YDKJS up & going non-primitive equality - javascript

Can somebody please explain the following passage from YDKJS Up & Going to me like I am five:
You should take special note of the == and === comparison rules if
you're comparing two non-primitive values, like objects (including
function and array). Because those values are actually held by
reference, both == and === comparisons will simply check whether the
references match, not anything about the underlying values. For
example, arrays are by default coerced to strings by simply joining
all the values with commas (,) in between. You might think that two
arrays with the same contents would be == equal, but they're not:
var a = [1,2,3];
var b = [1,2,3];
var c = "1,2,3";
a == c; // true
b == c; // true
a == b; // false
What is meant by "references"? Does this mean where the array is held in memory?

well yeah,
you see when you create array named 'arr' for example.
your memory look like this:
so reference comparison actually check if the array reference point the same array in the heap.
stack is for value types and references.

Related

Dynamic JSON is not equal to Static JSON [duplicate]

Seems like the following code should return a true, but it returns false.
var a = {};
var b = {};
console.log(a==b); //returns false
console.log(a===b); //returns false
How does this make sense?
The only difference between regular (==) and strict (===) equality is that the strict equality operator disables type conversion. Since you're already comparing two variables of the same type, the kind of equality operator you use doesn't matter.
Regardless of whether you use regular or strict equality, object comparisons only evaluate to true if you compare the same exact object.
That is, given var a = {}, b = a, c = {};, a == a, a == b, but a != c.
Two different objects (even if they both have zero or the same exact properties) will never compare equally. If you need to compare the equality of two object's properties, this question has very helpful answers.
How does this make sense?
Because "equality" of object references, in terms of the == and === operators, is purely based on whether the references refer to the same object. This is clearly laid out in the abstract equality comparison algorithm (used by ==) and the strict equality comparison algorithm (used by ===).
In your code, when you say a==b or a===b, you're not comparing the objects, you're comparing the references in a and b to see if they refer to the same object. This is just how JavaScript is defined, and in line with how equality operators in many (but not all) other languages are defined (Java, C# [unless the operator is overridden, as it is for string], and C++ for instance).
JavaScript has no inbuilt concept of equivalence, a comparison between objects that indicates whether they're equivalent (e.g., have the same properties with the same values, like Java's Object#equals). You can define one within your own codebase, but there's nothing intrinsic that defines it.
As from The Definitive Guide to Javascript.
Objects are not compared by value: two objects are not equal even if they have the same properties and values. This is true of arrays too: even if they have the same values in the same order.
var o = {x:1}, p = {x:1}; // Two objects with the same properties
o === p // => false: distinct objects are never equal
var a = [], b = []; // Two distinct, empty arrays
a === b // => false: distinct arrays are never equal
Objects are sometimes called reference types to distinguish them from JavaScript’s primitive types. Using this terminology, object values are references, and we say that objects are compared by reference: two object values are the same if and only if they refer to the same underlying object.
var a = {}; // The variable a refers to an empty object.
var b = a; // Now b refers to the same object.
b.property = 1; // Mutate the object referred to by variable b.
a.property // => 1: the change is also visible through variable a.
a === b // => true: a and b refer to the same object, so they are equal.
If we want to compare two distinct objects we must compare their properties.
use JSON.stringify(objname);
var a = {name : "name1"};
var b = {name : "name1"};
var c = JSON.stringify(a);
var d = JSON.stringify(b);
c==d;
//true
Here is a quick explanation of why {} === {} returns false in JavaScript:
From MDN Web Docs - Working with objects: Comparing objects.
In JavaScript, objects are a reference type. Two distinct objects are never equal, even if they have the same properties. Only comparing the same object reference with itself yields true.
// Two variables, two distinct objects with the same properties
var fruit = {name: 'apple'};
var fruitbear = {name: 'apple'};
fruit == fruitbear; // return false
fruit === fruitbear; // return false
// Two variables, a single object
var fruit = {name: 'apple'};
var fruitbear = fruit; // Assign fruit object reference to fruitbear
// Here fruit and fruitbear are pointing to same object
fruit == fruitbear; // return true
fruit === fruitbear; // return true
fruit.name = 'grape';
console.log(fruitbear); // output: { name: "grape" }, instead of { name: "apple" }
For more information about comparison operators, see Comparison operators.
How does this make sense?
Imagine these two objects:
var a = { someVar: 5 }
var b = { another: 'hi' }
Now if you did a === b, you would intuitively think it should be false (which is correct). But do you think it is false because the objects contain different keys, or because they are different objects? Next imagine removing the keys from each object:
delete a.someVar
delete b.another
Both are now empty objects, but the equality check will still be exactly the same, because you are still comparing whether or not a and b are the same object (not whether they contain the same keys and values).
===, the strictly equal operator for objects checks for identity.
Two objects are strictly equal if they refer to the same Object.
Those are two different objects, so they differ.
Think of two empty pages of paper. Their attributes are the same, yet they are not the same thing. If you write something on one of them, the other wouldn't change.
This is a workaround: Object.toJSON(obj1) == Object.toJSON(obj2)
By converting to string, comprasion will basically be in strings
In Javascript each object is unique hence {} == {} or {} === {} returns false. In other words Javascript compares objects by identity, not by value.
Double equal to ( == ) Ex: '1' == 1 returns true because type is excluded
Triple equal to ( === ) Ex: '1' === 1 returns false compares strictly, checks for type even

Why are two identical functions not equal? [duplicate]

Seems like the following code should return a true, but it returns false.
var a = {};
var b = {};
console.log(a==b); //returns false
console.log(a===b); //returns false
How does this make sense?
The only difference between regular (==) and strict (===) equality is that the strict equality operator disables type conversion. Since you're already comparing two variables of the same type, the kind of equality operator you use doesn't matter.
Regardless of whether you use regular or strict equality, object comparisons only evaluate to true if you compare the same exact object.
That is, given var a = {}, b = a, c = {};, a == a, a == b, but a != c.
Two different objects (even if they both have zero or the same exact properties) will never compare equally. If you need to compare the equality of two object's properties, this question has very helpful answers.
How does this make sense?
Because "equality" of object references, in terms of the == and === operators, is purely based on whether the references refer to the same object. This is clearly laid out in the abstract equality comparison algorithm (used by ==) and the strict equality comparison algorithm (used by ===).
In your code, when you say a==b or a===b, you're not comparing the objects, you're comparing the references in a and b to see if they refer to the same object. This is just how JavaScript is defined, and in line with how equality operators in many (but not all) other languages are defined (Java, C# [unless the operator is overridden, as it is for string], and C++ for instance).
JavaScript has no inbuilt concept of equivalence, a comparison between objects that indicates whether they're equivalent (e.g., have the same properties with the same values, like Java's Object#equals). You can define one within your own codebase, but there's nothing intrinsic that defines it.
As from The Definitive Guide to Javascript.
Objects are not compared by value: two objects are not equal even if they have the same properties and values. This is true of arrays too: even if they have the same values in the same order.
var o = {x:1}, p = {x:1}; // Two objects with the same properties
o === p // => false: distinct objects are never equal
var a = [], b = []; // Two distinct, empty arrays
a === b // => false: distinct arrays are never equal
Objects are sometimes called reference types to distinguish them from JavaScript’s primitive types. Using this terminology, object values are references, and we say that objects are compared by reference: two object values are the same if and only if they refer to the same underlying object.
var a = {}; // The variable a refers to an empty object.
var b = a; // Now b refers to the same object.
b.property = 1; // Mutate the object referred to by variable b.
a.property // => 1: the change is also visible through variable a.
a === b // => true: a and b refer to the same object, so they are equal.
If we want to compare two distinct objects we must compare their properties.
use JSON.stringify(objname);
var a = {name : "name1"};
var b = {name : "name1"};
var c = JSON.stringify(a);
var d = JSON.stringify(b);
c==d;
//true
Here is a quick explanation of why {} === {} returns false in JavaScript:
From MDN Web Docs - Working with objects: Comparing objects.
In JavaScript, objects are a reference type. Two distinct objects are never equal, even if they have the same properties. Only comparing the same object reference with itself yields true.
// Two variables, two distinct objects with the same properties
var fruit = {name: 'apple'};
var fruitbear = {name: 'apple'};
fruit == fruitbear; // return false
fruit === fruitbear; // return false
// Two variables, a single object
var fruit = {name: 'apple'};
var fruitbear = fruit; // Assign fruit object reference to fruitbear
// Here fruit and fruitbear are pointing to same object
fruit == fruitbear; // return true
fruit === fruitbear; // return true
fruit.name = 'grape';
console.log(fruitbear); // output: { name: "grape" }, instead of { name: "apple" }
For more information about comparison operators, see Comparison operators.
How does this make sense?
Imagine these two objects:
var a = { someVar: 5 }
var b = { another: 'hi' }
Now if you did a === b, you would intuitively think it should be false (which is correct). But do you think it is false because the objects contain different keys, or because they are different objects? Next imagine removing the keys from each object:
delete a.someVar
delete b.another
Both are now empty objects, but the equality check will still be exactly the same, because you are still comparing whether or not a and b are the same object (not whether they contain the same keys and values).
===, the strictly equal operator for objects checks for identity.
Two objects are strictly equal if they refer to the same Object.
Those are two different objects, so they differ.
Think of two empty pages of paper. Their attributes are the same, yet they are not the same thing. If you write something on one of them, the other wouldn't change.
This is a workaround: Object.toJSON(obj1) == Object.toJSON(obj2)
By converting to string, comprasion will basically be in strings
In Javascript each object is unique hence {} == {} or {} === {} returns false. In other words Javascript compares objects by identity, not by value.
Double equal to ( == ) Ex: '1' == 1 returns true because type is excluded
Triple equal to ( === ) Ex: '1' === 1 returns false compares strictly, checks for type even

Why are arrays equal to their corresponding strings?

Why is an array evaluated to true when it is compared to its corresponding string?
var a = [1,2,3];
var b = '1,2,3';
console.log(a==b);// true
Variable a stores the memory address of the array it is assigned. Then how is a memory address equal to corresponding string of that array.
== compares two variables irrespective of data type while === compares two variables in a strict check, which means it checks for data type also then it returns true or false.
The ‘==’ operator tests for abstract equality i.e. it does the necessary type conversions before doing the equality comparison.
But the ‘===’ operator tests for strict equality i.e it will not do the type conversion hence if the two values are not of the same type, when compared, it will return false.
In JS you have two Comparison Operators:
== Equal to
=== Equal value and equal type
var a = [1, 2, 3];
var b = '1, 2, 3';
console.log(a == b); // Outputs true
console.log(a === b); //Outputs false
It is due to the specs and semantics of the language. The array, which is an Object, will be coerced to a string before comparison to a string.
You can follow the conversion path:
7.2.15 Abstract Equality Comparison
If Type(x) is Object and Type(y) is either String, Number, BigInt, or Symbol, return the result of the comparison ? ToPrimitive(x) == y.
It basically passes through all the steps until it gets to 11..
ToPrimitive(Array) eventually ends up referencing and calling the property .toString
https://tc39.es/ecma262/#sec-array.prototype.tostring
https://tc39.es/ecma262/#sec-object.prototype.tostring
Well in case of "==", array is converted to toString and then compared due to loose comparison, so it equates to true. So what happens is this:
var a = [1,2,3];
var b = '1,2,3';
a == b //is same as
a.toString() === b //true
If you want to evaluate to true in a strict mode, you may also do something like this:
var a = [1,2,3];
var b = '1,2,3';
a = a.join(',')
console.log(b === a);
Whenever you're loose comparing (with '=='), javascript interpreter tries it best to to convert both values to a common type and match them. To quote MDN
Loose equality compares two values for equality, after converting both
values to a common type. After conversions (one or both sides may
undergo conversions), the final equality comparison is performed
exactly as === performs it.
Now your confusion is,
what variable a stores inside it , is just memory address of the array . So in first code snippet you say that a==b is same as a.toString==b but whats inside a is a memory address ,so when a memory address is converted to a string how is it equal to corresponding strings of an array.
Well, note here when you comparing two variables, you're not comparing the memory address of them but the values stored at them :) So it's not the memory address that is getting converted to toString but the value stored at it.
Also, there's one more flaw in this thinking.
consider,
var a = 4, // a holds address of variable a
b =4; //b holds the address of variable b
Now, these two variables are definitely holding different memory addresses so they wouldn't have been equated to true which is not true. I hope you got the point.

Check if object is in array not working [duplicate]

Seems like the following code should return a true, but it returns false.
var a = {};
var b = {};
console.log(a==b); //returns false
console.log(a===b); //returns false
How does this make sense?
The only difference between regular (==) and strict (===) equality is that the strict equality operator disables type conversion. Since you're already comparing two variables of the same type, the kind of equality operator you use doesn't matter.
Regardless of whether you use regular or strict equality, object comparisons only evaluate to true if you compare the same exact object.
That is, given var a = {}, b = a, c = {};, a == a, a == b, but a != c.
Two different objects (even if they both have zero or the same exact properties) will never compare equally. If you need to compare the equality of two object's properties, this question has very helpful answers.
How does this make sense?
Because "equality" of object references, in terms of the == and === operators, is purely based on whether the references refer to the same object. This is clearly laid out in the abstract equality comparison algorithm (used by ==) and the strict equality comparison algorithm (used by ===).
In your code, when you say a==b or a===b, you're not comparing the objects, you're comparing the references in a and b to see if they refer to the same object. This is just how JavaScript is defined, and in line with how equality operators in many (but not all) other languages are defined (Java, C# [unless the operator is overridden, as it is for string], and C++ for instance).
JavaScript has no inbuilt concept of equivalence, a comparison between objects that indicates whether they're equivalent (e.g., have the same properties with the same values, like Java's Object#equals). You can define one within your own codebase, but there's nothing intrinsic that defines it.
As from The Definitive Guide to Javascript.
Objects are not compared by value: two objects are not equal even if they have the same properties and values. This is true of arrays too: even if they have the same values in the same order.
var o = {x:1}, p = {x:1}; // Two objects with the same properties
o === p // => false: distinct objects are never equal
var a = [], b = []; // Two distinct, empty arrays
a === b // => false: distinct arrays are never equal
Objects are sometimes called reference types to distinguish them from JavaScript’s primitive types. Using this terminology, object values are references, and we say that objects are compared by reference: two object values are the same if and only if they refer to the same underlying object.
var a = {}; // The variable a refers to an empty object.
var b = a; // Now b refers to the same object.
b.property = 1; // Mutate the object referred to by variable b.
a.property // => 1: the change is also visible through variable a.
a === b // => true: a and b refer to the same object, so they are equal.
If we want to compare two distinct objects we must compare their properties.
use JSON.stringify(objname);
var a = {name : "name1"};
var b = {name : "name1"};
var c = JSON.stringify(a);
var d = JSON.stringify(b);
c==d;
//true
Here is a quick explanation of why {} === {} returns false in JavaScript:
From MDN Web Docs - Working with objects: Comparing objects.
In JavaScript, objects are a reference type. Two distinct objects are never equal, even if they have the same properties. Only comparing the same object reference with itself yields true.
// Two variables, two distinct objects with the same properties
var fruit = {name: 'apple'};
var fruitbear = {name: 'apple'};
fruit == fruitbear; // return false
fruit === fruitbear; // return false
// Two variables, a single object
var fruit = {name: 'apple'};
var fruitbear = fruit; // Assign fruit object reference to fruitbear
// Here fruit and fruitbear are pointing to same object
fruit == fruitbear; // return true
fruit === fruitbear; // return true
fruit.name = 'grape';
console.log(fruitbear); // output: { name: "grape" }, instead of { name: "apple" }
For more information about comparison operators, see Comparison operators.
How does this make sense?
Imagine these two objects:
var a = { someVar: 5 }
var b = { another: 'hi' }
Now if you did a === b, you would intuitively think it should be false (which is correct). But do you think it is false because the objects contain different keys, or because they are different objects? Next imagine removing the keys from each object:
delete a.someVar
delete b.another
Both are now empty objects, but the equality check will still be exactly the same, because you are still comparing whether or not a and b are the same object (not whether they contain the same keys and values).
===, the strictly equal operator for objects checks for identity.
Two objects are strictly equal if they refer to the same Object.
Those are two different objects, so they differ.
Think of two empty pages of paper. Their attributes are the same, yet they are not the same thing. If you write something on one of them, the other wouldn't change.
This is a workaround: Object.toJSON(obj1) == Object.toJSON(obj2)
By converting to string, comprasion will basically be in strings
In Javascript each object is unique hence {} == {} or {} === {} returns false. In other words Javascript compares objects by identity, not by value.
Double equal to ( == ) Ex: '1' == 1 returns true because type is excluded
Triple equal to ( === ) Ex: '1' === 1 returns false compares strictly, checks for type even

How to tell if two objects are identical?

I mean not equal, but literally one....two things pointing to the same place in memory.
For example, a and b here should theoretically be identical...b is a sort of pointer to a.
var a = function(){alert("hi");}
var b = a;
=== is not the answer....two things can be the same in every way but not literally the same object in memory.
Edit: === IS the answer! Silly me.
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comparison_Operators
An expression comparing Objects is only true if the operands reference the same Object.
Two identical objects never return true when compared. They really have to be "one".

Categories