Related
I wanted to create a model of earth using a global 4k height map that I found online. I found this open source script that can do this.
function createGeometryFromMap() {
var depth = 512;
var width = 512;
var spacingX = 3;
var spacingZ = 3;
var heightOffset = 2;
var canvas = document.createElement('canvas');
canvas.width = 512;
canvas.height = 512;
var ctx = canvas.getContext('2d');
var img = new Image();
img.src = "assets/earth.jpg";
img.onload = function () {
// draw on canvas
ctx.drawImage(img, 0, 0);
var pixel = ctx.getImageData(0, 0, width, depth);
var geom = new THREE.Geometry;
var output = [];
for (var x = 0; x < depth; x++) {
for (var z = 0; z < width; z++) {
// get pixel
// since we're grayscale, we only need one element
var yValue = pixel.data[z * 4 + (depth * x * 4)] / heightOffset;
var vertex = new THREE.Vector3(x * spacingX, yValue, z * spacingZ);
geom.vertices.push(vertex);
}
}
// we create a rectangle between four vertices, and we do
// that as two triangles.
for (var z = 0; z < depth - 1; z++) {
for (var x = 0; x < width - 1; x++) {
// we need to point to the position in the array
// a - - b
// | x |
// c - - d
var a = x + z * width;
var b = (x + 1) + (z * width);
var c = x + ((z + 1) * width);
var d = (x + 1) + ((z + 1) * width);
var face1 = new THREE.Face3(a, b, d);
var face2 = new THREE.Face3(d, c, a);
face1.color = new THREE.Color(scale(getHighPoint(geom, face1)).hex());
face2.color = new THREE.Color(scale(getHighPoint(geom, face2)).hex())
geom.faces.push(face1);
geom.faces.push(face2);
}
}
geom.computeVertexNormals(true);
geom.computeFaceNormals();
geom.computeBoundingBox();
var zMax = geom.boundingBox.max.z;
var xMax = geom.boundingBox.max.x;
var mesh = new THREE.Mesh(geom, new THREE.MeshLambertMaterial({
vertexColors: THREE.FaceColors,
color: 0x666666,
shading: THREE.NoShading
}));
mesh.translateX(-xMax / 2);
mesh.translateZ(-zMax / 2);
scene.add(mesh);
mesh.name = 'valley';
};
}
function getHighPoint(geometry, face) {
var v1 = geometry.vertices[face.a].y;
var v2 = geometry.vertices[face.b].y;
var v3 = geometry.vertices[face.c].y;
return Math.max(v1, v2, v3);
}
When I tried the demo heightmaps of Grand Canyon and Hawaii that came with the download, they seemed to be fine. However, when I tried to implement my global heightmap into this, the result was not displaying what I needed.
This is the terrain of Grand Canyon:
This is the global heightmap that I am using:
And this is the result I am getting for the 3D terrain of the world:
It's obvious that something is wrong, because that is not the world.
When you tell your 2D canvas context to .drawImage(), it's going to draw a 4000 pixels image over a 512 pixels canvas. That's how it's defined in the MDN documents if you only use three img, dx, dy arguments.
You could either:
Draw the Earth image smaller to fit inside your 512x512 pixels canvas by using the 4th and 5th arguments of dWidth, dHeight.
Make your canvas larger to match the width and height dimensions of your Earth image.
I am trying to use Javascript to find the darkest region of an image.
So far, this is what I have:
https://jsfiddle.net/brampower/bv78rmz8/
function rgbToHsl(r, g, b) {
r /= 255, g /= 255, b /= 255;
var max = Math.max(r, g, b),
min = Math.min(r, g, b);
var h, s, l = (max + min) / 2;
if (max == min) {
h = s = 0; // achromatic
} else {
var d = max - min;
s = l > 0.5 ? d / (2 - max - min) : d / (max + min);
switch (max) {
case r:
h = (g - b) / d + (g < b ? 6 : 0);
break;
case g:
h = (b - r) / d + 2;
break;
case b:
h = (r - g) / d + 4;
break;
}
h /= 6;
}
return ({
h: h,
s: s,
l: l,
})
}
function solve_darkest(url, callback) {
var image = new Image();
image.src = url;
image.onload = function(){
var canvas = document.createElement('canvas');
canvas.width = 300;
canvas.height = 300;
var context = canvas.getContext("2d");
context.drawImage(image, 0, 0);
var imgData = context.getImageData(0, 0, 300, 300);
var pixel = 0;
var darkest_pixel_lightness = 100;
var darkest_pixel_location = 0;
for (var i = 0; i < imgData.data.length; i += 4) {
red = imgData.data[i + 0];
green = imgData.data[i + 1];
blue = imgData.data[i + 2];
alpha = imgData.data[i + 3];
var hsl = rgbToHsl(red, green, blue);
var lightness = hsl.l;
if (lightness < darkest_pixel_lightness) {
darkest_pixel_lightness = lightness;
darkest_pixel_location = pixel;
}
pixel++;
}
var y = Math.floor(darkest_pixel_location/200);
var x = darkest_pixel_location-(y*200);
callback(x,y);
};
}
image_url = 'http://i.imgur.com/j6oJO8s.png';
solve_darkest(image_url, function(x, y) {
alert('x: '+x+' y: '+y);
});
It won't work in JSFiddle because of the tainted canvas, but hopefully that will give you an idea. For the sample image, my JS is currently returning the following coordinates:
x: 140 y: 117
These are not the correct coordinates. The darkest pixel of this image should be around the following coordinates:
x: 95 y: 204
I just can't figure out why the coordinates are so off. Anyone here that would be willing to shed some light on what I'm doing wrong?
Ok, I just tested your jsfiddle.
For the tainted canvas just change crossOrigin property:
var image = new Image();
image.crossOrigin = "Anonymous";
For the incorrect pixel, there are several problems.
Incorrect canvas size. If the image is smaller than the canvas size, the algorithm tests pixels which are not in the image, but are in the canvas. Since you don't drop the pixels which are transparent, you also test the 0, 0, 0 (RGB) pixel which is supposed to be black #000000.
Incorrect 1-dimensional array to 2-dimensional transformation. The formula you are using is incorrect, because you set the width and height to 300, but use 200 in the formula. I suggest creating a variable and using that as a reference.
If you doubt that the pixel is exactly there, create a small picture, like 5x5 px size and check if the algorithm returns what you expect.
I updated the jsfiddle, I think this is correct now. Also, removed the img element in HTML and just appended the canvas to the body: https://jsfiddle.net/Draznel/597u5h0c/1/
Without the JSFiddle working, my best guess would be that the logic in
var y = Math.floor(darkest_pixel_location/200);
var x = darkest_pixel_location-(y*200);
is incorrect for two reasons.
1) The image is 300 pixels in width/height, not 200
2) The imagedata is ordered by x first and y second
To get the correct x and y coordinates, I think the following code would work:
var x = Math.floor(darkest_pixel_location / imageWidth);
var y = darkest_pixel_location % imageWidth;
A good time to realise the nasty consequences of hard-coded variables...
You're creating a canvas of 300x300 and drawing a png of the same dimensions to it. Unfortunately, you then use 200 to determine the x,y pos given the index of the selected pixel. Hint: make a 300x300 image that's white. Set a single pixel at (95,204) to black. Run your unmodified code and you'll get 95,306. Change to same as image size and you'll get (95,204) as your answer.
So, you can hardly complain that the index into a 300x300 image returns the wrong position when manipulated in a way that would be appropriate for the index into a 200x200 image.
Personally, I'd replace:
var y = Math.floor(darkest_pixel_location/200);
var x = darkest_pixel_location-(y*200);
with
var y = Math.floor(darkest_pixel_location/this.width);
var x = darkest_pixel_location-(y*this.width);
That will then convert an index back into correct x,y coordinates.
That said, the image you've provided actually doesn't have it's darkest spot at the indicated location. The pixel at 95,204 has the value of #37614e, or rgb(55,97,78).
Thus, I hope you can now see the purpose of my suggestion of a single dark pixel in an otherwise light image. You can reduce the number of issues you're trying to debug to one at a time. In this case - "can I convert an index back into 2d coordinates?". Once done, "do I have a dark spot actually where I think it is?"
In your case - the answer to both of these questions was no! Not exactly the most advantageous place from which to start debugging...
some comments were made and a better understanding of the problem at hand gained.
Okay, as per the discussion in the comments - the task is to find the upper-left corner of a darkened region in an image - such a search should average results over an (as yet) unknown area such that local minimums or maximums (dark or light pixels) will not adversely affect the identified area of interest.
Ideally, one may run the code iteratively - try with a block-size of 1, then a block-size of 2, etc, etc, increasing the block-size until the results from two runs are the same or within a certain limit.
I.e if I search with a block-size of 9 and get the location 93,211 and then get the same with a block-size of 10 (whereas all previous block-size values returned a different result) then I'd probably feel fairly confident I'd correctly identified the area of interest.
Here's some code to chew on. You'll notice I've left your function and created another, very similar one. I hope you'll find it suitable. :)
"use strict";
function newEl(tag){return document.createElement(tag)}
function newTxt(txt){return document.createTextNode(txt)}
function byId(id){return document.getElementById(id)}
function allByClass(clss,parent){return (parent==undefined?document:parent).getElementsByClassName(clss)}
function allByTag(tag,parent){return (parent==undefined?document:parent).getElementsByTagName(tag)}
function toggleClass(elem,clss){elem.classList.toggle(clss)}
function addClass(elem,clss){elem.classList.add(clss)}
function removeClass(elem,clss){elem.classList.remove(clss)}
function hasClass(elem,clss){elem.classList.contains(clss)}
// useful for HtmlCollection, NodeList, String types
function forEach(array, callback, scope){for (var i=0,n=array.length; i<n; i++)callback.call(scope, array[i], i, array);} // passes back stuff we need
// callback gets data via the .target.result field of the param passed to it.
function loadFileObject(fileObj, loadedCallback){var a = new FileReader();a.onload = loadedCallback;a.readAsDataURL( fileObj );}
function ajaxGet(url, onLoad, onError)
{
var ajax = new XMLHttpRequest();
ajax.onload = function(){onLoad(this);}
ajax.onerror = function(){console.log("ajax request failed to: "+url);onError(this);}
ajax.open("GET",url,true);
ajax.send();
}
function ajaxPost(url, phpPostVarName, data, onSucess, onError)
{
var ajax = new XMLHttpRequest();
ajax.onload = function(){ onSucess(this);}
ajax.onerror = function() {console.log("ajax request failed to: "+url);onError(this);}
ajax.open("POST", url, true);
ajax.setRequestHeader("Content-type","application/x-www-form-urlencoded");
ajax.send(phpPostVarName+"=" + encodeURI(data) );
}
function ajaxPostForm(url, formElem, onSuccess, onError)
{
var formData = new FormData(formElem);
ajaxPostFormData(url, formData, onSuccess, onError)
}
function ajaxPostFormData(url, formData, onSuccess, onError)
{
var ajax = new XMLHttpRequest();
ajax.onload = function(){onSuccess(this);}
ajax.onerror = function(){onError(this);}
ajax.open("POST",url,true);
ajax.send(formData);
}
function getTheStyle(tgtElement)
{
var result = {}, properties = window.getComputedStyle(tgtElement, null);
forEach(properties, function(prop){result[prop] = properties.getPropertyValue(prop);});
return result;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
window.addEventListener('load', onDocLoaded, false);
function onDocLoaded(evt)
{
// var image_url = 'http://i.imgur.com/j6oJO8s.png';
// var image_url = 'onePixel.png';
var image_url = 'j6oJO8s.png';
byId('theImage').src = image_url;
solve_darkest(image_url, function(x,y){alert('x: '+x+' y: '+y);} );
solve_darkest_2(image_url, function(x,y){alert('x: '+x+' y: '+y);} );
}
function rgbToHsl(r, g, b)
{
r /= 255, g /= 255, b /= 255;
var max = Math.max(r, g, b),
min = Math.min(r, g, b);
var h, s, l = (max + min) / 2;
if (max == min) {
h = s = 0; // achromatic
} else {
var d = max - min;
s = l > 0.5 ? d / (2 - max - min) : d / (max + min);
switch (max) {
case r:
h = (g - b) / d + (g < b ? 6 : 0);
break;
case g:
h = (b - r) / d + 2;
break;
case b:
h = (r - g) / d + 4;
break;
}
h /= 6;
}
return ({
h: h,
s: s,
l: l,
})
}
function solve_darkest(url, callback)
{
var image = new Image();
image.src = url;
image.onload = function()
{
var canvas = document.createElement('canvas');
canvas.width = 300;
canvas.height = 300;
var context = canvas.getContext("2d");
context.drawImage(image, 0, 0);
var imgData = context.getImageData(0, 0, 300, 300);
var pixel = 0;
var darkest_pixel_lightness = 100;
var darkest_pixel_location = 0;
for (var i = 0; i < imgData.data.length; i += 4)
{
var red = imgData.data[i + 0];
var green = imgData.data[i + 1];
var blue = imgData.data[i + 2];
var alpha = imgData.data[i + 3];
var hsl = rgbToHsl(red, green, blue);
var lightness = hsl.l;
if (lightness < darkest_pixel_lightness)
{
darkest_pixel_lightness = lightness;
darkest_pixel_location = pixel;
console.log("Darkest found at index: " + pixel);
}
pixel++;
}
// var y = Math.floor(darkest_pixel_location/200);
// var x = darkest_pixel_location-(y*200);
var y = Math.floor(darkest_pixel_location/this.width);
var x = darkest_pixel_location-(y*this.width);
callback(x,y);
};
}
function solve_darkest_2(url, callback)
{
var image = new Image();
image.src = url;
image.onload = function()
{
var canvas = document.createElement('canvas');
canvas.width = 300;
canvas.height = 300;
var context = canvas.getContext("2d");
context.drawImage(image, 0, 0);
var imgData = context.getImageData(0,0, canvas.width, canvas.height);
var darkest_pixel_luminance = 100;
var darkest_pixel_xPos = 0;
var darkest_pixel_yPos = 0;
for (var y=0; y<canvas.height; y++)
{
for (var x=0; x<canvas.width; x++)
{
var luminance = averagePixels(imgData, x, y, 10);
if (luminance < darkest_pixel_luminance)
{
darkest_pixel_luminance = luminance;
darkest_pixel_xPos = x;
darkest_pixel_yPos = y;
}
}
}
callback(darkest_pixel_xPos,darkest_pixel_yPos);
};
}
function averagePixels(imgData, xPos, yPos, averagingBlockSize)
{
// var ctx = canvas.getContext("2d");
// var imgData = ctx.getImageData( 0, 0, canvas.width, canvas.height );
// imgData
// we average pixels found in a square region, we need to know how many pixels
// are in the region to divide the accumalated totals by the number of samples (pixels) in the
// averaging square
var numPixelsMax = averagingBlockSize * averagingBlockSize;
var numPixelsActual = 0;
var red, green, blue;
red = green = blue = 0;
var rowStride = imgData.width * 4; // add this to an index into the canvas's data to get the pixel
// immediatelly below it.
var x, y;
var initialIndex = ((yPos * imgData.width) + xPos) * 4;
var index = initialIndex;
var pixel = 0;
var darkest_pixel_lightness = 100;
var darkest_pixel_location = 0;
for (y=0; y<averagingBlockSize; y++)
{
index = initialIndex + y * rowStride;
for (x=0; x<averagingBlockSize; x++)
{
if ((x+xPos < imgData.width) && (y+yPos < imgData.height))
{
red += imgData.data[index+0];
green += imgData.data[index+1];
blue += imgData.data[index+2];
numPixelsActual++;
}
index += 4;
}
}
red /= numPixelsActual;
green /= numPixelsActual;
blue /= numPixelsActual;
var hsl = rgbToHsl(red, green, blue);
var luminance = hsl.l;
return luminance;
}
img
{
border: solid 1px red;
}
<h1>300px</h1>
<img id='theImage'/>
I am making a map that renders position of game objects (Project Zomboid zombies):
As user zooms out, single dots are no longer useful. Instead, I'd like to render distribution of zombies on an area using red color gradient. I tried to loop over all zombies for every rendered pixel and color it reciprocally to the sum of squared distances to the zombies. The result:
That's way too blurry. Also the results are more influenced by the zombies that are AWAY from the points - I need to influence them more by the zombies that are CLOSE. So what this is is just math. Here's the code I used:
var h = canvas.height;
var w = canvas.width;
// To loop over more than 1 pixel (performance)
var tileSize = 10;
var halfRadius = Math.floor(tileSize/2);
var time = performance.now();
// "Squared" because we didnt unsquare it
function distanceSquared(A, B) {
return (A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y);
}
// Loop for every x,y pixel (or region of pixels)
for(var y=0; y<h; y+=tileSize) {
for(var x=0; x<w; x+=tileSize) {
// Time security - stop rendering after 1 second
if(performance.now()-time>1000) {
x=w;y=h;break;
}
// Convert relative canvas offset to absolute point on the map
var point = canvasPixeltoImagePixel(x, y);
// For every zombie add sqrt(distance from this point to zombie)
var distancesRoot = 0;
// Loop over the zombies
var zombieCoords;
for(var i=0; i<zombies_length; i++) {
// Get single zombie coordinates as {x:0, y:0}
if((coords=zombies[i].pixel)==null)
coords = zombies[i].pixel = tileToPixel(zombies[i].coordinates[0], zombies[i].coordinates[1], drawer);
// square root is a) slow and b) probably not what I want anyway
var dist = distanceSquared(coords, point);
distancesRoot+=dist;
}
// The higher the sum of distances is, the more intensive should the color be
var style = 'rgba(255,0,0,'+300000000/distancesRoot+')';
// Kill the console immediatelly
//console.log(style);
// Maybe we should sample and cache the transparency styles since there's limited ammount of colors?
ctx.fillStyle = style;
ctx.fillRect(x-halfRadius,y-halfRadius,tileSize,tileSize);
}
}
I'm pretty fine with theoretical explanation how to do it, though if you make simple canvas example with some points, what would be awesome.
This is an example of a heat map. It's basically gradient orbs over points and then ramping the opacity through a heat ramp. The more orbs cluster together the more solid the color which can be shown as an amplified region with the proper ramp.
update
I cleaned up the variables a bit and put the zeeks in an animation loop. There's an fps counter to see how it's performing. The gradient circles can be expensive. We could probably do bigger worlds if we downscale the heat map. It won't be as smooth looking but will compute a lot faster.
update 2
The heat map now has an adjustable scale and as predicted we get an increase in fps.
if (typeof app === "undefined") {
var app = {};
}
app.zeeks = 200;
app.w = 600;
app.h = 400;
app.circleSize = 50;
app.scale = 0.25;
init();
function init() {
app.can = document.getElementById('can');
app.ctx = can.getContext('2d');
app.can.height = app.h;
app.can.width = app.w;
app.radius = Math.floor(app.circleSize / 2);
app.z = genZ(app.zeeks, app.w, app.h);
app.flip = false;
// Make temporary layer once.
app.layer = document.createElement('canvas');
app.layerCtx = app.layer.getContext('2d');
app.layer.width = Math.floor(app.w * app.scale);
app.layer.height = Math.floor(app.h * app.scale);
// Make the gradient canvas once.
var sCircle = Math.floor(app.circleSize * app.scale);
app.radius = Math.floor(sCircle / 2);
app.gCan = genGradientCircle(sCircle);
app.ramp = genRamp();
// fps counter
app.frames = 0;
app.fps = "- fps";
app.fpsInterval = setInterval(calcFps, 1000);
// start animation
ani();
flicker();
}
function calcFps() {
app.fps = app.frames + " fps";
app.frames = 0;
}
// animation loop
function ani() {
app.frames++;
var ctx = app.ctx;
var w = app.w;
var h = app.h;
moveZ();
//ctx.clearRect(0, 0, w, h);
ctx.fillStyle = "#006600";
ctx.fillRect(0, 0, w, h);
if (app.flip) {
drawZ2();
drawZ();
} else {
drawZ2();
}
ctx.fillStyle = "#FFFF00";
ctx.fillText(app.fps, 10, 10);
requestAnimationFrame(ani);
}
function flicker() {
app.flip = !app.flip;
if (app.flip) {
setTimeout(flicker, 500);
} else {
setTimeout(flicker, 5000);
}
}
function genGradientCircle(size) {
// gradient image
var gCan = document.createElement('canvas');
gCan.width = gCan.height = size;
var gCtx = gCan.getContext('2d');
var radius = Math.floor(size / 2);
var grad = gCtx.createRadialGradient(radius, radius, radius, radius, radius, 0);
grad.addColorStop(1, "rgba(255,255,255,.65)");
grad.addColorStop(0, "rgba(255,255,255,0)");
gCtx.fillStyle = grad;
gCtx.fillRect(0, 0, gCan.width, gCan.height);
return gCan;
}
function genRamp() {
// Create heat gradient
var heat = document.createElement('canvas');
var hCtx = heat.getContext('2d');
heat.width = 256;
heat.height = 5;
var linGrad = hCtx.createLinearGradient(0, 0, heat.width, heat.height);
linGrad.addColorStop(1, "rgba(255,0,0,.75)");
linGrad.addColorStop(0.5, "rgba(255,255,0,.03)");
linGrad.addColorStop(0, "rgba(255,255,0,0)");
hCtx.fillStyle = linGrad;
hCtx.fillRect(0, 0, heat.width, heat.height);
// create ramp from gradient
var ramp = [];
var imageData = hCtx.getImageData(0, 0, heat.width, 1);
var d = imageData.data;
for (var x = 0; x < heat.width; x++) {
var i = x * 4;
ramp[x] = [d[i], d[i + 1], d[i + 2], d[i + 3]];
}
return ramp;
}
function genZ(n, w, h) {
var a = [];
for (var i = 0; i < n; i++) {
a[i] = [
Math.floor(Math.random() * w),
Math.floor(Math.random() * h),
Math.floor(Math.random() * 3) - 1,
Math.floor(Math.random() * 3) - 1
];
}
return a;
}
function moveZ() {
var w = app.w
var h = app.h;
var z = app.z;
for (var i = 0; i < z.length; i++) {
var s = z[i];
s[0] += s[2];
s[1] += s[3];
if (s[0] > w || s[0] < 0) s[2] *= -1;
if (s[1] > w || s[1] < 0) s[3] *= -1;
}
}
function drawZ() {
var ctx = app.ctx;
var z = app.z;
ctx.fillStyle = "#FFFF00";
for (var i = 0; i < z.length; i++) {
ctx.fillRect(z[i][0] - 2, z[i][1] - 2, 4, 4);
}
}
function drawZ2() {
var ctx = app.ctx;
var layer = app.layer;
var layerCtx = app.layerCtx;
var gCan = app.gCan;
var z = app.z;
var radius = app.radius;
// render gradients at coords onto layer
for (var i = 0; i < z.length; i++) {
var x = Math.floor((z[i][0] * app.scale) - radius);
var y = Math.floor((z[i][1] * app.scale) - radius);
layerCtx.drawImage(gCan, x, y);
}
// adjust layer for heat ramp
var ramp = app.ramp;
// apply ramp to layer
var imageData = layerCtx.getImageData(0, 0, layer.width, layer.height);
d = imageData.data;
for (var i = 0; i < d.length; i += 4) {
if (d[i + 3] != 0) {
var c = ramp[d[i + 3]];
d[i] = c[0];
d[i + 1] = c[1];
d[i + 2] = c[2];
d[i + 3] = c[3];
}
}
layerCtx.putImageData(imageData, 0, 0);
// draw layer on world
ctx.drawImage(layer, 0, 0, layer.width, layer.height, 0, 0, app.w, app.h);
}
<canvas id="can" width="600" height="400"></canvas>
I've borrowed this code to try and suit my needs http://www.html5canvastutorials.com/advanced/html5-canvas-get-image-data-tutorial/ since it does the minimum task of it renders a image pixel by pixel (i believe).
What I'm trying to do is create an array of each pixel's RGB information, and display the information in plain text.
To test I am trying this with small images, 5x5 pixels, also I have this in an .html file i've opened with chrome.
The lightly adapted JS
<script>
function drawImage(imageObj) {
var codepanel = document.getElementById('code');
var canvas = document.getElementById('myCanvas');
var context = canvas.getContext('2d');
var imageX = 69;
var imageY = 50;
var imageWidth = imageObj.width;
var imageHeight = imageObj.height;
var pixels = new Array(); //my addition
var pixel = 0; //my addition
context.drawImage(imageObj, imageX, imageY);
var imageData = context.getImageData(imageX, imageY, imageWidth, imageHeight);
var data = imageData.data;
// iterate over all pixels
for(var i = 0, n = data.length; i < n; i += 4) {
var red = data[i];
var green = data[i + 1];
var blue = data[i + 2];
var alpha = data[i + 3];
pixels[pixel] = red + " " + green + " " + blue + " "; //my addition
pixel++; //my addition
}
codepanel.innerHTML = pixels.join(); //my addition
var x = 20;
var y = 20;
var red = data[((imageWidth * y) + x) * 4];
var green = data[((imageWidth * y) + x) * 4 + 1];
var blue = data[((imageWidth * y) + x) * 4 + 2];
var alpha = data[((imageWidth * y) + x) * 4 + 3];
for(var y = 0; y < imageHeight; y++) {
for(var x = 0; x < imageWidth; x++) {
var red = data[((imageWidth * y) + x) * 4];
var green = data[((imageWidth * y) + x) * 4 + 1];
var blue = data[((imageWidth * y) + x) * 4 + 2];
var alpha = data[((imageWidth * y) + x) * 4 + 3];
}
}
}
var imageObj = new Image();
imageObj.onload = function() {
drawImage(this);
};
imageObj.src = 'pallet.gif';
</script>
HTML
<!DOCTYPE HTML>
<html>
<head> </head>
<body>
<canvas id="myCanvas" width="100%" height="100%"></canvas>
<div id="code"> </div>
</body>
</html>
It means the image you drew to canvas came from a different origin than your page (file:// is considered a different origin too if you are testing with local pages).
The easiest way to solve this is:
If local, install a light-weight server to load the pages off (localhost) such as Mongoose.
If online, move the images to your own server or try to request cross-origin use. For this latter the external server need to be configured to allow this.
To request cross-origin do the following before setting src:
imageObj.crossOrigin = '';
imageObj.src = 'pallet.gif';
It the external server do not accept this will fail.
Let's say this is my canvas, with an evil-looking face drawn on it. I want to use toDataURL() to export my evil face as a PNG; however, the whole canvas is rasterised, including the 'whitespace' between the evil face and canvas edges.
+---------------+
| |
| |
| (.Y. ) |
| /_ |
| \____/ |
| |
| |
+---------------+
What is the best way to crop/trim/shrinkwrap my canvas to its contents, so my PNG is no larger than the face's 'bounding-box', like below? The best way seems to be scaling the canvas, but supposing the contents are dynamic...? I'm sure there should be a simple solution to this, but it's escaping me, with much Googling.
+------+
|(.Y. )|
| /_ |
|\____/|
+------+
Thanks!
Edited (see comments)
function cropImageFromCanvas(ctx) {
var canvas = ctx.canvas,
w = canvas.width, h = canvas.height,
pix = {x:[], y:[]},
imageData = ctx.getImageData(0,0,canvas.width,canvas.height),
x, y, index;
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
index = (y * w + x) * 4;
if (imageData.data[index+3] > 0) {
pix.x.push(x);
pix.y.push(y);
}
}
}
pix.x.sort(function(a,b){return a-b});
pix.y.sort(function(a,b){return a-b});
var n = pix.x.length-1;
w = 1 + pix.x[n] - pix.x[0];
h = 1 + pix.y[n] - pix.y[0];
var cut = ctx.getImageData(pix.x[0], pix.y[0], w, h);
canvas.width = w;
canvas.height = h;
ctx.putImageData(cut, 0, 0);
var image = canvas.toDataURL();
}
If I understood well you want to "trim" away all the surronding your image / drawing, and adjust the canvas to that size (like if you do a "trim" command in Photoshop).
Here is how I'll do it.
Run thru all the canvas pixels checking if their alpha component is > 0 (that means that something is drawn in that pixel). Alternativelly you could check for the r,g,b values, if your canvas background is fullfilled with a solid color, for instance.
Get te coordinates of the top most left pixel non-empty, and same for the bottom most right one. So you'll get the coordinates of an imaginay "rectangle" containing the canvas area that is not empty.
Store that region of pixeldata.
Resize your canvas to its new dimensions (the ones of the region we got at step 2.)
Paste the saved region back to the canvas.
Et, voilá :)
Accesing pixeldata is quite slow depending on the size of your canvas (if its huge it can take a while). There are some optimizations around to work with raw canvas pixeldata (I think there is an article about this topic at MDN), I suggest you to google about it.
I prepared a small sketch in jsFiddle that you can use as starting point for your code.
Working sample at jsFiddle
Hope I've helped you.
c:.
Here's my take. I felt like all the other solutions were overly complicated. Though, after creating it, I now see it's the same solution as one other's, expect they just shared a fiddle and not a function.
function trimCanvas(canvas){
const context = canvas.getContext('2d');
const topLeft = {
x: canvas.width,
y: canvas.height,
update(x,y){
this.x = Math.min(this.x,x);
this.y = Math.min(this.y,y);
}
};
const bottomRight = {
x: 0,
y: 0,
update(x,y){
this.x = Math.max(this.x,x);
this.y = Math.max(this.y,y);
}
};
const imageData = context.getImageData(0,0,canvas.width,canvas.height);
for(let x = 0; x < canvas.width; x++){
for(let y = 0; y < canvas.height; y++){
const alpha = imageData.data[((y * (canvas.width * 4)) + (x * 4)) + 3];
if(alpha !== 0){
topLeft.update(x,y);
bottomRight.update(x,y);
}
}
}
const width = bottomRight.x - topLeft.x;
const height = bottomRight.y - topLeft.y;
const croppedCanvas = context.getImageData(topLeft.x,topLeft.y,width,height);
canvas.width = width;
canvas.height = height;
context.putImageData(croppedCanvas,0,0);
return canvas;
}
Here's code in ES syntax, short, fast and concise:
/**
* Trim a canvas.
*
* #author Arjan Haverkamp (arjan at avoid dot org)
* #param {canvas} canvas A canvas element to trim. This element will be trimmed (reference)
* #param {int} threshold Alpha threshold. Allows for trimming semi-opaque pixels too. Range: 0 - 255
* #returns {Object} Width and height of trimmed canvcas and left-top coordinate of trimmed area. Example: {width:400, height:300, x:65, y:104}
*/
const trimCanvas = (canvas, threshold = 0) => {
const ctx = canvas.getContext('2d'),
w = canvas.width, h = canvas.height,
imageData = ctx.getImageData(0, 0, w, h),
tlCorner = { x:w+1, y:h+1 },
brCorner = { x:-1, y:-1 };
for (let y = 0; y < h; y++) {
for (let x = 0; x < w; x++) {
if (imageData.data[((y * w + x) * 4) + 3] > threshold) {
tlCorner.x = Math.min(x, tlCorner.x);
tlCorner.y = Math.min(y, tlCorner.y);
brCorner.x = Math.max(x, brCorner.x);
brCorner.y = Math.max(y, brCorner.y);
}
}
}
const cut = ctx.getImageData(tlCorner.x, tlCorner.y, brCorner.x - tlCorner.x, brCorner.y - tlCorner.y);
canvas.width = brCorner.x - tlCorner.x;
canvas.height = brCorner.y - tlCorner.y;
ctx.putImageData(cut, 0, 0);
return {width:canvas.width, height:canvas.height, x:tlCorner.x, y:tlCorner.y};
}
The top voted answer here, as well as the implementations i found online trim one extra pixel which was very apparent when trying to trim text out of canvas. I wrote my own that worked better for me:
var img = new Image;
img.onload = () => {
var canvas = document.getElementById('canvas');
canvas.width = img.width;
canvas.height = img.height;
var ctx = canvas.getContext('2d');
ctx.drawImage(img, 0, 0);
document.getElementById('button').addEventListener('click', ()=>{
autoCropCanvas(canvas, ctx);
document.getElementById('button').remove();
});
};
img.src = '';
function autoCropCanvas(canvas, ctx) {
var bounds = {
left: 0,
right: canvas.width,
top: 0,
bottom: canvas.height
};
var rows = [];
var cols = [];
var imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
for (var x = 0; x < canvas.width; x++) {
cols[x] = cols[x] || false;
for (var y = 0; y < canvas.height; y++) {
rows[y] = rows[y] || false;
const p = y * (canvas.width * 4) + x * 4;
const [r, g, b, a] = [imageData.data[p], imageData.data[p + 1], imageData.data[p + 2], imageData.data[p + 3]];
var isEmptyPixel = Math.max(r, g, b, a) === 0;
if (!isEmptyPixel) {
cols[x] = true;
rows[y] = true;
}
}
}
for (var i = 0; i < rows.length; i++) {
if (rows[i]) {
bounds.top = i ? i - 1 : i;
break;
}
}
for (var i = rows.length; i--; ) {
if (rows[i]) {
bounds.bottom = i < canvas.height ? i + 1 : i;
break;
}
}
for (var i = 0; i < cols.length; i++) {
if (cols[i]) {
bounds.left = i ? i - 1 : i;
break;
}
}
for (var i = cols.length; i--; ) {
if (cols[i]) {
bounds.right = i < canvas.width ? i + 1 : i;
break;
}
}
var newWidth = bounds.right - bounds.left;
var newHeight = bounds.bottom - bounds.top;
var cut = ctx.getImageData(bounds.left, bounds.top, newWidth, newHeight);
canvas.width = newWidth;
canvas.height = newHeight;
ctx.putImageData(cut, 0, 0);
}
<canvas id=canvas style='border: 1px solid pink'></canvas>
<button id=button>crop canvas</button>