, Less Code and Fewer bugs!!
With the help of these higher-order function one can easily develop a bug-free code.
I challenge you!
Hope, you understood what is currying. Please feel free to comment over here if you need any clarifications.
Thanks, Have a nice day!
If you understand partial you're halfway there. The idea of partial is to preapply arguments to a function and give back a new function that wants only the remaining arguments. When this new function is called it includes the preloaded arguments along with whatever arguments were supplied to it.
In Clojure + is a function but to make things starkly clear:
(defn add [a b] (+ a b))
You may be aware that the inc function simply adds 1 to whatever number it's passed.
(inc 7) # => 8
Let's build it ourselves using partial:
(def inc (partial add 1))
Here we return another function that has 1 loaded into the first argument of add. As add takes two arguments the new inc function wants only the b argument -- not 2 arguments as before since 1 has already been partially applied. Thus partial is a tool from which to create new functions with default values presupplied. That is why in a functional language functions often order arguments from general to specific. This makes it easier to reuse such functions from which to construct other functions.
Now imagine if the language were smart enough to understand introspectively that add wanted two arguments. When we passed it one argument, rather than balking, what if the function partially applied the argument we passed it on our behalf understanding that we probably meant to provide the other argument later? We could then define inc without explicitly using partial.
(def inc (add 1)) #partial is implied
This is the way some languages behave. It is exceptionally useful when one wishes to compose functions into larger transformations. This would lead one to transducers.
Curry can simplify your code. This is one of the main reasons to use this. Currying is a process of converting a function that accepts n arguments into n functions that accept only one argument.
The principle is to pass the arguments of the passed function, using the closure (closure) property, to store them in another function and treat it as a return value, and these functions form a chain, and the final arguments are passed in to complete the operation.
The benefit of this is that it can simplify the processing of parameters by dealing with one parameter at a time, which can also improve the flexibility and readability of the program. This also makes the program more manageable. Also dividing the code into smaller pieces would make it reuse-friendly.
For example:
function curryMinus(x)
{
return function(y)
{
return x - y;
}
}
var minus5 = curryMinus(1);
minus5(3);
minus5(5);
I can also do...
var minus7 = curryMinus(7);
minus7(3);
minus7(5);
This is very great for making complex code neat and handling of unsynchronized methods etc.
I found this article, and the article it references, useful, to better understand currying:
http://blogs.msdn.com/wesdyer/archive/2007/01/29/currying-and-partial-function-application.aspx
As the others mentioned, it is just a way to have a one parameter function.
This is useful in that you don't have to assume how many parameters will be passed in, so you don't need a 2 parameter, 3 parameter and 4 parameter functions.
As all other answers currying helps to create partially applied functions. Javascript does not provide native support for automatic currying. So the examples provided above may not help in practical coding. There is some excellent example in livescript (Which essentially compiles to js)
http://livescript.net/
times = (x, y) --> x * y
times 2, 3 #=> 6 (normal use works as expected)
double = times 2
double 5 #=> 10
In above example when you have given less no of arguments livescript generates new curried function for you (double)
A curried function is applied to multiple argument lists, instead of just
one.
Here is a regular, non-curried function, which adds two Int
parameters, x and y:
scala> def plainOldSum(x: Int, y: Int) = x + y
plainOldSum: (x: Int,y: Int)Int
scala> plainOldSum(1, 2)
res4: Int = 3
Here is similar function that’s curried. Instead
of one list of two Int parameters, you apply this function to two lists of one
Int parameter each:
scala> def curriedSum(x: Int)(y: Int) = x + y
curriedSum: (x: Int)(y: Int)Intscala> second(2)
res6: Int = 3
scala> curriedSum(1)(2)
res5: Int = 3
What’s happening here is that when you invoke curriedSum, you actually get two traditional function invocations back to back. The first function
invocation takes a single Int parameter named x , and returns a function
value for the second function. This second function takes the Int parameter
y.
Here’s a function named first that does in spirit what the first traditional
function invocation of curriedSum would do:
scala> def first(x: Int) = (y: Int) => x + y
first: (x: Int)(Int) => Int
Applying 1 to the first function—in other words, invoking the first function
and passing in 1 —yields the second function:
scala> val second = first(1)
second: (Int) => Int = <function1>
Applying 2 to the second function yields the result:
scala> second(2)
res6: Int = 3
An example of currying would be when having functions you only know one of the parameters at the moment:
For example:
func aFunction(str: String) {
let callback = callback(str) // signature now is `NSData -> ()`
performAsyncRequest(callback)
}
func callback(str: String, data: NSData) {
// Callback code
}
func performAsyncRequest(callback: NSData -> ()) {
// Async code that will call callback with NSData as parameter
}
Here, since you don't know the second parameter for callback when sending it to performAsyncRequest(_:) you would have to create another lambda / closure to send that one to the function.
Most of the examples in this thread are contrived (adding numbers). These are useful for illustrating the concept, but don't motivate when you might actually use currying in an app.
Here's a practical example from React, the JavaScript user interface library. Currying here illustrates the closure property.
As is typical in most user interface libraries, when the user clicks a button, a function is called to handle the event. The handler typically modifies the application's state and triggers the interface to re-render.
Lists of items are common user interface components. Each item might have an identifier associated with it (usually related to a database record). When the user clicks a button to, for example, "like" an item in the list, the handler needs to know which button was clicked.
Currying is one approach for achieving the binding between id and handler. In the code below, makeClickHandler is a function that accepts an id and returns a handler function that has the id in its scope.
The inner function's workings aren't important for this discussion. But if you're curious, it searches through the array of items to find an item by id and increments its "likes", triggering another render by setting the state. State is immutable in React so it takes a bit more work to modify the one value than you might expect.
You can think of invoking the curried function as "stripping" off the outer function to expose an inner function ready to be called. That new inner function is the actual handler passed to React's onClick. The outer function is a closure for the loop body to specify the id that will be in scope of a particular inner handler function.
const List = () => {
const [items, setItems] = React.useState([
{name: "foo", likes: 0},
{name: "bar", likes: 0},
{name: "baz", likes: 0},
].map(e => ({...e, id: crypto.randomUUID()})));
// .----------. outer func inner func
// | currying | | |
// `----------` V V
const makeClickHandler = (id) => (event) => {
setItems(prev => {
const i = prev.findIndex(e => e.id === id);
const cpy = {...prev[i]};
cpy.likes++;
return [
...prev.slice(0, i),
cpy,
...prev.slice(i + 1)
];
});
};
return (
<ul>
{items.map(({name, likes, id}) =>
<li key={id}>
<button
onClick={
/* strip off first function layer to get a click
handler bound to `id` and pass it to onClick */
makeClickHandler(id)
}
>
{name} ({likes} likes)
</button>
</li>
)}
</ul>
);
};
ReactDOM.createRoot(document.querySelector("#app"))
.render(<List />);
button {
font-family: monospace;
font-size: 2em;
}
<script crossorigin src="https://unpkg.com/react#18/umd/react.development.js"></script>
<script crossorigin src="https://unpkg.com/react-dom#18/umd/react-dom.development.js"></script>
<div id="app"></div>
Here you can find a simple explanation of currying implementation in C#. In the comments, I have tried to show how currying can be useful:
public static class FuncExtensions {
public static Func<T1, Func<T2, TResult>> Curry<T1, T2, TResult>(this Func<T1, T2, TResult> func)
{
return x1 => x2 => func(x1, x2);
}
}
//Usage
var add = new Func<int, int, int>((x, y) => x + y).Curry();
var func = add(1);
//Obtaining the next parameter here, calling later the func with next parameter.
//Or you can prepare some base calculations at the previous step and then
//use the result of those calculations when calling the func multiple times
//with different input parameters.
int result = func(1);
"Currying" is the process of taking the function of multiple arguments and converting it into a series of functions that each take a single argument and return a function of a single argument, or in the case of the final function, return the actual result.
The other answers have said what currying is: passing fewer arguments to a curried function than it expects is not an error, but instead returns a function that expects the rest of the arguments and returns the same result as if you had passed them all in at once.
I’ll try to motivate why it’s useful. It’s one of those tools that you never realized you needed until you do. Currying is above all a way to make your programs more expressive - you can combine operations together with less code.
For example, if you have a curried function add, you can write the equivalent of JS x => k + x (or Python lambda x: k + x or Ruby { |x| k + x } or Lisp (lambda (x) (+ k x)) or …) as just add(k). In Haskelll you can even use the operator: (k +) or (+ k) (The two forms let you curry either way for non-commutative operators: (/ 9) is a function that divides a number by 9, which is probably the more common use case, but you also have (9 /) for a function that divides 9 by its argument.) Besides being shorter, the curried version contains no made-up parameter name like the x found in all the other versions. It’s not needed. You’re defining a function that adds some constant k to a number, and you don’t need to give that number a name just to talk about the function. Or even to define it. This is an example of what’s called “point-free style”. You can combine operations together given nothing but the operations themselves. You don’t have to declare anonymous functions that do nothing but apply some operation to their argument, because *that’s what the operations already are.
This becomes very handy with higher-order functions when they’re defined in a currying-friendly way. For instance, a curried map(fn, list) let’s you define a mapper with just map(fn) that can be applied it to any list later. But currying a map defined instead as map(list, fn) just lets you define a function that will apply some other function to a constant list, which is probably less generally useful.
Currying reduces the need for things like pipes and threading. In Clojure, you might define a temperature conversion function using the threading macro ->: (defn f2c (deg) (-> deg (- 32) (* 5) (/ 9)). That’s cool, it reads nicely left to right (“subtract 32, multiply by 5 and divide by 9.”) and you only have to mention the parameter twice instead of once for every suboperation… but it only works because -> is a macro that transforms the whole form syntactically before anything is evaluated. It turns into a regular nested expression behind the scenes: (/ (* (- deg 32) 5) 9). If the math ops were curried, you wouldn’t need a macro to combine them so nicely, as in Haskell let f2c = (subtract 32) & (* 5) & (/ 9). (Although it would admittedly be more idiomatic to use function composition, which reads right to left: (/ 9) . (* 5) . (subtract 32).)
Again, it’s hard to find good demo examples; currying is most useful in complex cases where it really helps the readability of the solution, but those take so much explanation just to get you to understand the problem that the overall lesson about currying can get lost in the noise.
There is an example of "Currying in ReasonML".
let run = () => {
Js.log("Curryed function: ");
let sum = (x, y) => x + y;
Printf.printf("sum(2, 3) : %d\n", sum(2, 3));
let per2 = sum(2);
Printf.printf("per2(3) : %d\n", per2(3));
};
Below is one of currying example in JavaScript, here the multiply return the function which is used to multiply x by two.
const multiply = (presetConstant) => {
return (x) => {
return presetConstant * x;
};
};
const multiplyByTwo = multiply(2);
// now multiplyByTwo is like below function & due to closure property in JavaScript it will always be able to access 'presetConstant' value
// const multiplyByTwo = (x) => {
// return presetConstant * x;
// };
console.log(`multiplyByTwo(8) : ${multiplyByTwo(8)}`);
Output
multiplyByTwo(8) : 16

Partially applying function arguments in a composition

I'm trying to write a function composition that partially applies an argument at each step and ends up calling a curried two-argument function.
There is a set of example functions to compose. I removed the calculations that there are supposed to do as they are not relevant to the problem but let's assume that every argument is required.
const getDayLimit = () => {
return 10
}
const getIpCount = ip => dayLimit => {
return 99
}
const getIp = (deviceId, headerIp) => {
// TODO: use Result monad to handle errors
if (!deviceId && !headerIp) {
throw new Error('Ip not provided')
}
return deviceId || headerIp
}
And the composition attempt:
const validateIp = R.compose(
f => f(getDayLimit()),
getIpCount,
getIp
)
validateIp(1, 2)
In the first step, getIp received two values and based on them returns an ip that is then partially applied to getIpCount, now the composition return a function that expects the dayLimit argument that needs to be computed first.
The plain way of doing this could be: f => f(getAccountLimit()).
I'd like to remove such function creation f => f... and pass it point-free.
Here's a helper function that solves this but is not handling all cases such as passing arguments to the result function:
const applyResult = result => f => R.compose(f, result)()
then I could do:
const result = R.compose(
applyResult(getDayLimit),
getIpCount,
getIp
)
It seems too hacky for me and not substantial for my further use. I'd rather avoid writing my own helper function for this kind of problem.
Is there a functional way of computing arguments before partially applying them to a function? It seems to be a pretty common case in my mind, though perhaps I'm not thinking about the problem correctly.
Is my thinking incorrect about this problem and function composition?
What is a good approach to handling such a case with a function with two parameters in a composition?
Can this case of partially applying function arguments with each step be handled in a function composition?
Thank you!
I think I would use a continuation which, as I understand it, represents a computation that has been interrupted:
const cont = x => f => f(x);
With a continuation, you get x before f. Instead of doing f(x) you do cont(x)(f) which behind the scene just does f(x) for you.
At the time of composing the functions together you already know the value of x which is getDayLimit(), you just don't know the value of f yet which is known only when result is applied to the first two initial parameters.
So here's what I'd do:
const result = R.compose( cont(getDayLimit())
, getIpCount
, getIp);
Is there a functional way of computing arguments before partially applying them to a function?
I would simply note that you apply a function to a value (not the other way round)

Writing a curried javascript function that can be called an arbitrary number of times that returns a value on the very last function call

I'm currently working on a programming problem in my personal time that asks that I make a javascript function that can be called in this manner.
add(1) // 1
add(1)(2) // 3
add(1)(2)(3); // 6
add(1)(2)(3)(4); // 10
add(1)(2)(3)(4)(5); // 15
What I'm having trouble figuring out is how to make it return a value on the very last call.
For example, in order for add(1)(2) to work, then add(1) has to return a function, but according to the instructions add(1) when called by itself will return 1.
I'm assuming one way you can overcome this is to figure out how many times in succession the add function is being called, but I cannot think of a way to achieve that. Does anyone have any hints that can point me in the right direction?
I've read these two articles (1, 2) on function currying and I understand them, but I'm not sure how to do currying when dealing with a variable number of arguments.
It is impossible to curry a variadic function with an unknown number of arguments.
Where add is a variadic function, you could do something like
var add5 = curryN(add, 5);
add5(1)(2)(3)(4)(5); //=> 15
var add3 = curryN(add, 3);
add3(1)(2)(3); //=> 6
There's simply no avoiding this tho because a curried function will continue to return a function until the last argument is received, at which point the computation is run.
The only other option is to create some way to "short-circuit" the arguments and notify the function that the arguments are done being sent. That would require something like
var xadd = curryUntilUndefined(add);
xadd(1)(2)(3)(4)(5)(undefined); //=> 15
Here, the undefined signals the end of the variadic arguments. I don't really recommend this tho because of the other problems it can create for you. Not to mention, it's not particularly nice to look at.
It is not impossible, use valueOf().
function add(initNum) {
var sum = initNum;
var callback = function (num) {
sum += num;
return callback;
};
callback.valueOf = function () {
return sum;
};
return callback;
};
console.log(add(1)(2)==3); //true
console.log(add(1)(1)+1); //3
console.log(add(1)(2)(3).valueOf()); //6

Categories