How to update constantly data from server in JS? - javascript

There are data that are constantly updated on the server and written to the file (every 100 ms), i need to transfer that to the client side, for the time being I did this through the setInterval function (which should check them at the same interval), checking this JSON file, and im not sure if it's a correct solution of the problem.
Server side code:
function SerialPortStart(COM, Input){
console.log( COM, Input);
var serialPort = new SerialPort(COM, {
parser: SerialPort.parsers.readline('\n'),
baudrate: +Input || 9600
});
serialPort.on('data', function (data) {
thermodata = data.toString();
console.log(data);
fs.writeFileSync(__dirname +'/views/cockpit.json',JSON.stringify(thermodata));
});
};
Client side code:
function SerialPortStart(){
var xhr = new XMLHttpRequest();
setInterval(function() {
xhr.open('GET', 'cockpit.json', true);
xhr.send();
xhr.onreadystatechange = function() {
if(this.status == 200) {
var data = JSON.parse(xhr.responseText);
console.log(data);
obj = data.split(';');
if(cockpitNum[3] != null){
$('header .mainBlock1 .cockpit .elements .blockHaw .cirle').css({
transform: 'rotate('+(obj[cockpitNum[3]]) +'deg)'
}); }
}, 50);

You are now no longer in the realm of AJAX. A normal request can take around 500ms to complete, thats to slow and apart from that, it consumes way to much resource.
Time to learn Websockets. A websocket is (sortof) a small connection (just like http), but it doesnt close (unlike http which closes at the end of the call). This way you can broadcast data to all connected to the websocket and it's super fast.
Node.js is an example which allows you to set this up via Socket.io. You can think of your situation as a kind of one-direction-chat :)

I would suggest that you use the socket.io library and open a socket.io connection from your web page to your server. This is a continuous connection between client and server and allows data to be sent either direction from client to server or server to client with very low overhead. It is ideal for lots of transactions between client and server and is ideal when the server wants to regularly send data to the client. It is way more efficient than Ajax polling from the client.
You would implement a node.js server that listens for incoming socket.io connections, does whatever authentication is needed to establish who is listening on the other end and then your server can regularly send that client data whenever there is new data to send it.
You can read about socket.io here. There are libraries there for both client and server. The client-side library uses the webSocket transport (which all modern browsers support), but socket.io adds a number of very useful features on top of socket.io (such as connection monitoring, auto-reconnection, auto-serialization to JSON, etc...).
See this post for a list of features socket.io adds on top of webSockets:
Socket.io features beyond plain webSocket

Related

How to receive data in real time from TCP socket using PHP or JS? [duplicate]

I have a vb.net application that opens a socket and listens on it.
I need to communicate via this socket to that application using a javascript running on a browser. That is i need to send some data on this socket so that the app which is listening on this socket can take that data, do some stuff using some remote calls and get some more data and put it back on the socket that my javascript needs to read and print it in the browser.
Ive tried, socket.io, websockify but none have proved to be useful.
Hence the question, is what i am trying even possible? Is there a way that a javascript running in a browser can connect to a tcp socket and send some data and listen on it for some more data response on the socket and print it to the browser.
If this is possible can some one point me in the right direction as to which would help me establish the goal.
As for your problem, currently you will have to depend on XHR or websockets for this.
Currently no popular browser has implemented any such raw sockets api for javascript that lets you create and access raw sockets, but a draft for the implementation of raw sockets api in JavaScript is under-way. Have a look at these links:
http://www.w3.org/TR/raw-sockets/
https://developer.mozilla.org/en-US/docs/Web/API/TCPSocket
Chrome now has support for raw TCP and UDP sockets in its ‘experimental’ APIs. These features are only available for chrome apps and, although documented, are hidden for the moment. Having said that, some developers are already creating interesting projects using it, such as this IRC client.
To access this API, you’ll need to enable the experimental flag in your extension’s manifest. Using sockets is pretty straightforward, for example:
chrome.experimental.socket.create('tcp', '127.0.0.1', 8080, function(socketInfo) {
chrome.experimental.socket.connect(socketInfo.socketId, function (result) {
chrome.experimental.socket.write(socketInfo.socketId, "Hello, world!");
});
});
This will be possible via the navigator interface as shown below:
navigator.tcpPermission.requestPermission({remoteAddress:"127.0.0.1", remotePort:6789}).then(
() => {
// Permission was granted
// Create a new TCP client socket and connect to remote host
var mySocket = new TCPSocket("127.0.0.1", 6789);
// Send data to server
mySocket.writeable.write("Hello World").then(
() => {
// Data sent sucessfully, wait for response
console.log("Data has been sent to server");
mySocket.readable.getReader().read().then(
({ value, done }) => {
if (!done) {
// Response received, log it:
console.log("Data received from server:" + value);
}
// Close the TCP connection
mySocket.close();
}
);
},
e => console.error("Sending error: ", e)
);
}
);
More details are outlined in the w3.org tcp-udp-sockets documentation.
http://raw-sockets.sysapps.org/#interface-tcpsocket
https://www.w3.org/TR/tcp-udp-sockets/
Another alternative is to use Chrome Sockets
Creating connections
chrome.sockets.tcp.create({}, function(createInfo) {
chrome.sockets.tcp.connect(createInfo.socketId,
IP, PORT, onConnectedCallback);
});
Sending data
chrome.sockets.tcp.send(socketId, arrayBuffer, onSentCallback);
Receiving data
chrome.sockets.tcp.onReceive.addListener(function(info) {
if (info.socketId != socketId)
return;
// info.data is an arrayBuffer.
});
You can use also attempt to use HTML5 Web Sockets (Although this is not direct TCP communication):
var connection = new WebSocket('ws://IPAddress:Port');
connection.onopen = function () {
connection.send('Ping'); // Send the message 'Ping' to the server
};
http://www.html5rocks.com/en/tutorials/websockets/basics/
Your server must also be listening with a WebSocket server such as pywebsocket, alternatively you can write your own as outlined at Mozilla
ws2s project is aimed at bring socket to browser-side js. It is a websocket server which transform websocket to socket.
ws2s schematic diagram
code sample:
var socket = new WS2S("wss://ws2s.feling.io/").newSocket()
socket.onReady = () => {
socket.connect("feling.io", 80)
socket.send("GET / HTTP/1.1\r\nHost: feling.io\r\nConnection: close\r\n\r\n")
}
socket.onRecv = (data) => {
console.log('onRecv', data)
}
See jsocket. Haven't used it myself. Been more than 3 years since last update (as of 26/6/2014).
* Uses flash :(
From the documentation:
<script type='text/javascript'>
// Host we are connecting to
var host = 'localhost';
// Port we are connecting on
var port = 3000;
var socket = new jSocket();
// When the socket is added the to document
socket.onReady = function(){
socket.connect(host, port);
}
// Connection attempt finished
socket.onConnect = function(success, msg){
if(success){
// Send something to the socket
socket.write('Hello world');
}else{
alert('Connection to the server could not be estabilished: ' + msg);
}
}
socket.onData = function(data){
alert('Received from socket: '+data);
}
// Setup our socket in the div with the id="socket"
socket.setup('mySocket');
</script>
In order to achieve what you want, you would have to write two applications (in either Java or Python, for example):
Bridge app that sits on the client's machine and can deal with both TCP/IP sockets and WebSockets. It will interact with the TCP/IP socket in question.
Server-side app (such as a JSP/Servlet WAR) that can talk WebSockets. It includes at least one HTML page (including server-side processing code if need be) to be accessed by a browser.
It should work like this
The Bridge will open a WS connection to the web app (because a server can't connect to a client).
The Web app will ask the client to identify itself
The bridge client sends some ID information to the server, which stores it in order to identify the bridge.
The browser-viewable page connects to the WS server using JS.
Repeat step 3, but for the JS-based page
The JS-based page sends a command to the server, including to which bridge it must go.
The server forwards the command to the bridge.
The bridge opens a TCP/IP socket and interacts with it (sends a message, gets a response).
The Bridge sends a response to the server through the WS
The WS forwards the response to the browser-viewable page
The JS processes the response and reacts accordingly
Repeat until either client disconnects/unloads
Note 1: The above steps are a vast simplification and do not include information about error handling and keepAlive requests, in the event that either client disconnects prematurely or the server needs to inform clients that it is shutting down/restarting.
Note 2: Depending on your needs, it might be possible to merge these components into one if the TCP/IP socket server in question (to which the bridge talks) is on the same machine as the server app.
The solution you are really looking for is web sockets. However, the chromium project has developed some new technologies that are direct TCP connections TCP chromium

How to detect client disconnect from redis in nodejs?

I am using the library node_redis as the client for a micro-service message client that I am writing. Clients get messages from their application in their outbox that they need to send to other services. Everything is working great but I am trying to build some resilience on the part of the application that uses the redis client to communicate with the redis-server.
My idea is that the redis client-server connection status should be highly available to the clients. I mean that if a connection goes down, I would like to know within the second instead of the default timeout of 300 seconds. Currently I am using the free redislabs tier hosted on AWS, but I should be moving this to run in its own container on my kubernetes cluster.
I need to know the state of client connections in the network because I would like to not send messages when the network conditions are not right and not rely on the error handling to handle this sort of event. Knowing how often and when these high latency events occur will also help me diagnose and improve my network and my microservices.
Note: I wanted to set the connect_timeout value in the client options but this is listed as deprecated.
Something like that?
var redis = require('redis');
var client = redis.createClient();
var reconnectAfter = 15000;
client.on( 'error', function () {
console.log( (new Date()) + " Redis: disconnect");
setTimeout( connect, reconnectAfter);
});
connect = function(){
client = redis.createClient();
}

Node JS live text update with CloudMQTT

I have a node server which is connecting to CloudMQTT and receiving messages in app.js. I have my client web app running on the same node server and want to display my messages received in app.js elsewhere in a .ejs file, I'm struggling as to how best to do this.
app.js
// Create a MQTT Client
var mqtt = require('mqtt');
// Create a client connection to CloudMQTT for live data
var client = mqtt.connect('xxxxxxxxxxx', {
username: 'xxxxx',
password: 'xxxxxxx'
});
client.on('connect', function() { // When connected
console.log("Connected to CloudMQTT");
// Subscribe to the temperature
client.subscribe('Motion', function() {
// When a message arrives, do something with it
client.on('message', function(topic, message, packet) {
// ** Need to pass message out **
});
});
});
Basically you need a way for the client (browser code with EJS - HTML, CSS and JS) to receive live updates. There are basically two ways to do this from the client to the node service:
A websocket session instantiated by the client.
A polling approach.
What's the difference?
Under the hood, a websocket is full-duplex communication mechanism. That means that you can open a socket from the client (browser) to the node server and they can talk to each other both ways over a long-lived session. The pro is that updates are often times instantaneous without having to incur the cost of making another HTTP request as in the polling case. The con is that it uses a socket connection that may be long-lived, and there is typically a socket pool on any server that has limited ability to deal with many sockets. There are ways to scale around this issue, but if it's a big concern for you, you may want to go with polling.
Polling is where you set up an endpoint on your server that the client JS code hits every now and then. That endpoint will return you the updated information. The con is that you are now making a new request in order to get updates, which may not be desirable if a lot of updates are expected to come through and the app is expected to be updated in the timeliest manner possible (most of the time polling is sufficient though). The pro is that you do not have a live connection open on the server indefinitely.
Again, there are many more pros and cons, these are just the obvious ones. You decide how to implement it. When the client receives the data from either of these mechanisms, you may update the UI in any suitable manner.
From the server end, you will need a way to persist the information coming from CloudMQTT. There are multiple ways to do this. If you do not care about memory consumption and are ok with potentially throwing away old data if a client does not ask for it for a while, then it may be ok to just store this in memory in a regular javascript object {}. If you do care about persisting the data between server restarts/crashes (probably best), then you can persist to something like Redis, Mongo, any of the SQL stores if your data is relational in nature, or even a regular JSON file on disk (see fs.writeFile).
Hope this helped give you a step in the right direction!

Rate-limiting the data sent down WebSockets

We're sending a lot of data down a websocket (from a Node.js app to the web browser).
The data is binary data in the form of blobs.
Occasionally, the end-user is on a poor connection - and in this case, we'd like to 'skip' messages (leave them out) and make sure we don't cram down more data than the user can receive.
On the server side, we have tried:
function sendBlob(blob, socket) {
console.log('socket.bufferedAmount: ' + socket.bufferedAmount); // Always zero
if (socket.bufferedAmount > 0) {
return; // Never called
}
socket.send(blob);
}
Unfortunately bufferedAmount always returns zero.
Is this the right way to see how much data is being queued but not sent/received in websockets, or is there a better way to achieve this?
(Have also tried logging socket.bufferedAmount on the client-side, but it also always returns zero).
The socket.bufferedAmount property that exists on clients (as well as the ws module for Node) is the amount of bytes that it itself has buffered, not the remote. That means socket.bufferedAmount on the server means how many bytes that are waiting to be sent to the client, and for the client it is how many bytes are waiting to be sent to the server.
The reason you aren't getting any change in the property is that your network is probably indeed sufficient to deliver the data. If you actually want to see a difference in socket.bufferedAmount, then try throttling your browser network access. This can be done with browser extensions or tools like NetLimiter.
If you want to throttle connections by skipping messages, you can think about creating some type of heartbeat system between the client and server. There are many ways you could do this, such as applying this function:
setInterval(function() {
if (socket.bufferedAmount == 0) {
socket.send('heartbeat');
}
}, 1000);
And then detecting missed heartbeats by counting the time interval. This is rather inefficient, but there's also other ways to do this such as responding to sent data from the server (although take into consideration that if you want to send a heartbeat when receiving data, the heartbeat itself might get throttled or other side effects).
An alternative solution would also be available if you were willing to switch to Socket.IO. It has a feature that allows you to send volatile messages, which are messages that are dropped if the client is busy or is not able to accept messages for any reason.
var io = require('socket.io').listen(80);
io.sockets.on('connection', function (socket) {
var timer = setInterval(function () {
socket.volatile.emit('data', 'payload');
}, 100);
socket.on('disconnect', function () {
clearInterval(timer);
});
});
Do note that Socket.IO will be heavier on your application, and doesn't use the native websocket protocol. It will utilize websockets when it is an option, but it is one of many transports. Socket.IO is built on Engine.IO, which uses a fork of the module you're currently using.
The readonly attribute bufferedAmount represents the number of bytes of UTF-8 text that have been queued using send() method.
And your case here shows that you are trying to access it on message received from server.
so the bufferedAmount is not set.

Connecting to TCP Socket from browser using javascript

I have a vb.net application that opens a socket and listens on it.
I need to communicate via this socket to that application using a javascript running on a browser. That is i need to send some data on this socket so that the app which is listening on this socket can take that data, do some stuff using some remote calls and get some more data and put it back on the socket that my javascript needs to read and print it in the browser.
Ive tried, socket.io, websockify but none have proved to be useful.
Hence the question, is what i am trying even possible? Is there a way that a javascript running in a browser can connect to a tcp socket and send some data and listen on it for some more data response on the socket and print it to the browser.
If this is possible can some one point me in the right direction as to which would help me establish the goal.
As for your problem, currently you will have to depend on XHR or websockets for this.
Currently no popular browser has implemented any such raw sockets api for javascript that lets you create and access raw sockets, but a draft for the implementation of raw sockets api in JavaScript is under-way. Have a look at these links:
http://www.w3.org/TR/raw-sockets/
https://developer.mozilla.org/en-US/docs/Web/API/TCPSocket
Chrome now has support for raw TCP and UDP sockets in its ‘experimental’ APIs. These features are only available for chrome apps and, although documented, are hidden for the moment. Having said that, some developers are already creating interesting projects using it, such as this IRC client.
To access this API, you’ll need to enable the experimental flag in your extension’s manifest. Using sockets is pretty straightforward, for example:
chrome.experimental.socket.create('tcp', '127.0.0.1', 8080, function(socketInfo) {
chrome.experimental.socket.connect(socketInfo.socketId, function (result) {
chrome.experimental.socket.write(socketInfo.socketId, "Hello, world!");
});
});
This will be possible via the navigator interface as shown below:
navigator.tcpPermission.requestPermission({remoteAddress:"127.0.0.1", remotePort:6789}).then(
() => {
// Permission was granted
// Create a new TCP client socket and connect to remote host
var mySocket = new TCPSocket("127.0.0.1", 6789);
// Send data to server
mySocket.writeable.write("Hello World").then(
() => {
// Data sent sucessfully, wait for response
console.log("Data has been sent to server");
mySocket.readable.getReader().read().then(
({ value, done }) => {
if (!done) {
// Response received, log it:
console.log("Data received from server:" + value);
}
// Close the TCP connection
mySocket.close();
}
);
},
e => console.error("Sending error: ", e)
);
}
);
More details are outlined in the w3.org tcp-udp-sockets documentation.
http://raw-sockets.sysapps.org/#interface-tcpsocket
https://www.w3.org/TR/tcp-udp-sockets/
Another alternative is to use Chrome Sockets
Creating connections
chrome.sockets.tcp.create({}, function(createInfo) {
chrome.sockets.tcp.connect(createInfo.socketId,
IP, PORT, onConnectedCallback);
});
Sending data
chrome.sockets.tcp.send(socketId, arrayBuffer, onSentCallback);
Receiving data
chrome.sockets.tcp.onReceive.addListener(function(info) {
if (info.socketId != socketId)
return;
// info.data is an arrayBuffer.
});
You can use also attempt to use HTML5 Web Sockets (Although this is not direct TCP communication):
var connection = new WebSocket('ws://IPAddress:Port');
connection.onopen = function () {
connection.send('Ping'); // Send the message 'Ping' to the server
};
http://www.html5rocks.com/en/tutorials/websockets/basics/
Your server must also be listening with a WebSocket server such as pywebsocket, alternatively you can write your own as outlined at Mozilla
ws2s project is aimed at bring socket to browser-side js. It is a websocket server which transform websocket to socket.
ws2s schematic diagram
code sample:
var socket = new WS2S("wss://ws2s.feling.io/").newSocket()
socket.onReady = () => {
socket.connect("feling.io", 80)
socket.send("GET / HTTP/1.1\r\nHost: feling.io\r\nConnection: close\r\n\r\n")
}
socket.onRecv = (data) => {
console.log('onRecv', data)
}
See jsocket. Haven't used it myself. Been more than 3 years since last update (as of 26/6/2014).
* Uses flash :(
From the documentation:
<script type='text/javascript'>
// Host we are connecting to
var host = 'localhost';
// Port we are connecting on
var port = 3000;
var socket = new jSocket();
// When the socket is added the to document
socket.onReady = function(){
socket.connect(host, port);
}
// Connection attempt finished
socket.onConnect = function(success, msg){
if(success){
// Send something to the socket
socket.write('Hello world');
}else{
alert('Connection to the server could not be estabilished: ' + msg);
}
}
socket.onData = function(data){
alert('Received from socket: '+data);
}
// Setup our socket in the div with the id="socket"
socket.setup('mySocket');
</script>
In order to achieve what you want, you would have to write two applications (in either Java or Python, for example):
Bridge app that sits on the client's machine and can deal with both TCP/IP sockets and WebSockets. It will interact with the TCP/IP socket in question.
Server-side app (such as a JSP/Servlet WAR) that can talk WebSockets. It includes at least one HTML page (including server-side processing code if need be) to be accessed by a browser.
It should work like this
The Bridge will open a WS connection to the web app (because a server can't connect to a client).
The Web app will ask the client to identify itself
The bridge client sends some ID information to the server, which stores it in order to identify the bridge.
The browser-viewable page connects to the WS server using JS.
Repeat step 3, but for the JS-based page
The JS-based page sends a command to the server, including to which bridge it must go.
The server forwards the command to the bridge.
The bridge opens a TCP/IP socket and interacts with it (sends a message, gets a response).
The Bridge sends a response to the server through the WS
The WS forwards the response to the browser-viewable page
The JS processes the response and reacts accordingly
Repeat until either client disconnects/unloads
Note 1: The above steps are a vast simplification and do not include information about error handling and keepAlive requests, in the event that either client disconnects prematurely or the server needs to inform clients that it is shutting down/restarting.
Note 2: Depending on your needs, it might be possible to merge these components into one if the TCP/IP socket server in question (to which the bridge talks) is on the same machine as the server app.
The solution you are really looking for is web sockets. However, the chromium project has developed some new technologies that are direct TCP connections TCP chromium

Categories