Using Async / Awaits within promise - javascript

I have a certain promise chain in my code that looks like this:
myPromise()
.then(getStuffFromDb)
.then(manipulateResultSet)
.then(manipulateWithAsync)
.then(returnStuffToCaller)
Now, in my manipulateWithAsync I'm trying to enhance my result set by calling the DB again, but it's not working as I expected, since while debugging i figured out the control moves to the next function which is the returnStuffToCaller
here's an idea of what's into my manipulateWithAsync function:
function manipulateWithAsync(rs) {
return rs.map( async function whoCares(singleRecord) {
let smthUseful = await getMoreData(singleRecord.someField);
singleRecord.enhancedField = smthUseful;
return singleRecord;
})
}
I get the point of this behaviour: the map function does work as expected and the promise chain doesn't give a duck about it since it's not working with the awaits.
Is there a way to allow my returnStuffToCaller function to wait till the async function did his job?
I also use bluebird and i tried to use coo-routine, so if you thing that it's a good solution I'll post my bluebird coo-routine failing code :)
Thanks!

The problem is in using async/await with Array.map
This answer should help: https://stackoverflow.com/a/40140562/5783272

rs.map iterator jumps to the next element without waiting in each separate iteration.
You need something like asyncMap
You can use - https://github.com/caolan/async
or either implement yourself
async function asyncMap(array, cb) {
for (let index = 0; index < array.length; index++) {
return await cb(array[index], index, array);
}
}
*cb function must be async one

Wrap your map with Promise.all return the Promise then await for the results wherever you call the manipulateWithAsync.
// MOCKS FOR DEMO
// Test data used as input for manipulateWithAsync
const testData = [
{ recordNumber: 1 },
{ recordNumber: 2 },
{ recordNumber: 3 }
];
// Mock function which returns Promises which resolve after random delay ranging from 1 - 3 seconds
const getMoreData = () =>
new Promise(resolve => {
const calledAt = Date.now();
setTimeout(() => {
resolve({
usefulData: `Promise called at ${calledAt}`
});
}, Math.floor(Math.random() * 3000) + 1000);
});
// SOLUTION / ANSWER
const manipulateWithAsync = async rs =>
Promise.all(
rs.map(async singleRecord => {
const smthUseful = await getMoreData(singleRecord.someField);
// Instead of manipulating original data,
// which might cause some unwanted side effects going forward,
// instead return new objects
return { ...singleRecord, enhancedField: smthUseful };
})
);
await manipulateWithAsync(testData);

Related

calling an async function inside for loop in JavaScript / node js

I want to call an async function inside for loop
function test(req,res){
//somelogic part here
async function create(data){
//logic part here
}
for( var value in values){
// some codeing part here
await create(data);
}
}
I am getting this error
uncaughtException: await is only valid in async function
then I can't call an async function inside For loop.
I know it is written like this but is there any possible way I can call an async function inside for loop
for await (var value in values)
Just put async in front of function test.
async function test(req, res) {…
If you want to await a promise, then the function that's using await needs to be async function.
Hi As I understood your concern I would suggest to use .map() function which is very useful in this type of case.
async function create(data) {
// Create user logic here
}
const usernames = ['test1', 'test2', 'test3'];
const createdUsers = usernames.map(async (val) => {
const user = await create();
return user;
});
await Promise.all(createdUsers);
Wrap and create new function inside another function isn't a good ideal. You can move function create to outside like the code bellow
async function create(data){
//logic part here
}
async function test(req,res){
//somelogic part here
for( var value in values){
// some codeing part here
await create(data);
}
}
Or use arrow function instead
async function test(req,res){
//somelogic part here
const create = async (data) => {
//logic part here
}
for( var value in values){
// some codeing part here
await create(data);
}
}
If calling just an asynchronous function is only going to part of your for loop mean you can simple push the promise returned by the asynchronous calls to an array and use promise static methods like 'all'
let pros= []
for(){
pro.push(create(data));
}
Promise.all(pros).then(()=> {
#implement rest or resolve another promise
})
Please refer..
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
The problem is not with your create function, but with your test function. The scope where you call the await syntax, needs to be async. Therefore, your scope here is test.
Simply update your code to the following;
/*vv --> async*/
async function test(req, res) {
console.log("test is called");
async function create(to) {
return new Promise((resolve) => {
setTimeout(() => resolve(Date.now()), to);
});
}
const values = {
a: 1e3,
b: 2e3,
c: 3e3
};
for (var value in values) {
// some codeing part here
const to = values[value];
const result = await create(to);
console.log("result:", result);
}
return 1;
}
(async() => {
const res = await test();
console.log("done");
})();
Your question is a little confusing because there doesn't appear to be any reason to async/await - create doesn't appear to return any data so the aync/await seems redundant, and you can probably remove it.
If, however, create does return a value, and you want to wait until all the values have been returned before you continue, create an array of function calls and then use Promise.all to wait until the promises returned from create have resolved.
// `create` returns a promise that resolves
// after two seconds
function create(data){
return new Promise((res, rej) => {
setTimeout(() => res(data), 2000);
});
}
async function test(req,res) {
const values = [1, 2, 3, 4];
// Create an array of promises
const arr = values.map(el => create(el));
// And use Promise.all to wait to resolve them
const output = await Promise.all(arr);
console.log(output);
}
test();
If you put the Promise in the for loop then it will get a total of every responses time in every iteration. So I'm suggesting the Promise.all for that.
async func() {
let arr = [];
for(var value in values){
arr.push(create(data));
}
let createdArr = await Promise.all(arr);
// Using createdArr, you can get all waited responses
}
In here it will get only the most responding time, not the total. All Promises run at the same time.

Getting an index to run one at a time in a for loop

I have a quick question here. Is there a way to stop a for loop and wait for one index to be done before the next one can execute? I'll try to be clear as much as possible so apologize if my question and my code aren't clear enough. Plus, I will give more explanation for whatever clues that you can give me. Much appreciate
So I try to get each id to put on my API, in order to trigger the script to be run. However, the requirement is 1 script has to be done first before the next one can be trigger.
I was messing around with setTimeOut() but looks like it doesn't give me what I need. And sorry guys, my project isn't allowed me to work with any external libraries and either async await
function sampleScriptRunning(activity){
var ID = activity.map(function(activity){return activity.ID})
for(var i = 0; i < ID.length; i++){
if(ID[i] === 'undefined'){
console.log('No more scripts to run')
return;
}
Api.getActivityStatus(ID[i]).then(function(response){
return $http.post('/proxy/api/nodejsjob/' + response.sample.sample[0].ScriptId + '/run')
})
If you're trying to manage asynchronous calls in series, you have two options - Promise objects, or managing callbacks yourself.
One powerful tool you can use is the mapSeries functionality of bluebird, a npm module for promise management. That way, you can execute the commands only one at a time without any other management:
const Promise = require('bluebird');
const ids = activities.map((activity) => activity.id);
return Promise.mapSeries(ids, (id) => {
return Api.getActivityStatus(ID[i])
.then(() => $http.post('/proxy/api/nodejsjob/' + response.sample.sample[0].ScriptId + '/run'))
});
Here is how you can wrap you work in an async IIFE and then use the await statement to sync your async.
// This is just a dummy Async function, it will randomly return (to simulate true async issues)
function doAsync(i) {
return new Promise((resolve, reject) => {
setTimeout(() => { resolve(`here is - ${i}`) }, Math.random()*1000);
});
}
// This function when called will execute an IIFE to allow us to use await.
function workSyncronously() {
(async () => {
for(let i=0; i<10; i++) {
let message = await doAsync(i);
console.log(message);
}
})();
}
workSyncronously();
So lets look at something where we need the results of two functions before continuing:
Slight tweak to the code, now we are using the result of our first call to drive the second call.
// This is just a dummy Async function, it will randomly return (to simulate true async issues)
function doAsync(i) {
return new Promise((resolve, reject) => {
setTimeout(() => { resolve(i*2) }, Math.random()*1000);
});
}
// This function when called will execute an IIFE to allow us to use await.
function workSyncronously() {
(async () => {
for(let i=0; i<10; i++) {
let timeTwo = await doAsync(i);
let timeFour = await doAsync(timeTwo);
console.log(`${i} *2=${timeTwo} *4=${timeFour}`);
}
})();
}
workSyncronously();
So you code might look something like this:
function sampleScriptRunning(activity) {
const IDArray = activity.map({
ID
} => ID);
const postResponses = [];
(asnyc() => {
for (let id of IDArray) {
let response = await Api.getActivityStatus(id);
let postResponse = await $http.post('/proxy/api/nodejsjob/' + response.sample.sample[0].ScriptId + '/run');
postResponses.push(postResponse);
}
return postResponses;
})();
}

Javascript promise chaining with promise.all not working?

I have the following code. When i run it i get this error " Cannot read property 'then' of undefined" at the first line in my code when calling getQueryToShift. It seems like getQueryToShift is not working like I intended. What is the correct way to use Promise.all so that the original promise I am declaring on the first line waits for all the promises in the promises array declared inside the getQueryToShift function to resolve before executing what is inside the then block ?
promise = getQueryToShift(hourDiff, options, map, baseBuildStart, oldFrom).then(values => { // error is here
// wait for promise before handling data in map passed as parameter
});
function getQueryToShift(hourDiff, options, map, baseBuildStart, oldFrom) {
let promises = [];
datasourceSrv.get(options.targets[0].datasource).then(ds => {
for (let i = 0; i < daysDiff - 1; i++) {
options.range.from._d = dateToMoment(oldFrom, false).add(i, 'h').toDate();
options.range.to._d = dateToMoment(options.range.from._d, false).add(1, 'h').toDate();
ds.query(options).then(result => {
promises.push(createQueryPromise(map, baseBuildStart, result.data));
});
}
return Promise.all(promises);
});
}
function createQueryPromise(map, baseBuildStart, data) {
return new Promise((resolve) => {
data.forEach(datum => {
//parsing data and adding it to map passed in as parameter
})
resolve();
});
}
The question is incomplete because createQueryPromise() function makes no sense by itself. It does not show an asynchronous operation at all, thus without one there is no need for a promise. And, if there is an asynchronous operation inside your .forEach() look, then you will need to coordinate that async operation, but you don't show the code for that so we can't help you fix that and we need to understand what that function is actually doing before we can help with a full and correct implementation of getQueryToShift().
On top of that, here are a couple other things that need fixing:
You aren't returning your promise from getQueryToShift(). Change this:
datasourceSrv.get(options.targets[0].datasource).then(ds => {
to this:
return datasourceSrv.get(options.targets[0].datasource).then(ds => {
And, you are ignoring the promise returned by:
ds.query(options).then(...)
Thus, your code wouldn't wait for that operation to finish. This is probably the promise that you need to collect in the array and use Promise.all() with, not the one you are doing it with.
Your code does the Promise.all on an empty array - you need to return the promise:
function* getDays(daysDiff, oldFrom) {
for (let i = 0; i < daysDiff - 1; i++) {
var options = {};
options.range.from._d = dateToMoment(oldFrom, false).add(i, 'h').toDate();
options.range.to._d = dateToMoment(options.range.from._d, false).add(1, 'h').toDate();
yield options;
}
}
function getQueryToShift(hourDiff, options, map, baseBuildStart, oldFrom) {
// return here
return datasourceSrv.get(options.targets[0].datasource).then(ds => {
return Promise.all(
Array.from(getDays(daysDiff, oldFrom), option => db.query(option))
);
});
}
Although I warmly recommend using an async function instead:
async function getQueryToShift(hourDiff, options, map, baseBuildStart, oldFrom) {
const ds = await datasourceSrv.get(options.targets[0].datasource);
await Promise.all(Array.from(getDays(daysDiff, oldFrom), db.query));
}

sequential call using promise inside loop

i want to perform synchronous operation of functions using promise. I have loop that passes the data to be inserted to insert function and after inserting one row i want to check the no. of rows exists in table hence i am performing select operation.
But the issue is if there are 3 records then it inserts all 3 records and after that my select function gets executed. what i want is after insertion of one record select function gets called.
here is my pseudo code as entire code involves lot of operations
for(var i=0; data.length ; i++){
self.executeFeedbackTrack(data);
}
executeFeedbackTrack:function(callInfo){
var self=this;
return self.insertFeedbackTrack(callInfo).then(function(data){
console.log("insertFeedbackTrack status "+status);
return self.getFeedbackTrack();
});
},
getFeedbackTrack :function(){
return new Promise(function(resolve,reject){
var objDBFeedbackTrack = new DBFeedbackTrack();
objDBFeedbackTrack.selectFeedbackTrack(function(arrayCallRegisters){
if(arrayCallRegisters){
console.log("notification.js no. of feedbacks "+arrayCallRegisters.length);
resolve(arrayCallRegisters.length);
}
});
});
},
insertFeedbackTrack :function(callInfo){
return new Promise(function(resolve,reject){
var objDBFeedbackTrack = new DBFeedbackTrack();
objDBFeedbackTrack.insertFeedbackTrack(callInfo.callNumber,callInfo.callServiceType,function(status){
resolve(status);
$('#loader').hide();
});
});
}
The previous answer is good, but if you are using nodejs, or babel, or you are using only modern browsers. You can use an async-await pair, it is es8 stuff.
let insertFeedbackTrack = function(){ return new Promise(/***/)};
let getFeedbackTrack = function(){ return new Promise(/***/)};
let processResult = async function(data){
let feedbacks = [];
for(let i=0;i<data.length;i++){
let insertedResult = await insertFeedbackTrack(data[i]);//perhaps you will return an id;
let feedbackTrack = await getFeedbackTrack(insertedResult.id);
feedbacks.push(feedbackTrack);
}
return feedbacks;
}
processResult(data).then(/** do stuff */)
It looks to me like this is caused by executing a series of asynchronous inserts, and assuming that the get of insert n (inside of a .then()) is called before insert n+1 is executed. However, I'm not aware of any such guarantee, in JavaScript; all that I'm familiar with is that then n will be called after insert n, not that it would be called before insert n+1.
What I'd suggest is avoiding this mix of traditional and callback-based code, and instead put the iteration step inside getFeedbackTrack().then. Assuming this understanding of the issue is correct, then something like the following should work:
function iterate(i) {
if (i < data.length) {
obj.insertFeedbackTrack(data[i]).then(function(insertResult) {
self.getFeedbackTrack().then(function(getResult) {
// this line is the important one, replacing the `for` loop earlier
iterate(i+1);
});
});
}
}
iterate(0);
By doing that, you would guarantee that insert for the next element does not occur until the current select executes successfully.
Naturally, you may also want to restructure that to use chained .then instead of nested; I used nested rather than chained to emphasize the ordering of callbacks.
This can be solved by using a very handy JS library Ramda. Concept is to use two methods, one is R.partial and another is R.pipeP.
First create a promises array from your data array, like following.
var promises = data.map(function(i) {
return R.partial(sample, [i])
});
Then you can pass this promise to R.pipeP, so that it can be executed one after another. like below.
var doOperation = R.pipeP.apply(this, promises)
Please execute following snippet attached.
// Sample promise returning function
function sample(d) {
return new Promise(function(resolve, reject){
setTimeout(function() {
console.log('resolved for:' + d);
resolve(d);
}, 1000)
})
}
// Sample data
var data = [1, 2, 3, 4, 5]
// Converting data array to promise array
var promises = data.map(function(i) {
return R.partial(sample, [i])
});
var doOperation = R.pipeP.apply(this, promises)
doOperation();
<script src="https://cdnjs.cloudflare.com/ajax/libs/ramda/0.25.0/ramda.min.js"></script>
So in your case, the code will look like this
var promises = data.map(function(i) {
return R.partial(self.executeFeedbackTrack, [i])
});
var doOperation = R.pipeP.apply(this, promises)
doOperation();
I use yield for such cases if using generator functions.
for(var i = 0; i < order.tasks.length; i++){
if(order.tasks[i].customer_id === 0){
var name = order.tasks[i].customer_name.split(" ")
const customers = yield db.queryAsync(
`INSERT INTO customers(
business_id)
VALUES(?)
`,[order.business_id])
}
}
Or else I use self-calling functions in case of callbacks.
var i = 0;
(function loop() {
if (i < data.length) {
task_ids1.push([order.tasks[i].task_id])
i++;
loop();
}
}());
Here's how I would sequentially call promises in a loop (I'm using ES7).
First, let's define some basic data:
const data = [0,1,2,3];
Then, let's simulate some long running process, so let's create a function that returns a Promise (you can think of this as a simulated network request, or whatever suits your needs)
const promiseExample = (item) =>
new Promise((res) => {
setTimeout(() => {
console.log('resolved ', item);
res(item);
}, 1000);
});
Now, let's create an array of promises. What the next line of code does is: for every item in the array data, return a promise factory. A promise factory is a function that wraps a certain promise without running it.
const funcs = data.map(item => async () => await promiseExample(item));
Now, the actual code starts here. We need a function that does the actual serialization. Since it has to handle an array of promiseFactories, I split it in two functions, one for the serialization of a single promise, and one for handling an array of promiseFactories.
const serializePromise = promiseFactoryList =>
promiseFactoryList.reduce(serialize, Promise.resolve([]));
const serialize = async (promise, promiseFactory) => {
const promiseResult = await promise;
const res = await promiseFactory();
return [...promiseResult, res];
};
Now, you can simply call it like this:
serializePromise(funcs).then(res => {
console.log('res', res);
});
As you can see, the code is pretty simple, elegant, functional, and doesn't need any external dependency. I hope this answers your question and helps you!
const serializePromise = promiseFactoryList =>
promiseFactoryList.reduce(serialize, Promise.resolve([]));
const serialize = async (promise, promiseFactory) => {
const promiseResult = await promise;
const res = await promiseFactory();
return [...promiseResult, res];
};
const data = [0,1,2,3];
const promiseExample = (item) =>
new Promise((res) => {
setTimeout(() => {
console.log('resolved ', item);
res(item);
}, 1000);
});
const funcs = data.map(item => async () => await promiseExample(item))
serializePromise(funcs).then(res => {
console.log('res', res);
});
I ran into this problem recently and solved it as shown below. This is very similar to the answer by #Ethan Kaminsky, but only uses callbacks. This may be useful for people avoiding promises for whatever reason.
In my application the asynchronous function may fail and can safely be retried; I included this logic because it's useful and doesn't overly complicate the routine, but it is not exercised in the example.
// Some callback when the task is complete
function cb(...rest) { window.alert( `${rest.join(', ')}` ) }
// The data and the function operating on the data
// The function calls "callback(err)" on completion
const data = [ 'dataset1', 'dataset2', 'dataset3' ]
const doTheThing = (thingDone) => setTimeout( thingDone, 1000 )
let i = -1 // counter/interator for data[]
let retries = 20 // everything fails; total retry #
// The do-async-synchronously (with max retries) loop
function next( err ) {
if( err ) {
if( ! --retries ) return cb( 'too many retries' )
} else if( ! data[++i] ) return cb( undefined, 'done-data' )
console.log( 'i is', i, data[i] )
doTheThing( next, data[i] ) // callback is first here
}
// start the process
next()

How to make q.all execute in order like async.series [duplicate]

Consider the following code that reads an array of files in a serial/sequential manner. readFiles returns a promise, which is resolved only once all files have been read in sequence.
var readFile = function(file) {
... // Returns a promise.
};
var readFiles = function(files) {
return new Promise((resolve, reject) => {
var readSequential = function(index) {
if (index >= files.length) {
resolve();
} else {
readFile(files[index]).then(function() {
readSequential(index + 1);
}).catch(reject);
}
};
readSequential(0); // Start with the first file!
});
};
The above code works, but I don't like having to do recursion for things to occur sequentially. Is there a simpler way that this code can be re-written so that I don't have to use my weird readSequential function?
Originally I tried to use Promise.all, but that caused all of the readFile calls to happen concurrently, which is not what I want:
var readFiles = function(files) {
return Promise.all(files.map(function(file) {
return readFile(file);
}));
};
Update 2017: I would use an async function if the environment supports it:
async function readFiles(files) {
for(const file of files) {
await readFile(file);
}
};
If you'd like, you can defer reading the files until you need them using an async generator (if your environment supports it):
async function* readFiles(files) {
for(const file of files) {
yield await readFile(file);
}
};
Update: In second thought - I might use a for loop instead:
var readFiles = function(files) {
var p = Promise.resolve(); // Q() in q
files.forEach(file =>
p = p.then(() => readFile(file));
);
return p;
};
Or more compactly, with reduce:
var readFiles = function(files) {
return files.reduce((p, file) => {
return p.then(() => readFile(file));
}, Promise.resolve()); // initial
};
In other promise libraries (like when and Bluebird) you have utility methods for this.
For example, Bluebird would be:
var Promise = require("bluebird");
var fs = Promise.promisifyAll(require("fs"));
var readAll = Promise.resolve(files).map(fs.readFileAsync,{concurrency: 1 });
// if the order matters, you can use Promise.each instead and omit concurrency param
readAll.then(function(allFileContents){
// do stuff to read files.
});
Although there is really no reason not to use async await today.
Here is how I prefer to run tasks in series.
function runSerial() {
var that = this;
// task1 is a function that returns a promise (and immediately starts executing)
// task2 is a function that returns a promise (and immediately starts executing)
return Promise.resolve()
.then(function() {
return that.task1();
})
.then(function() {
return that.task2();
})
.then(function() {
console.log(" ---- done ----");
});
}
What about cases with more tasks? Like, 10?
function runSerial(tasks) {
var result = Promise.resolve();
tasks.forEach(task => {
result = result.then(() => task());
});
return result;
}
This question is old, but we live in a world of ES6 and functional JavaScript, so let's see how we can improve.
Because promises execute immediately, we can't just create an array of promises, they would all fire off in parallel.
Instead, we need to create an array of functions that returns a promise. Each function will then be executed sequentially, which then starts the promise inside.
We can solve this a few ways, but my favorite way is to use reduce.
It gets a little tricky using reduce in combination with promises, so I have broken down the one liner into some smaller digestible bites below.
The essence of this function is to use reduce starting with an initial value of Promise.resolve([]), or a promise containing an empty array.
This promise will then be passed into the reduce method as promise. This is the key to chaining each promise together sequentially. The next promise to execute is func and when the then fires, the results are concatenated and that promise is then returned, executing the reduce cycle with the next promise function.
Once all promises have executed, the returned promise will contain an array of all the results of each promise.
ES6 Example (one liner)
/*
* serial executes Promises sequentially.
* #param {funcs} An array of funcs that return promises.
* #example
* const urls = ['/url1', '/url2', '/url3']
* serial(urls.map(url => () => $.ajax(url)))
* .then(console.log.bind(console))
*/
const serial = funcs =>
funcs.reduce((promise, func) =>
promise.then(result => func().then(Array.prototype.concat.bind(result))), Promise.resolve([]))
ES6 Example (broken down)
// broken down to for easier understanding
const concat = list => Array.prototype.concat.bind(list)
const promiseConcat = f => x => f().then(concat(x))
const promiseReduce = (acc, x) => acc.then(promiseConcat(x))
/*
* serial executes Promises sequentially.
* #param {funcs} An array of funcs that return promises.
* #example
* const urls = ['/url1', '/url2', '/url3']
* serial(urls.map(url => () => $.ajax(url)))
* .then(console.log.bind(console))
*/
const serial = funcs => funcs.reduce(promiseReduce, Promise.resolve([]))
Usage:
// first take your work
const urls = ['/url1', '/url2', '/url3', '/url4']
// next convert each item to a function that returns a promise
const funcs = urls.map(url => () => $.ajax(url))
// execute them serially
serial(funcs)
.then(console.log.bind(console))
To do this simply in ES6:
function(files) {
// Create a new empty promise (don't do that with real people ;)
var sequence = Promise.resolve();
// Loop over each file, and add on a promise to the
// end of the 'sequence' promise.
files.forEach(file => {
// Chain one computation onto the sequence
sequence =
sequence
.then(() => performComputation(file))
.then(result => doSomething(result));
// Resolves for each file, one at a time.
})
// This will resolve after the entire chain is resolved
return sequence;
}
Addition example
const addTwo = async () => 2;
const addThree = async (inValue) => new Promise((resolve) => setTimeout(resolve(inValue + 3), 2000));
const addFour = (inValue) => new Promise((res) => setTimeout(res(inValue + 4), 1000));
const addFive = async (inValue) => inValue + 5;
// Function which handles promises from above
async function sequenceAddition() {
let sum = await [addTwo, addThree, addFour, addFive].reduce(
(promise, currPromise) => promise.then((val) => currPromise(val)),
Promise.resolve()
);
console.log('sum:', sum); // 2 + 3 + 4 + 5 = 14
}
// Run function. See console for result.
sequenceAddition();
General syntax to use reduce()
function sequence(tasks, fn) {
return tasks.reduce((promise, task) => promise.then(() => fn(task)), Promise.resolve());
}
UPDATE
items-promise is a ready to use NPM package doing the same.
I've had to run a lot of sequential tasks and used these answers to forge a function that would take care of handling any sequential task...
function one_by_one(objects_array, iterator, callback) {
var start_promise = objects_array.reduce(function (prom, object) {
return prom.then(function () {
return iterator(object);
});
}, Promise.resolve()); // initial
if(callback){
start_promise.then(callback);
}else{
return start_promise;
}
}
The function takes 2 arguments + 1 optional. First argument is the array on which we will be working. The second argument is the task itself, a function that returns a promise, the next task will be started only when this promise resolves. The third argument is a callback to run when all tasks have been done. If no callback is passed, then the function returns the promise it created so we can handle the end.
Here's an example of usage:
var filenames = ['1.jpg','2.jpg','3.jpg'];
var resize_task = function(filename){
//return promise of async resizing with filename
};
one_by_one(filenames,resize_task );
Hope it saves someone some time...
With Async/Await (if you have the support of ES7)
function downloadFile(fileUrl) { ... } // This function return a Promise
async function main()
{
var filesList = [...];
for (const file of filesList) {
await downloadFile(file);
}
}
(you must use for loop, and not forEach because async/await has problems running in forEach loop)
Without Async/Await (using Promise)
function downloadFile(fileUrl) { ... } // This function return a Promise
function downloadRecursion(filesList, index)
{
index = index || 0;
if (index < filesList.length)
{
downloadFile(filesList[index]).then(function()
{
index++;
downloadRecursion(filesList, index); // self invocation - recursion!
});
}
else
{
return Promise.resolve();
}
}
function main()
{
var filesList = [...];
downloadRecursion(filesList);
}
My preferred solution:
function processArray(arr, fn) {
return arr.reduce(
(p, v) => p.then((a) => fn(v).then(r => a.concat([r]))),
Promise.resolve([])
);
}
It's not fundamentally different from others published here but:
Applies the function to items in series
Resolves to an array of results
Doesn't require async/await (support is still quite limited, circa 2017)
Uses arrow functions; nice and concise
Example usage:
const numbers = [0, 4, 20, 100];
const multiplyBy3 = (x) => new Promise(res => res(x * 3));
// Prints [ 0, 12, 60, 300 ]
processArray(numbers, multiplyBy3).then(console.log);
Tested on reasonable current Chrome (v59) and NodeJS (v8.1.2).
First, you need to understand that a promise is executed at the time of creation.
So for example if you have a code:
["a","b","c"].map(x => returnsPromise(x))
You need to change it to:
["a","b","c"].map(x => () => returnsPromise(x))
Then we need to sequentially chain promises:
["a", "b", "c"].map(x => () => returnsPromise(x))
.reduce(
(before, after) => before.then(_ => after()),
Promise.resolve()
)
executing after(), will make sure that promise is created (and executed) only when its time comes.
Nicest solution that I was able to figure out was with bluebird promises. You can just do Promise.resolve(files).each(fs.readFileAsync); which guarantees that promises are resolved sequentially in order.
With async/await of ES2016 (and maybe some features of ES2018), this can be reduced to this form:
function readFile(file) {
... // Returns a promise.
}
async function readFiles(files) {
for (file in files) {
await readFile(file)
}
}
I haven't seen another answer express that simplicity. The OP said parallel execution of readFile was not desired. However, with IO like this it really makes sense to not be blocking on a single file read, while keeping the loop execution synchronous (you don't want to do the next step until all files have been read). Since I just learned about this and am a bit excited about it, I'll share that approach of parallel asynchronous execution of readFile with overall synchronous execution of readFiles.
async function readFiles(files) {
await Promise.all(files.map(readFile))
}
Isn't that a thing of beauty?
This is a slight variation of another answer above. Using native Promises:
function inSequence(tasks) {
return tasks.reduce((p, task) => p.then(task), Promise.resolve())
}
Explanation
If you have these tasks [t1, t2, t3], then the above is equivalent to Promise.resolve().then(t1).then(t2).then(t3). It's the behavior of reduce.
How to use
First You need to construct a list of tasks! A task is a function that accepts no argument. If you need to pass arguments to your function, then use bind or other methods to create a task. For example:
var tasks = files.map(file => processFile.bind(null, file))
inSequence(tasks).then(...)
I created this simple method on the Promise object:
Create and add a Promise.sequence method to the Promise object
Promise.sequence = function (chain) {
var results = [];
var entries = chain;
if (entries.entries) entries = entries.entries();
return new Promise(function (yes, no) {
var next = function () {
var entry = entries.next();
if(entry.done) yes(results);
else {
results.push(entry.value[1]().then(next, function() { no(results); } ));
}
};
next();
});
};
Usage:
var todo = [];
todo.push(firstPromise);
if (someCriterium) todo.push(optionalPromise);
todo.push(lastPromise);
// Invoking them
Promise.sequence(todo)
.then(function(results) {}, function(results) {});
The best thing about this extension to the Promise object, is that it is consistent with the style of promises. Promise.all and Promise.sequence is invoked the same way, but have different semantics.
Caution
Sequential running of promises is not usually a very good way to use promises. It's usually better to use Promise.all, and let the browser run the code as fast as possible. However, there are real use cases for it - for example when writing a mobile app using javascript.
My answer based on https://stackoverflow.com/a/31070150/7542429.
Promise.series = function series(arrayOfPromises) {
var results = [];
return arrayOfPromises.reduce(function(seriesPromise, promise) {
return seriesPromise.then(function() {
return promise
.then(function(result) {
results.push(result);
});
});
}, Promise.resolve())
.then(function() {
return results;
});
};
This solution returns the results as an array like Promise.all().
Usage:
Promise.series([array of promises])
.then(function(results) {
// do stuff with results here
});
Use Array.prototype.reduce, and remember to wrap your promises in a function otherwise they will already be running!
// array of Promise providers
const providers = [
function(){
return Promise.resolve(1);
},
function(){
return Promise.resolve(2);
},
function(){
return Promise.resolve(3);
}
]
const inSeries = function(providers){
const seed = Promise.resolve(null);
return providers.reduce(function(a,b){
return a.then(b);
}, seed);
};
nice and easy...
you should be able to re-use the same seed for performance, etc.
It's important to guard against empty arrays or arrays with only 1 element when using reduce, so this technique is your best bet:
const providers = [
function(v){
return Promise.resolve(v+1);
},
function(v){
return Promise.resolve(v+2);
},
function(v){
return Promise.resolve(v+3);
}
]
const inSeries = function(providers, initialVal){
if(providers.length < 1){
return Promise.resolve(null)
}
return providers.reduce((a,b) => a.then(b), providers.shift()(initialVal));
};
and then call it like:
inSeries(providers, 1).then(v => {
console.log(v); // 7
});
Using modern ES:
const series = async (tasks) => {
const results = [];
for (const task of tasks) {
const result = await task;
results.push(result);
}
return results;
};
//...
const readFiles = await series(files.map(readFile));
Most of the answers dont include the results of ALL promises individually, so in case someone is looking for this particular behaviour, this is a possible solution using recursion.
It follows the style of Promise.all:
Returns the array of results in the .then() callback.
If some promise fails, its returned immediately in the .catch() callback.
const promiseEach = (arrayOfTasks) => {
let results = []
return new Promise((resolve, reject) => {
const resolveNext = (arrayOfTasks) => {
// If all tasks are already resolved, return the final array of results
if (arrayOfTasks.length === 0) return resolve(results)
// Extract first promise and solve it
const first = arrayOfTasks.shift()
first().then((res) => {
results.push(res)
resolveNext(arrayOfTasks)
}).catch((err) => {
reject(err)
})
}
resolveNext(arrayOfTasks)
})
}
// Lets try it 😎
const promise = (time, shouldThrowError) => new Promise((resolve, reject) => {
const timeInMs = time * 1000
setTimeout(()=>{
console.log(`Waited ${time} secs`)
if (shouldThrowError) reject(new Error('Promise failed'))
resolve(time)
}, timeInMs)
})
const tasks = [() => promise(1), () => promise(2)]
promiseEach(tasks)
.then((res) => {
console.log(res) // [1, 2]
})
// Oops some promise failed
.catch((error) => {
console.log(error)
})
Note about the tasks array declaration:
In this case is not possible to use the following notation like Promise.all would use:
const tasks = [promise(1), promise(2)]
And we have to use:
const tasks = [() => promise(1), () => promise(2)]
The reason is that JavaScript starts executing the promise immediatelly after its declared. If we use methods like Promise.all, it just checks that the state of all of them is fulfilled or rejected, but doesnt start the exection itself. Using () => promise() we stop the execution until its called.
You can use this function that gets promiseFactories List:
function executeSequentially(promiseFactories) {
var result = Promise.resolve();
promiseFactories.forEach(function (promiseFactory) {
result = result.then(promiseFactory);
});
return result;
}
Promise Factory is just simple function that returns a Promise:
function myPromiseFactory() {
return somethingThatCreatesAPromise();
}
It works because a promise factory doesn't create the promise until it's asked to. It works the same way as a then function – in fact, it's the same thing!
You don't want to operate over an array of promises at all. Per the Promise spec, as soon as a promise is created, it begins executing. So what you really want is an array of promise factories...
If you want to learn more on Promises, you should check this link:
https://pouchdb.com/2015/05/18/we-have-a-problem-with-promises.html
If you want you can use reduce to make a sequential promise, for example:
[2,3,4,5,6,7,8,9].reduce((promises, page) => {
return promises.then((page) => {
console.log(page);
return Promise.resolve(page+1);
});
}, Promise.resolve(1));
it'll always works in sequential.
I really liked #joelnet's answer, but to me, that style of coding is a little bit tough to digest, so I spent a couple of days trying to figure out how I would express the same solution in a more readable manner and this is my take, just with a different syntax and some comments.
// first take your work
const urls = ['/url1', '/url2', '/url3', '/url4']
// next convert each item to a function that returns a promise
const functions = urls.map((url) => {
// For every url we return a new function
return () => {
return new Promise((resolve) => {
// random wait in milliseconds
const randomWait = parseInt((Math.random() * 1000),10)
console.log('waiting to resolve in ms', randomWait)
setTimeout(()=>resolve({randomWait, url}),randomWait)
})
}
})
const promiseReduce = (acc, next) => {
// we wait for the accumulator to resolve it's promise
return acc.then((accResult) => {
// and then we return a new promise that will become
// the new value for the accumulator
return next().then((nextResult) => {
// that eventually will resolve to a new array containing
// the value of the two promises
return accResult.concat(nextResult)
})
})
};
// the accumulator will always be a promise that resolves to an array
const accumulator = Promise.resolve([])
// we call reduce with the reduce function and the accumulator initial value
functions.reduce(promiseReduce, accumulator)
.then((result) => {
// let's display the final value here
console.log('=== The final result ===')
console.log(result)
})
As Bergi noticed, I think the best and clear solution is use BlueBird.each, code below:
const BlueBird = require('bluebird');
BlueBird.each(files, fs.readFileAsync);
I find myself coming back to this question many times and the answers aren't exactly giving me what I need, so putting this here for anyone that needs this too.
The code below does sequential promises execution (one after another), and each round consists of multiple callings:
async function sequence(list, cb) {
const result = [];
await list.reduce(async (promise, item) => promise
.then(() => cb(item))
.then((res) => result.push(res)
), Promise.resolve());
return result;
}
Showcase:
<script src="https://cdnjs.cloudflare.com/ajax/libs/axios/0.15.3/axios.min.js"></script>
<script src="https://unpkg.com/#babel/standalone#7/babel.min.js"></script>
<script type="text/babel">
function sleep(ms) {
return new Promise(resolve => setTimeout(resolve, ms));
}
async function readFile(url, index) {
console.log('Running index: ', index);
// First action
const firstTime = await axios.get(url);
console.log('First API response: ', firstTime.data.activity);
// Second action
await sleep(1000);
// Third action
const secondTime = await axios.get(url);
console.log('Second API response: ', secondTime.data.activity);
// Fourth action
await sleep(1000);
return secondTime.data;
}
async function sequence(urls, fn) {
const result = [];
await urls.reduce(async (promise, url, index) => promise.then(() => fn(url, index)).then((res) => result.push(res)), Promise.resolve());
return result;
}
const urls = [
'https://www.boredapi.com/api/activity',
'https://www.boredapi.com/api/activity',
'https://www.boredapi.com/api/activity',
];
(async function init() {
const result = await sequence(urls, readFile);
console.log('result', result);
})()
</script>
I use the following code to extend the Promise object. It handles rejection of the promises and returns an array of results
Code
/*
Runs tasks in sequence and resolves a promise upon finish
tasks: an array of functions that return a promise upon call.
parameters: an array of arrays corresponding to the parameters to be passed on each function call.
context: Object to use as context to call each function. (The 'this' keyword that may be used inside the function definition)
*/
Promise.sequence = function(tasks, parameters = [], context = null) {
return new Promise((resolve, reject)=>{
var nextTask = tasks.splice(0,1)[0].apply(context, parameters[0]); //Dequeue and call the first task
var output = new Array(tasks.length + 1);
var errorFlag = false;
tasks.forEach((task, index) => {
nextTask = nextTask.then(r => {
output[index] = r;
return task.apply(context, parameters[index+1]);
}, e=>{
output[index] = e;
errorFlag = true;
return task.apply(context, parameters[index+1]);
});
});
// Last task
nextTask.then(r=>{
output[output.length - 1] = r;
if (errorFlag) reject(output); else resolve(output);
})
.catch(e=>{
output[output.length - 1] = e;
reject(output);
});
});
};
Example
function functionThatReturnsAPromise(n) {
return new Promise((resolve, reject)=>{
//Emulating real life delays, like a web request
setTimeout(()=>{
resolve(n);
}, 1000);
});
}
var arrayOfArguments = [['a'],['b'],['c'],['d']];
var arrayOfFunctions = (new Array(4)).fill(functionThatReturnsAPromise);
Promise.sequence(arrayOfFunctions, arrayOfArguments)
.then(console.log)
.catch(console.error);
Your approach is not bad, but it does have two issues: it swallows errors and it employs the Explicit Promise Construction Antipattern.
You can solve both of these issues, and make the code cleaner, while still employing the same general strategy:
var Q = require("q");
var readFile = function(file) {
... // Returns a promise.
};
var readFiles = function(files) {
var readSequential = function(index) {
if (index < files.length) {
return readFile(files[index]).then(function() {
return readSequential(index + 1);
});
}
};
// using Promise.resolve() here in case files.length is 0
return Promise.resolve(readSequential(0)); // Start!
};
This is my sequentially implementation that I use in various projects:
const file = [file1, file2, file3];
const fileContents = sequentially(readFile, files);
// somewhere else in the code:
export const sequentially = async <T, P>(
toPromise: (element: T) => Promise<P>,
elements: T[]
): Promise<P[]> => {
const results: P[] = [];
await elements.reduce(async (sequence, element) => {
await sequence;
results.push(await toPromise(element));
}, Promise.resolve());
return results;
};
Here is my Angular/TypeScript approach, using RxJS:
Given an array of URL strings, convert it into an Observable using the from function.
Use pipe to wrap the Ajax request, immediate response logic, any desired delay, and error handling.
Inside of the pipe, use concatMap to serialize the requests. Otherwise, using Javascript forEach or map would make the requests at the same time.
Use RxJS ajax to make the call, and also to add any desired delay after each call returns.
Working example: https://stackblitz.com/edit/rxjs-bnrkix?file=index.ts
The code looks like this (I left in some extras so you can choose what to keep or discard):
import { ajax } from 'rxjs/ajax';
import { catchError, concatMap, delay, from, of, map, Observable } from 'rxjs';
const urls = [
'https://randomuser.me/api/',
'https://randomuser.me/api/',
'https://randomuser.me/api/',
];
const delayAfterCall = 500;
from(urls)
.pipe(
concatMap((url: string) => {
return ajax.getJSON(url).pipe(
map((response) => {
console.log('Done! Received:', response);
return response;
}),
catchError((error) => {
console.error('Error: ', error);
return of(error);
}),
delay(delayAfterCall)
);
})
)
.subscribe((response) => {
console.log('received email:', response.results[0].email);
});
On the basis of the question's title, "Resolve promises one after another (i.e. in sequence)?", we might understand that the OP is more interested in the sequential handling of promises on settlement than sequential calls per se.
This answer is offered :
to demonstrate that sequential calls are not necessary for sequential handling of responses.
to expose viable alternative patterns to this page's visitors - including the OP if he is still interested over a year later.
despite the OP's assertion that he does not want to make calls concurrently, which may genuinely be the case but equally may be an assumption based on the desire for sequential handling of responses as the title implies.
If concurrent calls are genuinely not wanted then see Benjamin Gruenbaum's answer which covers sequential calls (etc) comprehensively.
If however, you are interested (for improved performance) in patterns which allow concurrent calls followed by sequential handling of responses, then please read on.
It's tempting to think you have to use Promise.all(arr.map(fn)).then(fn) (as I have done many times) or a Promise lib's fancy sugar (notably Bluebird's), however (with credit to this article) an arr.map(fn).reduce(fn) pattern will do the job, with the advantages that it :
works with any promise lib - even pre-compliant versions of jQuery - only .then() is used.
affords the flexibility to skip-over-error or stop-on-error, whichever you want with a one line mod.
Here it is, written for Q.
var readFiles = function(files) {
return files.map(readFile) //Make calls in parallel.
.reduce(function(sequence, filePromise) {
return sequence.then(function() {
return filePromise;
}).then(function(file) {
//Do stuff with file ... in the correct sequence!
}, function(error) {
console.log(error); //optional
return sequence;//skip-over-error. To stop-on-error, `return error` (jQuery), or `throw error` (Promises/A+).
});
}, Q()).then(function() {
// all done.
});
};
Note: only that one fragment, Q(), is specific to Q. For jQuery you need to ensure that readFile() returns a jQuery promise. With A+ libs, foreign promises will be assimilated.
The key here is the reduction's sequence promise, which sequences the handling of the readFile promises but not their creation.
And once you have absorbed that, it's maybe slightly mind-blowing when you realise that the .map() stage isn't actually necessary! The whole job, parallel calls plus serial handling in the correct order, can be achieved with reduce() alone, plus the added advantage of further flexibility to :
convert from parallel async calls to serial async calls by simply moving one line - potentially useful during development.
Here it is, for Q again.
var readFiles = function(files) {
return files.reduce(function(sequence, f) {
var filePromise = readFile(f);//Make calls in parallel. To call sequentially, move this line down one.
return sequence.then(function() {
return filePromise;
}).then(function(file) {
//Do stuff with file ... in the correct sequence!
}, function(error) {
console.log(error); //optional
return sequence;//Skip over any errors. To stop-on-error, `return error` (jQuery), or `throw error` (Promises/A+).
});
}, Q()).then(function() {
// all done.
});
};
That's the basic pattern. If you wanted also to deliver data (eg the files or some transform of them) to the caller, you would need a mild variant.
If someone else needs a guaranteed way of STRICTLY sequential way of resolving Promises when performing CRUD operations you also can use the following code as a basis.
As long as you add 'return' before calling each function, describing a Promise, and use this example as a basis the next .then() function call will CONSISTENTLY start after the completion of the previous one:
getRidOfOlderShoutsPromise = () => {
return readShoutsPromise('BEFORE')
.then(() => {
return deleteOlderShoutsPromise();
})
.then(() => {
return readShoutsPromise('AFTER')
})
.catch(err => console.log(err.message));
}
deleteOlderShoutsPromise = () => {
return new Promise ( (resolve, reject) => {
console.log("in deleteOlderShouts");
let d = new Date();
let TwoMinuteAgo = d - 1000 * 90 ;
All_Shouts.deleteMany({ dateTime: {$lt: TwoMinuteAgo}}, function(err) {
if (err) reject();
console.log("DELETED OLDs at "+d);
resolve();
});
});
}
readShoutsPromise = (tex) => {
return new Promise( (resolve, reject) => {
console.log("in readShoutsPromise -"+tex);
All_Shouts
.find({})
.sort([['dateTime', 'ascending']])
.exec(function (err, data){
if (err) reject();
let d = new Date();
console.log("shouts "+tex+" delete PROMISE = "+data.length +"; date ="+d);
resolve(data);
});
});
}
Array push and pop method can be used for sequence of promises. You can also push new promises when you need additional data. This is the code, I will use in React Infinite loader to load sequence of pages.
var promises = [Promise.resolve()];
function methodThatReturnsAPromise(page) {
return new Promise((resolve, reject) => {
setTimeout(() => {
console.log(`Resolve-${page}! ${new Date()} `);
resolve();
}, 1000);
});
}
function pushPromise(page) {
promises.push(promises.pop().then(function () {
return methodThatReturnsAPromise(page)
}));
}
pushPromise(1);
pushPromise(2);
pushPromise(3);
(function() {
function sleep(ms) {
return new Promise(function(resolve) {
setTimeout(function() {
return resolve();
}, ms);
});
}
function serial(arr, index, results) {
if (index == arr.length) {
return Promise.resolve(results);
}
return new Promise(function(resolve, reject) {
if (!index) {
index = 0;
results = [];
}
return arr[index]()
.then(function(d) {
return resolve(d);
})
.catch(function(err) {
return reject(err);
});
})
.then(function(result) {
console.log("here");
results.push(result);
return serial(arr, index + 1, results);
})
.catch(function(err) {
throw err;
});
}
const a = [5000, 5000, 5000];
serial(a.map(x => () => sleep(x)));
})();
Here the key is how you call the sleep function. You need to pass an array of functions which itself returns a promise instead of an array of promises.

Categories