Display results of all promises with order - javascript

I am new to promises.
I encountered a case where I have to loop through a series of tasks and get data. For some reason I have to do it in order and have to do it using promises. But to my surprise, the result only has the last element instead of all elements.
The simplified version of code
const _ = require('lodash');
const test = (name) => {
return new Promise(function(resolve, reject) {
//This is simplified from my actual code
resolve(name);
});
};
const testAll = (arr) => {
//This chains and returns a series of functions with the order of arr, so that the can be executed in the order, not simultaneously
let functions = _.map(arr, element => test.bind(null, element));
//This reduces the functions and is supposed to return an array of all values
return functions.reduce((fun1, fun2) => fun1.then(fun2), Promise.resolve([]));
}
const arr = ['promise1', 'promise2', 'promise3'];
testAll(arr)
.then(data => console.log(data));
I was expecting the output to be (with order):
promise1
promise2
promise3
but what I really got was just promise3. Is it because the Promise.resolve([]) does not include every element in an array?

You seem to want to accumulate the individual results into an array. For that you must at least capture the resolved value from each of the promises. When you do fun1.then(fun2) you throw away the value promised by fun1. To use it, you need to do something with the argument that is passed to the then callback. In your case you want to concatenate that with the promised value of fun2().
But since you have the first, but must still wait for the second, you could benefit from Promise.all, like this:
const testAll = (arr) => {
let functions = arr.map(element => test.bind(null, element));
return functions.reduce((prom, fun) =>
prom.then(data => Promise.all(data.concat(fun())) ),
Promise.resolve([])
);
}
Now your final call to testAll will give you an array as result.
const test = (name) => {
return new Promise(function(resolve, reject) {
setTimeout(_ => { // Introduce delay for better demo
console.log('.'); // a little trace in the output
resolve(name);
}, 500);
});
};
const testAll = (arr) => {
let functions = arr.map(element => test.bind(null, element));
return functions.reduce((prom, fun) =>
prom.then(data => Promise.all(data.concat(fun())) ),
Promise.resolve([])
);
}
const arr = ['promise1', 'promise2', 'promise3'];
testAll(arr).then(data => console.log(data));

Related

Problems with async / await - How to wait for requests

I have an array of objects containing metadata for videos. I need to iterate through it and for each object I need to make an API call passing its filename to get a streamingLink and assign it to the object's streamingLink. My problem is by the time I am returning this array, the array is undefined. How do I tell the code to wait until streamingLink has been assigned?
Here's kind of what my code looks like:
// get array from database
const items = await client.db('database').collection('collection').find({}).toArray();
// for each object get and replace streamingLink
let items_withLinks = items.map((item) => {
getStreamingLink(item.filename) // API call to get link
.then(response => {
item.streamingLink = response.result.link;
return item;
})
});
console.log(items_withLinks); // undefined
I have tried using await in different places and wrapping this in an async function but I can't figure out the right way to do it.
You can loop over your array and create a promise for each item. Then you can call Promise.all.
const promise1 = Promise.resolve(3);
const promise2 = 42;
const promise3 = new Promise((resolve, reject) => {
setTimeout(resolve, 100, 'foo');
});
Promise.all([promise1, promise2, promise3]).then((values) => {
console.log(values);
});
// expected output: Array [3, 42, "foo"]
The fundamental problem is that the function you are using in the .map doesn't return anything. (So you will actually technically get an array of undefined values, rather than undefined itself - but that obviously is no good.)
You need to return the promise and then use Promise.all to get the array of results.
// get array from database
const items = await client.db('database').collection('collection').find({}).toArray();
// for each object get and replace streamingLink
let items_withLinks = items.map((item) => {
// return is the only thing I've added here!
return getStreamingLink(item.filename) // API call to get link
.then(response => {
item.streamingLink = response.result.link;
return item;
})
});
const result = await Promise.all(items_withLinks);
console.log(result);

Iterable Promises with evaluation for each promise

I have a list of items to be processed. Lets says A,B,C,D,E .. I have a list of promises which processes these items. Each promise can process 1 or more items. I have a list of items which need to be mandatorily processed.
Lets say A, C are mandatory items.
Promise 1 processes A,B
Promise 2 processes A,C
Promise 3 processes B,C.
I can return in any of the following cases
P1,P2 are completed (don't care about P3)
P1,P3 are completed (don't care about P2)
P2,P3 are completed (don't care about P1)
P1,P2,P3 are completed.
All promises (async calls) are started at the same item sequentially.
How do I handle this with Promise of iterables.?
One way I could think of is
Promise.race(
Promise.all(P1,P2),
Promise.all(P1,P3),
Promise.all(P2,P3),
Promise.all(P1,P2,P3)
)
This should work. But this requires me to construct the list of promise combinations based on the mandatoryItems and eachPromiseItems.
Is there a proper elegant way to handle this case in JavaScript?
As an optional advice. You can create a promise wrapper to process all of your promises and resolve it whenever you want.
function afterPromises(yourPromiseList, checker) {
var _P = new Promise((res, rej) => {
for (var p of yourPromiseList) {
p.then((data) => {
let checked = checker(data);
if(checked===true){
res()
}
if(checked===false){
rej()
}
})
}
})
return _P;
}
afterPromises([...yourPromiseList], () => {
var itemsDict = {}// a closure var to register which your items processed
return (data) => {
itemsDict[data.id]=true
//And your extra logic code
return true
//or return false
//or reutrn undefined
}
}).then(()=>{
//resolved
})
THE CODE NOT TESTED
I'm not sure that there is something built-in for this requirement but you can run over an array of promises and handle this logic like this:
const p1 = new Promise(resolve => {
setTimeout(() => {resolve(['A','B']);}, 500);
});
const p2 = new Promise(resolve => {
setTimeout(() => {resolve(['A','C']);}, 500);
});
const p3 = new Promise(resolve => {
setTimeout(() => {resolve(['B','C']);}, 500);
});
const mandatory = ['A','C'];
function promisesRunTillMandatoryCompleted(promises, mandatory) {
return new Promise((resolve, reject) => {
let results = [];
let completed = [];
promises.forEach((promise, index) => {
Promise.resolve(promise).then(result => {
results[index] = result;
completed = [...new Set(completed.concat(result))];
if (mandatory.every(elem=> completed.indexOf(elem) > -1)) {
resolve(results);
}
}).catch(err => reject(err));
});
});
}
promisesRunTillMandatoryCompleted([p1,p2,p3],mandatory)
.then(() => console.log('all mandatory commpleted'));

Correct way to sequence two asynchronous operations that each return a promise javascript

I was wondering what is the proper way to call a promise after another promise resolves. I know we can use async await to create functions which will resolve a promise. I was wondering which form of handling promises is consider proper practice, or is it good practice to create generators instead? consider the following code:
const fetchSomething = () => new Promise((resolve) => {
setTimeout(() => resolve(console.log('future value')), 500);
});
const fetchSomethingElse = () => new Promise((resolve) => {
setTimeout(() => resolve(console.log('future value dueeee')), 3000);
});
const get = () => {
return fetchSomething().then(function(){
fetchSomethingElse()
});
}
get();
or
const fetchSomething = () => new Promise((resolve) => {
setTimeout(() => resolve({resolve: true}), 500);
});
const fetchSomethingElse = () => new Promise((resolve) => {
setTimeout(() => resolve({resolve: true}), 3000);
});
const get = async function() {
const fet = await fetchSomething();
const fet2 = await fetchSomethingElse();
};
get();
Either one is fine. Your choice.
In the first you're nesting .then() handlers. In the second, you're using the newer await to sequence them. More people are moving to await because it appears to be simpler code for sequencing operations (assuming you do proper error handling), though in this case, they are pretty similar in complexity, particularly with the simplification suggested below so it's really up to your own personal coding style.
What is missing in both is that get() just returned a promise so you need to use .then() and .catch() with it to get the value and catch any errors.
Also, something that is missing in the first is that you aren't returning the second promise which means the caller won't know when the second operation is done.
Your first can be simplified and fixed up like this:
const get = () => {
return fetchSomething().then(fetchSomethingElse);
}
get().then(val => {
// done here
}).catch(err => {
// error here
});
As Pointy mentioned, you don't "call a promise". You "call a function that returns a promise". Promises are objects. They are not callable.
Probably what your title could be rewritten to is: "Correct way to sequence two asynchronous operations that each return a promise".
For completeness, if your two async operations don't depend upon one another, then you don't have to manually sequence them. You can start them both and then monitor when both are done. This will sometimes get a faster end-to-end response.
You can do that using Promise.all():
const get = function() {
return Promise.all([fetchSomething(), fetchSomethingElse()]).then(results => {
// process results array and then return final value
// results[0] is result from fetchSomething, results[1] is result from fetchSomethingElse
return finalVal;
});
}
Both are fine, but you are making a common mistake in the top example (and maybe it's just because of the simplification of the code for the question). You are returning the promise from get, but you are not returning the promise from the then. This means the caller of get won't know when both promises have resolved. Consider:
const fetchSomething = () => new Promise((resolve) => {
setTimeout(() => resolve(console.log('future value')), 500);
});
const fetchSomethingElse = () => new Promise((resolve) => {
setTimeout(() => resolve(console.log('future value dueeee')), 3000);
});
const get = () => {
return fetchSomething().then(function(){
fetchSomethingElse()
});
}
// we don't when fetchSomethingElse is done
get().then(() => console.log("done"));
Also there's another option you might consider since the second promise doesn't depend on the output of the first. Call them in parallel:
const get = () => {
return Promise.all([fetchSomething(), fetchSomethingElse() ])
}
In this case one can start before the other is finished and the whole operation should be faster.
It's important to remember that in Promise-based patterns you're using functions that return Promises. Promises are passed in resolve and reject arguments (which are themselves functions). What you resolve with, is what gets exectuted in the .then() phase, and what you reject with gets exectuted in the .catch() phase.
To handle Promises in sequence, you're passing your values into the top-level function that wraps the Promise.
so...
const p1 = () => {
return new Promise((resolve,reject) => {
window.setTimeout(() => {
resolve('future value one');
},500);
});
};
const p2 = (v1) => {
return new Promise((resolve,reject) => {
window.setTimeout(() => {
const v2 = 'future value two';
resolve({v1,v2});
},500);
});
};
p1().then(p2).then(console.log);

sequential call using promise inside loop

i want to perform synchronous operation of functions using promise. I have loop that passes the data to be inserted to insert function and after inserting one row i want to check the no. of rows exists in table hence i am performing select operation.
But the issue is if there are 3 records then it inserts all 3 records and after that my select function gets executed. what i want is after insertion of one record select function gets called.
here is my pseudo code as entire code involves lot of operations
for(var i=0; data.length ; i++){
self.executeFeedbackTrack(data);
}
executeFeedbackTrack:function(callInfo){
var self=this;
return self.insertFeedbackTrack(callInfo).then(function(data){
console.log("insertFeedbackTrack status "+status);
return self.getFeedbackTrack();
});
},
getFeedbackTrack :function(){
return new Promise(function(resolve,reject){
var objDBFeedbackTrack = new DBFeedbackTrack();
objDBFeedbackTrack.selectFeedbackTrack(function(arrayCallRegisters){
if(arrayCallRegisters){
console.log("notification.js no. of feedbacks "+arrayCallRegisters.length);
resolve(arrayCallRegisters.length);
}
});
});
},
insertFeedbackTrack :function(callInfo){
return new Promise(function(resolve,reject){
var objDBFeedbackTrack = new DBFeedbackTrack();
objDBFeedbackTrack.insertFeedbackTrack(callInfo.callNumber,callInfo.callServiceType,function(status){
resolve(status);
$('#loader').hide();
});
});
}
The previous answer is good, but if you are using nodejs, or babel, or you are using only modern browsers. You can use an async-await pair, it is es8 stuff.
let insertFeedbackTrack = function(){ return new Promise(/***/)};
let getFeedbackTrack = function(){ return new Promise(/***/)};
let processResult = async function(data){
let feedbacks = [];
for(let i=0;i<data.length;i++){
let insertedResult = await insertFeedbackTrack(data[i]);//perhaps you will return an id;
let feedbackTrack = await getFeedbackTrack(insertedResult.id);
feedbacks.push(feedbackTrack);
}
return feedbacks;
}
processResult(data).then(/** do stuff */)
It looks to me like this is caused by executing a series of asynchronous inserts, and assuming that the get of insert n (inside of a .then()) is called before insert n+1 is executed. However, I'm not aware of any such guarantee, in JavaScript; all that I'm familiar with is that then n will be called after insert n, not that it would be called before insert n+1.
What I'd suggest is avoiding this mix of traditional and callback-based code, and instead put the iteration step inside getFeedbackTrack().then. Assuming this understanding of the issue is correct, then something like the following should work:
function iterate(i) {
if (i < data.length) {
obj.insertFeedbackTrack(data[i]).then(function(insertResult) {
self.getFeedbackTrack().then(function(getResult) {
// this line is the important one, replacing the `for` loop earlier
iterate(i+1);
});
});
}
}
iterate(0);
By doing that, you would guarantee that insert for the next element does not occur until the current select executes successfully.
Naturally, you may also want to restructure that to use chained .then instead of nested; I used nested rather than chained to emphasize the ordering of callbacks.
This can be solved by using a very handy JS library Ramda. Concept is to use two methods, one is R.partial and another is R.pipeP.
First create a promises array from your data array, like following.
var promises = data.map(function(i) {
return R.partial(sample, [i])
});
Then you can pass this promise to R.pipeP, so that it can be executed one after another. like below.
var doOperation = R.pipeP.apply(this, promises)
Please execute following snippet attached.
// Sample promise returning function
function sample(d) {
return new Promise(function(resolve, reject){
setTimeout(function() {
console.log('resolved for:' + d);
resolve(d);
}, 1000)
})
}
// Sample data
var data = [1, 2, 3, 4, 5]
// Converting data array to promise array
var promises = data.map(function(i) {
return R.partial(sample, [i])
});
var doOperation = R.pipeP.apply(this, promises)
doOperation();
<script src="https://cdnjs.cloudflare.com/ajax/libs/ramda/0.25.0/ramda.min.js"></script>
So in your case, the code will look like this
var promises = data.map(function(i) {
return R.partial(self.executeFeedbackTrack, [i])
});
var doOperation = R.pipeP.apply(this, promises)
doOperation();
I use yield for such cases if using generator functions.
for(var i = 0; i < order.tasks.length; i++){
if(order.tasks[i].customer_id === 0){
var name = order.tasks[i].customer_name.split(" ")
const customers = yield db.queryAsync(
`INSERT INTO customers(
business_id)
VALUES(?)
`,[order.business_id])
}
}
Or else I use self-calling functions in case of callbacks.
var i = 0;
(function loop() {
if (i < data.length) {
task_ids1.push([order.tasks[i].task_id])
i++;
loop();
}
}());
Here's how I would sequentially call promises in a loop (I'm using ES7).
First, let's define some basic data:
const data = [0,1,2,3];
Then, let's simulate some long running process, so let's create a function that returns a Promise (you can think of this as a simulated network request, or whatever suits your needs)
const promiseExample = (item) =>
new Promise((res) => {
setTimeout(() => {
console.log('resolved ', item);
res(item);
}, 1000);
});
Now, let's create an array of promises. What the next line of code does is: for every item in the array data, return a promise factory. A promise factory is a function that wraps a certain promise without running it.
const funcs = data.map(item => async () => await promiseExample(item));
Now, the actual code starts here. We need a function that does the actual serialization. Since it has to handle an array of promiseFactories, I split it in two functions, one for the serialization of a single promise, and one for handling an array of promiseFactories.
const serializePromise = promiseFactoryList =>
promiseFactoryList.reduce(serialize, Promise.resolve([]));
const serialize = async (promise, promiseFactory) => {
const promiseResult = await promise;
const res = await promiseFactory();
return [...promiseResult, res];
};
Now, you can simply call it like this:
serializePromise(funcs).then(res => {
console.log('res', res);
});
As you can see, the code is pretty simple, elegant, functional, and doesn't need any external dependency. I hope this answers your question and helps you!
const serializePromise = promiseFactoryList =>
promiseFactoryList.reduce(serialize, Promise.resolve([]));
const serialize = async (promise, promiseFactory) => {
const promiseResult = await promise;
const res = await promiseFactory();
return [...promiseResult, res];
};
const data = [0,1,2,3];
const promiseExample = (item) =>
new Promise((res) => {
setTimeout(() => {
console.log('resolved ', item);
res(item);
}, 1000);
});
const funcs = data.map(item => async () => await promiseExample(item))
serializePromise(funcs).then(res => {
console.log('res', res);
});
I ran into this problem recently and solved it as shown below. This is very similar to the answer by #Ethan Kaminsky, but only uses callbacks. This may be useful for people avoiding promises for whatever reason.
In my application the asynchronous function may fail and can safely be retried; I included this logic because it's useful and doesn't overly complicate the routine, but it is not exercised in the example.
// Some callback when the task is complete
function cb(...rest) { window.alert( `${rest.join(', ')}` ) }
// The data and the function operating on the data
// The function calls "callback(err)" on completion
const data = [ 'dataset1', 'dataset2', 'dataset3' ]
const doTheThing = (thingDone) => setTimeout( thingDone, 1000 )
let i = -1 // counter/interator for data[]
let retries = 20 // everything fails; total retry #
// The do-async-synchronously (with max retries) loop
function next( err ) {
if( err ) {
if( ! --retries ) return cb( 'too many retries' )
} else if( ! data[++i] ) return cb( undefined, 'done-data' )
console.log( 'i is', i, data[i] )
doTheThing( next, data[i] ) // callback is first here
}
// start the process
next()

How to make q.all execute in order like async.series [duplicate]

Consider the following code that reads an array of files in a serial/sequential manner. readFiles returns a promise, which is resolved only once all files have been read in sequence.
var readFile = function(file) {
... // Returns a promise.
};
var readFiles = function(files) {
return new Promise((resolve, reject) => {
var readSequential = function(index) {
if (index >= files.length) {
resolve();
} else {
readFile(files[index]).then(function() {
readSequential(index + 1);
}).catch(reject);
}
};
readSequential(0); // Start with the first file!
});
};
The above code works, but I don't like having to do recursion for things to occur sequentially. Is there a simpler way that this code can be re-written so that I don't have to use my weird readSequential function?
Originally I tried to use Promise.all, but that caused all of the readFile calls to happen concurrently, which is not what I want:
var readFiles = function(files) {
return Promise.all(files.map(function(file) {
return readFile(file);
}));
};
Update 2017: I would use an async function if the environment supports it:
async function readFiles(files) {
for(const file of files) {
await readFile(file);
}
};
If you'd like, you can defer reading the files until you need them using an async generator (if your environment supports it):
async function* readFiles(files) {
for(const file of files) {
yield await readFile(file);
}
};
Update: In second thought - I might use a for loop instead:
var readFiles = function(files) {
var p = Promise.resolve(); // Q() in q
files.forEach(file =>
p = p.then(() => readFile(file));
);
return p;
};
Or more compactly, with reduce:
var readFiles = function(files) {
return files.reduce((p, file) => {
return p.then(() => readFile(file));
}, Promise.resolve()); // initial
};
In other promise libraries (like when and Bluebird) you have utility methods for this.
For example, Bluebird would be:
var Promise = require("bluebird");
var fs = Promise.promisifyAll(require("fs"));
var readAll = Promise.resolve(files).map(fs.readFileAsync,{concurrency: 1 });
// if the order matters, you can use Promise.each instead and omit concurrency param
readAll.then(function(allFileContents){
// do stuff to read files.
});
Although there is really no reason not to use async await today.
Here is how I prefer to run tasks in series.
function runSerial() {
var that = this;
// task1 is a function that returns a promise (and immediately starts executing)
// task2 is a function that returns a promise (and immediately starts executing)
return Promise.resolve()
.then(function() {
return that.task1();
})
.then(function() {
return that.task2();
})
.then(function() {
console.log(" ---- done ----");
});
}
What about cases with more tasks? Like, 10?
function runSerial(tasks) {
var result = Promise.resolve();
tasks.forEach(task => {
result = result.then(() => task());
});
return result;
}
This question is old, but we live in a world of ES6 and functional JavaScript, so let's see how we can improve.
Because promises execute immediately, we can't just create an array of promises, they would all fire off in parallel.
Instead, we need to create an array of functions that returns a promise. Each function will then be executed sequentially, which then starts the promise inside.
We can solve this a few ways, but my favorite way is to use reduce.
It gets a little tricky using reduce in combination with promises, so I have broken down the one liner into some smaller digestible bites below.
The essence of this function is to use reduce starting with an initial value of Promise.resolve([]), or a promise containing an empty array.
This promise will then be passed into the reduce method as promise. This is the key to chaining each promise together sequentially. The next promise to execute is func and when the then fires, the results are concatenated and that promise is then returned, executing the reduce cycle with the next promise function.
Once all promises have executed, the returned promise will contain an array of all the results of each promise.
ES6 Example (one liner)
/*
* serial executes Promises sequentially.
* #param {funcs} An array of funcs that return promises.
* #example
* const urls = ['/url1', '/url2', '/url3']
* serial(urls.map(url => () => $.ajax(url)))
* .then(console.log.bind(console))
*/
const serial = funcs =>
funcs.reduce((promise, func) =>
promise.then(result => func().then(Array.prototype.concat.bind(result))), Promise.resolve([]))
ES6 Example (broken down)
// broken down to for easier understanding
const concat = list => Array.prototype.concat.bind(list)
const promiseConcat = f => x => f().then(concat(x))
const promiseReduce = (acc, x) => acc.then(promiseConcat(x))
/*
* serial executes Promises sequentially.
* #param {funcs} An array of funcs that return promises.
* #example
* const urls = ['/url1', '/url2', '/url3']
* serial(urls.map(url => () => $.ajax(url)))
* .then(console.log.bind(console))
*/
const serial = funcs => funcs.reduce(promiseReduce, Promise.resolve([]))
Usage:
// first take your work
const urls = ['/url1', '/url2', '/url3', '/url4']
// next convert each item to a function that returns a promise
const funcs = urls.map(url => () => $.ajax(url))
// execute them serially
serial(funcs)
.then(console.log.bind(console))
To do this simply in ES6:
function(files) {
// Create a new empty promise (don't do that with real people ;)
var sequence = Promise.resolve();
// Loop over each file, and add on a promise to the
// end of the 'sequence' promise.
files.forEach(file => {
// Chain one computation onto the sequence
sequence =
sequence
.then(() => performComputation(file))
.then(result => doSomething(result));
// Resolves for each file, one at a time.
})
// This will resolve after the entire chain is resolved
return sequence;
}
Addition example
const addTwo = async () => 2;
const addThree = async (inValue) => new Promise((resolve) => setTimeout(resolve(inValue + 3), 2000));
const addFour = (inValue) => new Promise((res) => setTimeout(res(inValue + 4), 1000));
const addFive = async (inValue) => inValue + 5;
// Function which handles promises from above
async function sequenceAddition() {
let sum = await [addTwo, addThree, addFour, addFive].reduce(
(promise, currPromise) => promise.then((val) => currPromise(val)),
Promise.resolve()
);
console.log('sum:', sum); // 2 + 3 + 4 + 5 = 14
}
// Run function. See console for result.
sequenceAddition();
General syntax to use reduce()
function sequence(tasks, fn) {
return tasks.reduce((promise, task) => promise.then(() => fn(task)), Promise.resolve());
}
UPDATE
items-promise is a ready to use NPM package doing the same.
I've had to run a lot of sequential tasks and used these answers to forge a function that would take care of handling any sequential task...
function one_by_one(objects_array, iterator, callback) {
var start_promise = objects_array.reduce(function (prom, object) {
return prom.then(function () {
return iterator(object);
});
}, Promise.resolve()); // initial
if(callback){
start_promise.then(callback);
}else{
return start_promise;
}
}
The function takes 2 arguments + 1 optional. First argument is the array on which we will be working. The second argument is the task itself, a function that returns a promise, the next task will be started only when this promise resolves. The third argument is a callback to run when all tasks have been done. If no callback is passed, then the function returns the promise it created so we can handle the end.
Here's an example of usage:
var filenames = ['1.jpg','2.jpg','3.jpg'];
var resize_task = function(filename){
//return promise of async resizing with filename
};
one_by_one(filenames,resize_task );
Hope it saves someone some time...
With Async/Await (if you have the support of ES7)
function downloadFile(fileUrl) { ... } // This function return a Promise
async function main()
{
var filesList = [...];
for (const file of filesList) {
await downloadFile(file);
}
}
(you must use for loop, and not forEach because async/await has problems running in forEach loop)
Without Async/Await (using Promise)
function downloadFile(fileUrl) { ... } // This function return a Promise
function downloadRecursion(filesList, index)
{
index = index || 0;
if (index < filesList.length)
{
downloadFile(filesList[index]).then(function()
{
index++;
downloadRecursion(filesList, index); // self invocation - recursion!
});
}
else
{
return Promise.resolve();
}
}
function main()
{
var filesList = [...];
downloadRecursion(filesList);
}
My preferred solution:
function processArray(arr, fn) {
return arr.reduce(
(p, v) => p.then((a) => fn(v).then(r => a.concat([r]))),
Promise.resolve([])
);
}
It's not fundamentally different from others published here but:
Applies the function to items in series
Resolves to an array of results
Doesn't require async/await (support is still quite limited, circa 2017)
Uses arrow functions; nice and concise
Example usage:
const numbers = [0, 4, 20, 100];
const multiplyBy3 = (x) => new Promise(res => res(x * 3));
// Prints [ 0, 12, 60, 300 ]
processArray(numbers, multiplyBy3).then(console.log);
Tested on reasonable current Chrome (v59) and NodeJS (v8.1.2).
First, you need to understand that a promise is executed at the time of creation.
So for example if you have a code:
["a","b","c"].map(x => returnsPromise(x))
You need to change it to:
["a","b","c"].map(x => () => returnsPromise(x))
Then we need to sequentially chain promises:
["a", "b", "c"].map(x => () => returnsPromise(x))
.reduce(
(before, after) => before.then(_ => after()),
Promise.resolve()
)
executing after(), will make sure that promise is created (and executed) only when its time comes.
Nicest solution that I was able to figure out was with bluebird promises. You can just do Promise.resolve(files).each(fs.readFileAsync); which guarantees that promises are resolved sequentially in order.
With async/await of ES2016 (and maybe some features of ES2018), this can be reduced to this form:
function readFile(file) {
... // Returns a promise.
}
async function readFiles(files) {
for (file in files) {
await readFile(file)
}
}
I haven't seen another answer express that simplicity. The OP said parallel execution of readFile was not desired. However, with IO like this it really makes sense to not be blocking on a single file read, while keeping the loop execution synchronous (you don't want to do the next step until all files have been read). Since I just learned about this and am a bit excited about it, I'll share that approach of parallel asynchronous execution of readFile with overall synchronous execution of readFiles.
async function readFiles(files) {
await Promise.all(files.map(readFile))
}
Isn't that a thing of beauty?
This is a slight variation of another answer above. Using native Promises:
function inSequence(tasks) {
return tasks.reduce((p, task) => p.then(task), Promise.resolve())
}
Explanation
If you have these tasks [t1, t2, t3], then the above is equivalent to Promise.resolve().then(t1).then(t2).then(t3). It's the behavior of reduce.
How to use
First You need to construct a list of tasks! A task is a function that accepts no argument. If you need to pass arguments to your function, then use bind or other methods to create a task. For example:
var tasks = files.map(file => processFile.bind(null, file))
inSequence(tasks).then(...)
I created this simple method on the Promise object:
Create and add a Promise.sequence method to the Promise object
Promise.sequence = function (chain) {
var results = [];
var entries = chain;
if (entries.entries) entries = entries.entries();
return new Promise(function (yes, no) {
var next = function () {
var entry = entries.next();
if(entry.done) yes(results);
else {
results.push(entry.value[1]().then(next, function() { no(results); } ));
}
};
next();
});
};
Usage:
var todo = [];
todo.push(firstPromise);
if (someCriterium) todo.push(optionalPromise);
todo.push(lastPromise);
// Invoking them
Promise.sequence(todo)
.then(function(results) {}, function(results) {});
The best thing about this extension to the Promise object, is that it is consistent with the style of promises. Promise.all and Promise.sequence is invoked the same way, but have different semantics.
Caution
Sequential running of promises is not usually a very good way to use promises. It's usually better to use Promise.all, and let the browser run the code as fast as possible. However, there are real use cases for it - for example when writing a mobile app using javascript.
My answer based on https://stackoverflow.com/a/31070150/7542429.
Promise.series = function series(arrayOfPromises) {
var results = [];
return arrayOfPromises.reduce(function(seriesPromise, promise) {
return seriesPromise.then(function() {
return promise
.then(function(result) {
results.push(result);
});
});
}, Promise.resolve())
.then(function() {
return results;
});
};
This solution returns the results as an array like Promise.all().
Usage:
Promise.series([array of promises])
.then(function(results) {
// do stuff with results here
});
Use Array.prototype.reduce, and remember to wrap your promises in a function otherwise they will already be running!
// array of Promise providers
const providers = [
function(){
return Promise.resolve(1);
},
function(){
return Promise.resolve(2);
},
function(){
return Promise.resolve(3);
}
]
const inSeries = function(providers){
const seed = Promise.resolve(null);
return providers.reduce(function(a,b){
return a.then(b);
}, seed);
};
nice and easy...
you should be able to re-use the same seed for performance, etc.
It's important to guard against empty arrays or arrays with only 1 element when using reduce, so this technique is your best bet:
const providers = [
function(v){
return Promise.resolve(v+1);
},
function(v){
return Promise.resolve(v+2);
},
function(v){
return Promise.resolve(v+3);
}
]
const inSeries = function(providers, initialVal){
if(providers.length < 1){
return Promise.resolve(null)
}
return providers.reduce((a,b) => a.then(b), providers.shift()(initialVal));
};
and then call it like:
inSeries(providers, 1).then(v => {
console.log(v); // 7
});
Using modern ES:
const series = async (tasks) => {
const results = [];
for (const task of tasks) {
const result = await task;
results.push(result);
}
return results;
};
//...
const readFiles = await series(files.map(readFile));
Most of the answers dont include the results of ALL promises individually, so in case someone is looking for this particular behaviour, this is a possible solution using recursion.
It follows the style of Promise.all:
Returns the array of results in the .then() callback.
If some promise fails, its returned immediately in the .catch() callback.
const promiseEach = (arrayOfTasks) => {
let results = []
return new Promise((resolve, reject) => {
const resolveNext = (arrayOfTasks) => {
// If all tasks are already resolved, return the final array of results
if (arrayOfTasks.length === 0) return resolve(results)
// Extract first promise and solve it
const first = arrayOfTasks.shift()
first().then((res) => {
results.push(res)
resolveNext(arrayOfTasks)
}).catch((err) => {
reject(err)
})
}
resolveNext(arrayOfTasks)
})
}
// Lets try it 😎
const promise = (time, shouldThrowError) => new Promise((resolve, reject) => {
const timeInMs = time * 1000
setTimeout(()=>{
console.log(`Waited ${time} secs`)
if (shouldThrowError) reject(new Error('Promise failed'))
resolve(time)
}, timeInMs)
})
const tasks = [() => promise(1), () => promise(2)]
promiseEach(tasks)
.then((res) => {
console.log(res) // [1, 2]
})
// Oops some promise failed
.catch((error) => {
console.log(error)
})
Note about the tasks array declaration:
In this case is not possible to use the following notation like Promise.all would use:
const tasks = [promise(1), promise(2)]
And we have to use:
const tasks = [() => promise(1), () => promise(2)]
The reason is that JavaScript starts executing the promise immediatelly after its declared. If we use methods like Promise.all, it just checks that the state of all of them is fulfilled or rejected, but doesnt start the exection itself. Using () => promise() we stop the execution until its called.
You can use this function that gets promiseFactories List:
function executeSequentially(promiseFactories) {
var result = Promise.resolve();
promiseFactories.forEach(function (promiseFactory) {
result = result.then(promiseFactory);
});
return result;
}
Promise Factory is just simple function that returns a Promise:
function myPromiseFactory() {
return somethingThatCreatesAPromise();
}
It works because a promise factory doesn't create the promise until it's asked to. It works the same way as a then function – in fact, it's the same thing!
You don't want to operate over an array of promises at all. Per the Promise spec, as soon as a promise is created, it begins executing. So what you really want is an array of promise factories...
If you want to learn more on Promises, you should check this link:
https://pouchdb.com/2015/05/18/we-have-a-problem-with-promises.html
If you want you can use reduce to make a sequential promise, for example:
[2,3,4,5,6,7,8,9].reduce((promises, page) => {
return promises.then((page) => {
console.log(page);
return Promise.resolve(page+1);
});
}, Promise.resolve(1));
it'll always works in sequential.
I really liked #joelnet's answer, but to me, that style of coding is a little bit tough to digest, so I spent a couple of days trying to figure out how I would express the same solution in a more readable manner and this is my take, just with a different syntax and some comments.
// first take your work
const urls = ['/url1', '/url2', '/url3', '/url4']
// next convert each item to a function that returns a promise
const functions = urls.map((url) => {
// For every url we return a new function
return () => {
return new Promise((resolve) => {
// random wait in milliseconds
const randomWait = parseInt((Math.random() * 1000),10)
console.log('waiting to resolve in ms', randomWait)
setTimeout(()=>resolve({randomWait, url}),randomWait)
})
}
})
const promiseReduce = (acc, next) => {
// we wait for the accumulator to resolve it's promise
return acc.then((accResult) => {
// and then we return a new promise that will become
// the new value for the accumulator
return next().then((nextResult) => {
// that eventually will resolve to a new array containing
// the value of the two promises
return accResult.concat(nextResult)
})
})
};
// the accumulator will always be a promise that resolves to an array
const accumulator = Promise.resolve([])
// we call reduce with the reduce function and the accumulator initial value
functions.reduce(promiseReduce, accumulator)
.then((result) => {
// let's display the final value here
console.log('=== The final result ===')
console.log(result)
})
As Bergi noticed, I think the best and clear solution is use BlueBird.each, code below:
const BlueBird = require('bluebird');
BlueBird.each(files, fs.readFileAsync);
I find myself coming back to this question many times and the answers aren't exactly giving me what I need, so putting this here for anyone that needs this too.
The code below does sequential promises execution (one after another), and each round consists of multiple callings:
async function sequence(list, cb) {
const result = [];
await list.reduce(async (promise, item) => promise
.then(() => cb(item))
.then((res) => result.push(res)
), Promise.resolve());
return result;
}
Showcase:
<script src="https://cdnjs.cloudflare.com/ajax/libs/axios/0.15.3/axios.min.js"></script>
<script src="https://unpkg.com/#babel/standalone#7/babel.min.js"></script>
<script type="text/babel">
function sleep(ms) {
return new Promise(resolve => setTimeout(resolve, ms));
}
async function readFile(url, index) {
console.log('Running index: ', index);
// First action
const firstTime = await axios.get(url);
console.log('First API response: ', firstTime.data.activity);
// Second action
await sleep(1000);
// Third action
const secondTime = await axios.get(url);
console.log('Second API response: ', secondTime.data.activity);
// Fourth action
await sleep(1000);
return secondTime.data;
}
async function sequence(urls, fn) {
const result = [];
await urls.reduce(async (promise, url, index) => promise.then(() => fn(url, index)).then((res) => result.push(res)), Promise.resolve());
return result;
}
const urls = [
'https://www.boredapi.com/api/activity',
'https://www.boredapi.com/api/activity',
'https://www.boredapi.com/api/activity',
];
(async function init() {
const result = await sequence(urls, readFile);
console.log('result', result);
})()
</script>
I use the following code to extend the Promise object. It handles rejection of the promises and returns an array of results
Code
/*
Runs tasks in sequence and resolves a promise upon finish
tasks: an array of functions that return a promise upon call.
parameters: an array of arrays corresponding to the parameters to be passed on each function call.
context: Object to use as context to call each function. (The 'this' keyword that may be used inside the function definition)
*/
Promise.sequence = function(tasks, parameters = [], context = null) {
return new Promise((resolve, reject)=>{
var nextTask = tasks.splice(0,1)[0].apply(context, parameters[0]); //Dequeue and call the first task
var output = new Array(tasks.length + 1);
var errorFlag = false;
tasks.forEach((task, index) => {
nextTask = nextTask.then(r => {
output[index] = r;
return task.apply(context, parameters[index+1]);
}, e=>{
output[index] = e;
errorFlag = true;
return task.apply(context, parameters[index+1]);
});
});
// Last task
nextTask.then(r=>{
output[output.length - 1] = r;
if (errorFlag) reject(output); else resolve(output);
})
.catch(e=>{
output[output.length - 1] = e;
reject(output);
});
});
};
Example
function functionThatReturnsAPromise(n) {
return new Promise((resolve, reject)=>{
//Emulating real life delays, like a web request
setTimeout(()=>{
resolve(n);
}, 1000);
});
}
var arrayOfArguments = [['a'],['b'],['c'],['d']];
var arrayOfFunctions = (new Array(4)).fill(functionThatReturnsAPromise);
Promise.sequence(arrayOfFunctions, arrayOfArguments)
.then(console.log)
.catch(console.error);
Your approach is not bad, but it does have two issues: it swallows errors and it employs the Explicit Promise Construction Antipattern.
You can solve both of these issues, and make the code cleaner, while still employing the same general strategy:
var Q = require("q");
var readFile = function(file) {
... // Returns a promise.
};
var readFiles = function(files) {
var readSequential = function(index) {
if (index < files.length) {
return readFile(files[index]).then(function() {
return readSequential(index + 1);
});
}
};
// using Promise.resolve() here in case files.length is 0
return Promise.resolve(readSequential(0)); // Start!
};
This is my sequentially implementation that I use in various projects:
const file = [file1, file2, file3];
const fileContents = sequentially(readFile, files);
// somewhere else in the code:
export const sequentially = async <T, P>(
toPromise: (element: T) => Promise<P>,
elements: T[]
): Promise<P[]> => {
const results: P[] = [];
await elements.reduce(async (sequence, element) => {
await sequence;
results.push(await toPromise(element));
}, Promise.resolve());
return results;
};
Here is my Angular/TypeScript approach, using RxJS:
Given an array of URL strings, convert it into an Observable using the from function.
Use pipe to wrap the Ajax request, immediate response logic, any desired delay, and error handling.
Inside of the pipe, use concatMap to serialize the requests. Otherwise, using Javascript forEach or map would make the requests at the same time.
Use RxJS ajax to make the call, and also to add any desired delay after each call returns.
Working example: https://stackblitz.com/edit/rxjs-bnrkix?file=index.ts
The code looks like this (I left in some extras so you can choose what to keep or discard):
import { ajax } from 'rxjs/ajax';
import { catchError, concatMap, delay, from, of, map, Observable } from 'rxjs';
const urls = [
'https://randomuser.me/api/',
'https://randomuser.me/api/',
'https://randomuser.me/api/',
];
const delayAfterCall = 500;
from(urls)
.pipe(
concatMap((url: string) => {
return ajax.getJSON(url).pipe(
map((response) => {
console.log('Done! Received:', response);
return response;
}),
catchError((error) => {
console.error('Error: ', error);
return of(error);
}),
delay(delayAfterCall)
);
})
)
.subscribe((response) => {
console.log('received email:', response.results[0].email);
});
On the basis of the question's title, "Resolve promises one after another (i.e. in sequence)?", we might understand that the OP is more interested in the sequential handling of promises on settlement than sequential calls per se.
This answer is offered :
to demonstrate that sequential calls are not necessary for sequential handling of responses.
to expose viable alternative patterns to this page's visitors - including the OP if he is still interested over a year later.
despite the OP's assertion that he does not want to make calls concurrently, which may genuinely be the case but equally may be an assumption based on the desire for sequential handling of responses as the title implies.
If concurrent calls are genuinely not wanted then see Benjamin Gruenbaum's answer which covers sequential calls (etc) comprehensively.
If however, you are interested (for improved performance) in patterns which allow concurrent calls followed by sequential handling of responses, then please read on.
It's tempting to think you have to use Promise.all(arr.map(fn)).then(fn) (as I have done many times) or a Promise lib's fancy sugar (notably Bluebird's), however (with credit to this article) an arr.map(fn).reduce(fn) pattern will do the job, with the advantages that it :
works with any promise lib - even pre-compliant versions of jQuery - only .then() is used.
affords the flexibility to skip-over-error or stop-on-error, whichever you want with a one line mod.
Here it is, written for Q.
var readFiles = function(files) {
return files.map(readFile) //Make calls in parallel.
.reduce(function(sequence, filePromise) {
return sequence.then(function() {
return filePromise;
}).then(function(file) {
//Do stuff with file ... in the correct sequence!
}, function(error) {
console.log(error); //optional
return sequence;//skip-over-error. To stop-on-error, `return error` (jQuery), or `throw error` (Promises/A+).
});
}, Q()).then(function() {
// all done.
});
};
Note: only that one fragment, Q(), is specific to Q. For jQuery you need to ensure that readFile() returns a jQuery promise. With A+ libs, foreign promises will be assimilated.
The key here is the reduction's sequence promise, which sequences the handling of the readFile promises but not their creation.
And once you have absorbed that, it's maybe slightly mind-blowing when you realise that the .map() stage isn't actually necessary! The whole job, parallel calls plus serial handling in the correct order, can be achieved with reduce() alone, plus the added advantage of further flexibility to :
convert from parallel async calls to serial async calls by simply moving one line - potentially useful during development.
Here it is, for Q again.
var readFiles = function(files) {
return files.reduce(function(sequence, f) {
var filePromise = readFile(f);//Make calls in parallel. To call sequentially, move this line down one.
return sequence.then(function() {
return filePromise;
}).then(function(file) {
//Do stuff with file ... in the correct sequence!
}, function(error) {
console.log(error); //optional
return sequence;//Skip over any errors. To stop-on-error, `return error` (jQuery), or `throw error` (Promises/A+).
});
}, Q()).then(function() {
// all done.
});
};
That's the basic pattern. If you wanted also to deliver data (eg the files or some transform of them) to the caller, you would need a mild variant.
If someone else needs a guaranteed way of STRICTLY sequential way of resolving Promises when performing CRUD operations you also can use the following code as a basis.
As long as you add 'return' before calling each function, describing a Promise, and use this example as a basis the next .then() function call will CONSISTENTLY start after the completion of the previous one:
getRidOfOlderShoutsPromise = () => {
return readShoutsPromise('BEFORE')
.then(() => {
return deleteOlderShoutsPromise();
})
.then(() => {
return readShoutsPromise('AFTER')
})
.catch(err => console.log(err.message));
}
deleteOlderShoutsPromise = () => {
return new Promise ( (resolve, reject) => {
console.log("in deleteOlderShouts");
let d = new Date();
let TwoMinuteAgo = d - 1000 * 90 ;
All_Shouts.deleteMany({ dateTime: {$lt: TwoMinuteAgo}}, function(err) {
if (err) reject();
console.log("DELETED OLDs at "+d);
resolve();
});
});
}
readShoutsPromise = (tex) => {
return new Promise( (resolve, reject) => {
console.log("in readShoutsPromise -"+tex);
All_Shouts
.find({})
.sort([['dateTime', 'ascending']])
.exec(function (err, data){
if (err) reject();
let d = new Date();
console.log("shouts "+tex+" delete PROMISE = "+data.length +"; date ="+d);
resolve(data);
});
});
}
Array push and pop method can be used for sequence of promises. You can also push new promises when you need additional data. This is the code, I will use in React Infinite loader to load sequence of pages.
var promises = [Promise.resolve()];
function methodThatReturnsAPromise(page) {
return new Promise((resolve, reject) => {
setTimeout(() => {
console.log(`Resolve-${page}! ${new Date()} `);
resolve();
}, 1000);
});
}
function pushPromise(page) {
promises.push(promises.pop().then(function () {
return methodThatReturnsAPromise(page)
}));
}
pushPromise(1);
pushPromise(2);
pushPromise(3);
(function() {
function sleep(ms) {
return new Promise(function(resolve) {
setTimeout(function() {
return resolve();
}, ms);
});
}
function serial(arr, index, results) {
if (index == arr.length) {
return Promise.resolve(results);
}
return new Promise(function(resolve, reject) {
if (!index) {
index = 0;
results = [];
}
return arr[index]()
.then(function(d) {
return resolve(d);
})
.catch(function(err) {
return reject(err);
});
})
.then(function(result) {
console.log("here");
results.push(result);
return serial(arr, index + 1, results);
})
.catch(function(err) {
throw err;
});
}
const a = [5000, 5000, 5000];
serial(a.map(x => () => sleep(x)));
})();
Here the key is how you call the sleep function. You need to pass an array of functions which itself returns a promise instead of an array of promises.

Categories