Circle to Circle Collision Response not working as Expected - javascript

I'm working on an HTML Canvas demo to learn more about circle to circle collision detection and response. I believe that the detection code is correct but the response math is not quite there.
The demo has been implemented using TypeScript, which is a typed superset of JavaScript that is transpiled to plain JavaScript.
I believe that the problem exists within the checkCollision method of the Circle class, specifically the math for calculating the new velocity.
The blue circle position is controlled by the mouse (using an event listener). If the red circle collides from the right side of the blue circle, the collision response seems to work correctly, but if it approaches from the left it does not respond correctly.
I am looking for some guidance on how I can revise the checkCollision math to correctly handle the collision from any angle.
Here is a CodePen for a live demo and dev environment:
CodePen
class DemoCanvas {
canvasWidth: number = 500;
canvasHeight: number = 500;
canvas: HTMLCanvasElement = document.createElement('canvas');
constructor() {
this.canvas.width = this.canvasWidth;
this.canvas.height = this.canvasHeight;
this.canvas.style.border = '1px solid black';
this.canvas.style.position = 'absolute';
this.canvas.style.left = '50%';
this.canvas.style.top = '50%';
this.canvas.style.transform = 'translate(-50%, -50%)';
document.body.appendChild(this.canvas);
}
clear() {
this.canvas.getContext('2d').clearRect(0, 0, this.canvas.width, this.canvas.height);
}
getContext(): CanvasRenderingContext2D {
return this.canvas.getContext('2d');
}
getWidth(): number {
return this.canvasWidth;
}
getHeight(): number {
return this.canvasHeight;
}
getTop(): number {
return this.canvas.getBoundingClientRect().top;
}
getRight(): number {
return this.canvas.getBoundingClientRect().right;
}
getBottom(): number {
return this.canvas.getBoundingClientRect().bottom;
}
getLeft(): number {
return this.canvas.getBoundingClientRect().left;
}
}
class Circle {
x: number;
y: number;
xVelocity: number;
yVelocity: number;
radius: number;
color: string;
canvas: DemoCanvas;
context: CanvasRenderingContext2D;
constructor(x: number, y: number, xVelocity: number, yVelocity: number, color: string, gameCanvas: DemoCanvas) {
this.radius = 20;
this.x = x;
this.y = y;
this.xVelocity = xVelocity;
this.yVelocity = yVelocity;
this.color = color;
this.canvas = gameCanvas;
this.context = this.canvas.getContext();
}
public draw(): void {
this.context.fillStyle = this.color;
this.context.beginPath();
this.context.arc(this.x, this.y, this.radius, 0, 2 * Math.PI);
this.context.fill();
}
public move(): void {
this.x += this.xVelocity;
this.y += this.yVelocity;
}
checkWallCollision(gameCanvas: DemoCanvas): void {
let top = 0;
let right = 500;
let bottom = 500;
let left = 0;
if(this.y < top + this.radius) {
this.y = top + this.radius;
this.yVelocity *= -1;
}
if(this.x > right - this.radius) {
this.x = right - this.radius;
this.xVelocity *= -1;
}
if(this.y > bottom - this.radius) {
this.y = bottom - this.radius;
this.yVelocity *= -1;
}
if(this.x < left + this.radius) {
this.x = left + this.radius;
this.xVelocity *= -1;
}
}
checkCollision(x1: number, y1: number, r1: number, x2: number, y2: number, r2: number) {
let distance: number = Math.abs((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
// Detect collision
if(distance < (r1 + r2) * (r1 + r2)) {
// Respond to collision
let newVelocityX1 = (circle1.xVelocity + circle2.xVelocity) / 2;
let newVelocityY1 = (circle1.yVelocity + circle1.yVelocity) / 2;
circle1.x = circle1.x + newVelocityX1;
circle1.y = circle1.y + newVelocityY1;
circle1.xVelocity = newVelocityX1;
circle1.yVelocity = newVelocityY1;
}
}
}
let demoCanvas = new DemoCanvas();
let circle1: Circle = new Circle(250, 250, 5, 5, "#F77", demoCanvas);
let circle2: Circle = new Circle(250, 540, 5, 5, "#7FF", demoCanvas);
addEventListener('mousemove', function(e) {
let mouseX = e.clientX - demoCanvas.getLeft();
let mouseY = e.clientY - demoCanvas.getTop();
circle2.x = mouseX;
circle2.y = mouseY;
});
function loop() {
demoCanvas.clear();
circle1.draw();
circle2.draw();
circle1.move();
circle1.checkWallCollision(demoCanvas);
circle2.checkWallCollision(demoCanvas);
circle1.checkCollision(circle1.x, circle1.y, circle1.radius, circle2.x, circle2.y, circle2.radius);
requestAnimationFrame(loop);
}
requestAnimationFrame(loop);

Elasic 2D collision
The problem is likely because the balls do not move away from each other and then in the next frame they are still overlapping and it gets worse. My guess from just looking at the code.
A simple solution.
Before you can have the two balls change direction you must ensure that they are positioned correctly. They must be just touching, (no overlay) or they can get caught up in each other.
Detect collision, and fix position.
// note I am using javascript.
// b1,b2 are the two balls or circles
// b1.dx,b1.dy are velocity (deltas) to save space same for b2
// get dist between them
// first vect from one to the next
const dx = b2.x - b1.x;
const dy = b2.y - b1.y;
// then distance
const dist = Math.sqrt(dx*dx + dy*dy);
// then check overlap
if(b1.radius + b2.radius >= dist){ // the balls overlap
// normalise the vector between them
const nx = dx / dist;
const ny = dy / dist;
// now move each ball away from each other
// along the same line as the line between them
// Use the ratio of the radius to work out where they touch
const touchDistFromB1 = (dist * (b1.radius / (b1.radius + b2.radius)))
const contactX = b1.x + nx * touchDistFromB1;
const contactY = b1.y + ny * touchDistFromB1;
// now move each ball so that they just touch
// move b1 back
b1.x = contactX - nx * b1.radius;
b1.y = contactY - ny * b1.radius;
// and b2 in the other direction
b2.x = contactX + nx * b2.radius;
b2.y = contactY + ny * b2.radius;
If one is static
If one of the balls is static then you can keep its position and move the other ball.
// from contact test for b1 is immovable
if(b1.radius + b2.radius >= dist){ // the balls overlap
// normalise the vector between them
const nx = dx / dist;
const ny = dy / dist;
// move b2 away from b1 along the contact line the distance of the radius summed
b2.x = b1.x + nx * (b1.radius + b2.radius);
b2.y = b1.y + ny * (b1.radius + b2.radius);
Now you have the balls correctly separated a you can calculate the new trajectories
Changing the trajectories.
There are a wide variety of ways to do this, but the one I like best is the elastic collision. I created a function from the Elastic collision in Two dimensional space wiki source and have been using it in games for some time.
The function and information is in the snippet at the bottom.
Next I will show how to call the function continuing on from the code above
// get the direction and velocity of each ball
const v1 = Math.sqrt(b1.dx * b1.dx + b1.dy * b1.dy);
const v2 = Math.sqrt(b2.dx * b2.dx + b2.dy * b2.dy);
// get the direction of travel of each ball
const dir1 = Math.atan2(b1.dy, b1.dx);
const dir2 = Math.atan2(b2.dy, b2.dx);
// get the direction from ball1 center to ball2 cenet
const directOfContact = Math.atan2(ny, nx);
// You will also need a mass. You could use the area of a circle, or the
// volume of a sphere to get the mass of each ball with its radius
// this will make them react more realistically
// An approximation is good as it is the ratio not the mass that is important
// Thus ball are spheres. Volume is the cubed radius
const mass1 = Math.pow(b1.radius,3);
const mass1 = Math.pow(b2.radius,3);
And finally you can call the function
ellastic2DCollistionD(b1, b2, v1, v2, d1, d2, directOfContact, mass1, mass2);
And it will correctly set the deltas of both balls.
Moving the ball position along their deltas is done after the collision function
b1.x += b1.dx;
b1.y += b1.dy;
b2.x += b1.dx;
b2.y += b1.dy;
If one of the balls is static you just ignore the deltas.
Elasic 2D collision function
Derived from information at Elastic collision in Two dimensional space wiki
// obj1, obj2 are the object that will have their deltas change
// velocity1, velocity2 is the velocity of each
// dir1, dir2 is the direction of travel
// contactDir is the direction from the center of the first object to the center of the second.
// mass1, mass2 is the mass of the first and second objects.
//
// function ellastic2DCollistionD(obj1, obj2, velocity1, velocity2, dir1, dir2, contactDir, mass1, mass2){
// The function applies the formula below twice, once fro each object, allowing for a little optimisation.
// The formula of each object's new velocity is
//
// For 2D moving objects
// v1,v2 is velocity
// m1, m2 is the mass
// d1 , d2 us the direction of moment
// p is the angle of contact;
//
// v1* cos(d1-p) * (m1 - m2) + 2 * m2 * v2 * cos(d2- p)
// vx = ----------------------------------------------------- * cos(p) + v1 * sin(d1-p) * cos(p + PI/2)
// m1 + m2
// v1* cos(d1-p) * (m1 - m2) + 2 * m2 * v2 * cos(d2- p)
// vy = ----------------------------------------------------- * sin(p) + v1 * sin(d1-p) * sin(p + PI/2)
// m1 + m2
// More info can be found at https://en.wikipedia.org/wiki/Elastic_collision#Two-dimensional
// to keep the code readable I use abbreviated names
function ellastic2DCollistionD(obj1, obj2, v1, v2, d1, d2, cDir, m1, m2){
const mm = m1 - m2;
const mmt = m1 + m2;
const v1s = v1 * Math.sin(d1 - cDir);
const cp = Math.cos(cDir);
const sp = Math.sin(cDir);
var cdp1 = v1 * Math.cos(d1 - cDir);
var cdp2 = v2 * Math.cos(d2 - cDir);
const cpp = Math.cos(cDir + Math.PI / 2)
const spp = Math.sin(cDir + Math.PI / 2)
var t = (cdp1 * mm + 2 * m2 * cdp2) / mmt;
obj1.dx = t * cp + v1s * cpp;
obj1.dy = t * sp + v1s * spp;
cDir += Math.PI;
const v2s = v2 * Math.sin(d2 - cDir);
cdp1 = v1 * Math.cos(d1 - cDir);
cdp2 = v2 * Math.cos(d2 - cDir);
t = (cdp2 * -mm + 2 * m1 * cdp1) / mmt;
obj2.dx = t * -cp + v2s * -cpp;
obj2.dy = t * -sp + v2s * -spp;
}
Note just realized that you are using a typeScript and the function above is specifically type agnostic. Does not care about obj1, obj2 type, and will add the deltas to any object that you pass.
You will have to change the function for typeScript.

The velocity vector should change by a multiple of the normal vector at the collision point, which is also the normalized vector between the circle mid points.
There are several posts here and elsewhere on elastic circle collisions and the computation of the impulse exchange (for instance Collision of circular objects, with jsfiddle for planet billiard https://stackoverflow.com/a/23671054/3088138).
If circle2 is bound to the mouse, then the event listener should also update the velocity using the difference to the previous point and the difference of time stamps, or better some kind of moving average thereof. The mass of this circle in the collision formulas is to be considered infinite.
As you are using requestAnimationFrame, the spacing of the times it is called is to be considered random. It would be better to use actual time stamps and some effort at implementing the Euler method (or whatever the resulting order 1 integration method amounts to) using the actual time increments. The collision procedure should not contain a position update, as that is the domain of the integration step, which in turn makes it necessary to add a test that the disks are actually moving together.

Related

Transformation matrix rotation not preserving local axis scaling?

I have a simple transform class to apply translations, scales and rotations on a div in any arbitrary order:
class TransformDiv{
constructor(div)
{
this.div = div;
this.translateX = 0;
this.translateY = 0;
this.scaleX = 1;
this.scaleY = 1;
this.shearX = 0;
this.shearY = 0;
}
translate(x, y)
{
this.translateX += x;
this.translateY += y;
this.setTransform();
}
scale(x, y, anchorX = 0, anchorY = 0)
{
this.scaleX *= x;
this.shearX *= x;
this.scaleY *= y;
this.shearY *= y;
this.translateX -= (this.translateX - anchorX) * (1 - x);
this.translateY -= (this.translateY - anchorY) * (1 - y);
this.setTransform();
}
rotate(rad, anchorX = 0, anchorY = 0)
{
let cos = Math.cos(rad);
let sin = Math.sin(rad);
// the composition of two successive rotations are additive
let newScaleX = this.scaleX * cos + this.shearX * sin;
let newShearX = this.scaleX * (-sin) + this.shearX * cos;
let newShearY = this.shearY * cos + this.scaleY * sin;
let newScaleY = this.shearY * (-sin) + this.scaleY * cos;
this.scaleX = newScaleX;
this.shearX = newShearX;
this.shearY = newShearY;
this.scaleY = newScaleY;
//rotation about an arbitrary point
let originX = (this.translateX - anchorX);
let originY = (this.translateY - anchorY);
this.translateX -= (originY * sin - originX * (cos - 1));
this.translateY -= (-originY * (cos - 1) - originX * sin);
this.setTransform();
}
setTransform()
{
this.div.style.transform = `matrix(${this.scaleX}, ${this.shearY}, ${this.shearX}, ${this.scaleY}, ${this.translateX}, ${this.translateY})`;
}
}
A problem arises when I wish to rotate after a non-uniform scale has been made.
Edit - Newer interactive example: https://codepen.io/manstie/pen/RwGGOmB
Here is the example I made:
https://jsfiddle.net/ft61q230/1/
In the example here:
div2.translate(100, 100);
div2.scale(2, 1, 100, 100);
div2.rotate(Math.PI / 2, 100, 100);
The expected result is for Test 1 Text and Test 2 Text to be the same length, as if you were rotating from the top left of the div clockwise 90 degrees; but as you can see the result is such that the rotation logic I am performing retains the scale on the world-space axis, so now Test 2 Text is twice as tall rather than twice as long.
Current outcome:
Desired outcome:
The current rotation logic is based on multiplying the existing transformation matrix that makes up rotation by another transformation matrix containing an angle to rotate by, but I realize it is not as simple as that and I am missing something to retain local-axial scale.
Thank you for your assistance.
Edit:
Was recommended DOMMatrix which does all this math for me, but it has the same problem, although there is some skew which I don't think is accurate:
https://jsfiddle.net/heqo7vrt/1/
The skew is caused by the scale function scaling it's local X axis while it is rotated, and then rotating after not keeping that local X axis scaling. Also, DOMMatrix translate function has the translations apply on its local axis which is not desired in my situation but if its rotate function worked as expected I would be able to use it.
I managed to fix it here:
Regular: https://jsfiddle.net/sbca61k5/
let newScaleX = cos * this.scaleX + sin * this.shearY;
let newShearX = cos * this.shearX + sin * this.scaleY;
let newShearY = -sin * this.scaleX + cos * this.shearY;
let newScaleY = -sin * this.shearX + cos * this.scaleY;
DOMMatrix version: https://jsfiddle.net/b36kqrsg/
this.matrix = new DOMMatrix([cos, sin, -sin, cos, 0, 0]).multiply(this.matrix);
// or
this.matrix = new DOMMatrix().rotate(deg).multiply(this.matrix);
The difference is to have the rotation matrix multiplied by the rest of the matrix to "add" it on, not the other way round:
[a c e] [cos -sin 0] [scx shy tx]
[b d f] = [sin cos 0] . [shx scy ty]
[0 0 1] [0 0 1] [0 0 1 ]
I'm unsure about the details of the anchor mathematics but the DOMMatrix version's anchor is relative to its own top left whereas the other is relative to the top left of the document.
From my interactive example the anchor maths does not work as after a multitude of rotations the objects get further away from the anchor origin.
https://codepen.io/manstie/pen/PoGXMed

How to properly execute collision detection between two spheres?

Hello world :) Working on a small animation in which a bunch of spheres jump around the canvas, bouncing off of eachother, floors, walls, and ceilings.
Now, this works perfectly with no failures, until I add more spheres than can fit in the area in one level. At this point, the spheres sink to one flat level of spheres, coinjoining into eachother and pushing others through wall boundaries, which doesn't normally happen.
However, it should be stated I don't fully understand the function I am using to achieve the outcome, so that likely has something to do with it. Will post my collision detection functions below, and hopefully one of you can help me get a bit farther :)
Borrowed Functions:
/**
* Rotates coordinate system for velocities
*
* Takes velocities and alters them as if the coordinate system they're on was rotated
*
* #param Object | velocity | The velocity of an individual particle
* #param Float | angle | The angle of collision between two objects in radians
* #return Object | The altered x and y velocities after the coordinate system has been rotated
*/
function rotate(velocity, angle) {
const rotatedVelocities = {
x: velocity.x * Math.cos(angle) - velocity.y * Math.sin(angle),
y: velocity.x * Math.sin(angle) + velocity.y * Math.cos(angle)
};
return rotatedVelocities;
}
/**
* Swaps out two colliding particles' x and y velocities after running through
* an elastic collision reaction equation
*
* #param Object | particle | A particle object with x and y coordinates, plus velocity
* #param Object | otherParticle | A particle object with x and y coordinates, plus velocity
* #return Null | Does not return a value
*/
function resolveCollision(particle, otherParticle) {
const xVelocityDiff = particle.velocity.x - otherParticle.velocity.x;
const yVelocityDiff = particle.velocity.y - otherParticle.velocity.y;
console.log("Resolving");
const xDist = otherParticle.x - particle.x;
const yDist = otherParticle.y - particle.y;
// alert(xVelocityDiff * xDist + yVelocityDiff * yDist)
// Prevent accidental overlap of particles
if (xVelocityDiff * xDist + yVelocityDiff * yDist >= 0) {
console.log("Resolving IF");
// Grab angle between the two colliding particles
const angle = -Math.atan2(otherParticle.y - particle.y, otherParticle.x - particle.x);
// Store mass in var for better readability in collision equation
const m1 = particle.mass;
const m2 = otherParticle.mass;
// Velocity before equation
const u1 = rotate(particle.velocity, angle);
const u2 = rotate(otherParticle.velocity, angle);
// Velocity after 1d collision equation
const v1 = { x: u1.x * (m1 - m2) / (m1 + m2) + u2.x * 2 * m2 / (m1 + m2), y: u1.y };
const v2 = { x: u2.x * (m1 - m2) / (m1 + m2) + u1.x * 2 * m2 / (m1 + m2), y: u2.y };
// Final velocity after rotating axis back to original location
const vFinal1 = rotate(v1, -angle);
const vFinal2 = rotate(v2, -angle);
// Swap particle velocities for realistic bounce effect
particle.velocity.x = vFinal1.x;
particle.velocity.y = vFinal1.y;
otherParticle.velocity.x = vFinal2.x;
otherParticle.velocity.y = vFinal2.y;
}
}
Ball Properties:
// Objects
function Ball(x, y, dy, dx, radius, color) {
this.x = x
this.y = y
// this.dy = dy;
// this.dx = dx;
this.velocity = {
x:dx,
y:dy
}
this.radius = radius
this.color = color
this.mass = 1;
this.collision = ()=> {
for (var index = 0; index < objects.length; index++) {
var coin = objects[index];
if (this === coin) {
continue;
}
if (getDistance(this.x, this.y, coin.x, coin.y) - (this.radius + coin.radius) < 0) {
// alert('hi');
console.log("collision:");
resolveCollision(this, coin)
}
}
}
}
Ball.prototype.update = function() {
if (this.y + this.radius + this.velocity.y > canvas.height) {
this.velocity.y = (-this.velocity.y * parseFloat(0.85));
}else {
this.velocity.y += gravity;
}
this.y += this.velocity.y;
this.x += this.velocity.x;
if (this.x + this.radius + this.velocity.x > canvas.width) {
this.velocity.x = -this.velocity.x;
}
if (Math.sign(this.velocity.x) === 1) {
this.velocity.x -= 0.01;
} else if (Math.sign(this.velocity.x) === -1) {
this.velocity.x += 0.01;
}
if (this.x - this.radius - this.velocity.x < 0) {
this.velocity.x = Math.abs(this.velocity.x);
}
this.draw()
}
Any help here really would be most appreciated, I am trying to improve my skills in this field, and feel a strong need to go back and read my geometry books again :D

JS CANVAS - Circle slows down when reaches to target position

I'm trying to make a circle object move to a ball position but whenever it is near to the ball position, it slows down no matter where it starts to move. I can't seem to make it move at a constant speed without slowing it down.
I'm using lerp for linear interpolation and using it directly in my move function.
function lerp(v0, v1, t) {
return v0 * (1 - t) + v1 * t;
};
FPS = 60;
function Objects(/*parameters*/){
this.pos = new Vector2D(x, y);
this.move = function(x, y){
this.pos.x = lerp(this.pos.x, x, FPS/1000);
this.pos.y = lerp(this.pos.y, y, FPS/1000);
};
};
function update(){
//Move object to ball position
SuperObject.move(ball.pos.x, ball.pos.y);
drawObjects();
setTimeout(update, 1000/FPS);
};
DEMO link: http://codepen.io/knoxgon/pen/EWVyzv
This is the expected behavior. As you set the position by linearly interpolating from the current position to the target, it defines a convergent series.
Lets see a simpler example: Say you have only one dimension, and the circle is originally at x(0)=10 and the target is at tx=0. You define every step by x(n+1) = lerp(x(n), tx, 0.1) = 0.9 * x(n) + 0.1 * tx = 0.9 * x(n) (0.9 for simplicity). So the series becomes x(0) = 10, x(1) = 9, x(2) = 8.1, x(n) = 10 * pow(0.9, n), which is a convergent geometric progression, and will never describe a motion at constant speed.
You have to change your equation:
move(x, y) {
let deltax = x - this.pos.x;
let deltay = y - this.pos.y;
const deltaLength = Math.sqrt(deltax * deltax + deltay * deltay);
const speed = 10;
if (deltaLength > speed) {
deltax = speed * deltax / deltaLength;
deltay = speed * deltay / deltaLength;
}
this.pos.x += deltax;
this.pos.y += deltay;
}
http://codepen.io/anon/pen/LWpRWJ

Calculating angular velocity after a collision

I've got the linear component of collision resolution down relatively well, but I can't quite figure out how to do the same for the angular one. From what I've read, it's something like... torque = point of collision x linear velocity. (cross product) I tried to incorporate an example I found into my code but I actually don't see any rotation at all when objects collide. The other fiddle works perfectly with a rudimentary implementation of the seperating axis theorem and the angular velocity calculations. Here's what I've come up with...
Property definitions (orientation, angular velocity, and angular acceleration):
rotation: 0,
angularVelocity: 0,
angularAcceleration: 0
Calculating the angular velocity in the collision response:
var pivotA = this.vector(bodyA.x, bodyA.y);
bodyA.angularVelocity = 1 * 0.2 * (bodyA.angularVelocity / Math.abs(bodyA.angularVelocity)) * pivotA.subtract(isCircle ? pivotA.add(bodyA.radius) : {
x: pivotA.x + boundsA.width,
y: pivotA.y + boundsA.height
}).vCross(bodyA.velocity);
var pivotB = this.vector(bodyB.x, bodyB.y);
bodyB.angularVelocity = 1 * 0.2 * (bodyB.angularVelocity / Math.abs(bodyB.angularVelocity)) * pivotB.subtract(isCircle ? pivotB.add(bodyB.radius) : {
x: pivotB.x + boundsB.width,
y: pivotB.y + boundsB.height
}).vCross(bodyB.velocity);
Updating the orientation in the update loop:
var torque = 0;
torque += core.objects[o].angularVelocity * -1;
core.objects[o].angularAcceleration = torque / core.objects[o].momentOfInertia();
core.objects[o].angularVelocity += core.objects[o].angularAcceleration;
core.objects[o].rotation += core.objects[o].angularVelocity;
I would post the code that I have for calculating the moments of inertia but there's a seperate one for every object so that would be a bit... lengthy. Nonetheless, here's the one for a circle as an example:
return this.mass * this.radius * this.radius / 2;
Just to show the result, here's my fiddle. As shown, objects do not rotate on collision. (not exactly visible with the circles, but it should work for the zero and seven)
What am I doing wrong?
EDIT: Reason they weren't rotating at all was because of an error with groups in the response function -- it rotates now, just not correctly. However, I've commented that out for now as it messes things up.
Also, I've tried another method for rotation. Here's the code in the response:
_bodyA.angularVelocity = direction.vCross(_bodyA.velocity) / (isCircle ? _bodyA.radius : boundsA.width);
_bodyB.angularVelocity = direction.vCross(_bodyB.velocity) / (isCircle ? _bodyB.radius : boundsB.width);
Note that direction refers to the "collision normal".
Angular and linear acceleration due to force vector
Angular and directional accelerations due to an applied force are two components of the same thing and can not be separated. To get one you need to solve for both.
Define the calculations
From simple physics and standing on shoulders we know the following.
F is force (equivalent to inertia)
Fv is linear force
Fa is angular force
a is acceleration could be linear or rotational depending on where it is used
v is velocity. For angular situations it is the tangential component only
m is mass
r is radius
For linear forces
F = m * v
From which we derive
m = F / v
v = F / m
For rotational force (v is tangential velocity)
F = r * r * m * (v / r) and simplify F = r * m * v
From which we derive
m = F / ( r * v )
v = F / ( r * m )
r = F / ( v * m )
Because the forces we apply are instantaneous we can interchange a acceleration and v velocity to give all the following formulas
Linear
F = m * a
m = F / a
a = F / m
Rotational
F = r * m * a
m = F / ( r * a )
a = F / ( r * m )
r = F / ( a * m )
As we are only interested in the change in velocity for both linear and rotation solutions
a1 = F / m
a2 = F / ( r * m )
Where a1 is acceleration in pixels per frame2 and a2 is acceleration in radians per frame2 ( the frame squared just denotes it is acceleration)
From 1D to 2D
Because this is a 2D solution and all above are 1D we need to use vectors. I for this problem use two forms of the 2D vector. Polar that has a magnitude (length, distance, the like...) and direction. Cartesian which has x and y. What a vector represents depends on how it is used.
The following functions are used as helpers in the solution. They are written in ES6 so for non compliant browsers you will have to adapt them, though I would not ever suggest you use these as they are written for convenience, they are very inefficient and do a lot of redundant calculations.
Converts a vector from polar to cartesian returning a new one
function polarToCart(pVec, retV = {x : 0, y : 0}) {
retV.x = Math.cos(pVec.dir) * pVec.mag;
retV.y = Math.sin(pVec.dir) * pVec.mag;
return retV;
}
Converts a vector from cartesian to polar returning a new one
function cartToPolar(vec, retV = {dir : 0, mag : 0}) {
retV.dir = Math.atan2(vec.y, vec.x);
retV.mag = Math.hypot(vec.x, vec.y);
return retV;
}
Creates a polar vector
function polar(mag = 1, dir = 0) {
return validatePolar({dir : dir,mag : mag});
}
Create a vector as a cartesian
function vector(x = 1, y = 0) {
return {x : x, y : y};
}
True is the arg vec is a vector in polar form
function isPolar(vec) {
if (vec.mag !== undefined && vec.dir !== undefined) {return true;}
return false;
}
Returns true if arg vec is a vector in cartesian form
function isCart(vec) {
if (vec.x !== undefined && vec.y !== undefined) {return true;}
return false;
}
Returns a new vector in polar form also ensures that vec.mag is positive
function asPolar(vec){
if(isCart(vec)){ return cartToPolar(vec); }
if(vec.mag < 0){
vec.mag = - vec.mag;
vec.dir += PI;
}
return { dir : vec.dir, mag : vec.mag };
}
Copy and converts an unknown vec to cart if not already
function asCart(vec){
if(isPolar(vec)){ return polarToCart(vec); }
return { x : vec.x, y : vec.y};
}
Calculations can result in a negative magnitude though this is valid for some calculations this results in the incorrect vector (reversed) this simply validates that the polar vector has a positive magnitude it does not change the vector just the sign and direction
function validatePolar(vec) {
if (isPolar(vec)) {
if (vec.mag < 0) {
vec.mag = - vec.mag;
vec.dir += PI;
}
}
return vec;
}
The Box
Now we can define an object that we can use to play with. A simple box that has position, size, mass, orientation, velocity and rotation
function createBox(x,y,w,h){
var box = {
x : x, // pos
y : y,
r : 0.1, // its rotation AKA orientation or direction in radians
h : h, // its height
w : w, // its width
dx : 0, // delta x in pixels per frame 1/60th second
dy : 0, // delta y
dr : 0.0, // deltat rotation in radians per frame 1/60th second
mass : w * h, // mass in things
update :function(){
this.x += this.dx;
this.y += this.dy;
this.r += this.dr;
},
}
return box;
}
Applying a force to an object
So now we can redefine some terms
F (force) is a vector force the magnitude is the force and it has a direction
var force = polar(100,0); // create a force 100 units to the right (0 radians)
The force is meaningless without a position where it is applied.
Position is a vector that just holds and x and y location
var location = vector(canvas.width/2, canvas.height/2); // defines a point in the middle of the canvas
Directional vector holds the direction and distance between to positional vectors
var l1 = vector(canvas.width/2, canvas.height/2); // defines a point in the middle of the canvas
var l2 = vector(100,100);
var direction = asPolar(vector(l2.x - l1.x, l2.y - l1.y)); // get the direction as polar vector
direction now has the direction from canvas center to point (100,100) and the distance.
The last thing we need to do is extract the components from a force vector along a directional vector. When you apply a force to an object the force is split into two, one is the force along the line to the object center and adds to the object acceleration, the other force is at 90deg to the line to the object center (the tangent) and that is the force that changes rotation.
To get the two components you get the difference in direction between the force vector and the directional vector from where the force is applied to the object center.
var force = polar(100,0); // the force
var forceLoc = vector(50,50); // the location the force is applied
var direction2Center = asPolar(vector(box.x - forceLoc.x, box.y - forceLoc.y)); // get the direction as polar vector
var pheta = direction2Center - force.dir; // get the angle between the force and object center
Now that you have that angle pheta the force can be split into its rotational and linear components with trig.
var F = force.mag; // get the force magnitude
var Fv = Math.cos(pheta) * F; // get the linear force
var Fa = Math.sin(pheta) * F; // get the angular force
Now the forces can be converted back to accelerations for linear a = F/m and angular a = F/(m*r)
accelV = Fv / box.mass; // linear acceleration in pixels
accelA = Fa / (box.mass * direction2Center.mag); // angular acceleration in radians
You then convert the linear force back to a vector that has a direction to the center of the object
var forceV = polar(Fv, direction2Center);
Convert is back to the cartesian so we can add it to the object deltaX and deltaY
forceV = asCart(forceV);
And add the acceleration to the box
box.dx += forceV.x;
box.dy += forceV.y;
Rotational acceleration is just one dimensional so just add it to the delta rotation of the box
box.dr += accelA;
And that is it.
Function to apply force to Box
The function if attached to the box will apply a force vector at a location to the box.
Attach to the box like so
box.applyForce = applyForce; // bind function to the box;
You can then call the function via the box
box.applyForce(force, locationOfForce);
function applyForce(force, loc){ // force is a vector, loc is a coordinate
var toCenter = asPolar(vector(this.x - loc.x, this.y - loc.y)); // get the vector to the center
var pheta = toCenter.dir - force.dir; // get the angle between the force and the line to center
var Fv = Math.cos(pheta) * force.mag; // Split the force into the velocity force along the line to the center
var Fa = Math.sin(pheta) * force.mag; // and the angular force at the tangent to the line to the center
var accel = asPolar(toCenter); // copy the direction to center
accel.mag = Fv / this.mass; // now use F = m * a in the form a = F/m to get acceleration
var deltaV = asCart(accel); // convert acceleration to cartesian
this.dx += deltaV.x // update the box delta V
this.dy += deltaV.y //
var accelA = Fa / (toCenter.mag * this.mass); // for the angular component get the rotation
// acceleration from F=m*a*r in the
// form a = F/(m*r)
this.dr += accelA;// now add that to the box delta r
}
The Demo
The demo is only about the function applyForce the stuff to do with gravity and bouncing are only very bad approximations and should not be used for any physic type of stuff as they do not conserve energy.
Click and drag to apply a force to the object in the direction that the mouse is moved.
const PI90 = Math.PI / 2;
const PI = Math.PI;
const PI2 = Math.PI * 2;
const INSET = 10; // playfeild inset
const ARROW_SIZE = 6
const SCALE_VEC = 10;
const SCALE_FORCE = 0.15;
const LINE_W = 2;
const LIFE = 12;
const FONT_SIZE = 20;
const FONT = "Arial Black";
const WALL_NORMS = [PI90,PI,-PI90,0]; // dirction of the wall normals
var box = createBox(200, 200, 50, 100);
box.applyForce = applyForce; // Add this function to the box
// render / update function
var mouse = (function(){
function preventDefault(e) { e.preventDefault(); }
var i;
var mouse = {
x : 0, y : 0,buttonRaw : 0,
bm : [1, 2, 4, 6, 5, 3], // masks for setting and clearing button raw bits;
mouseEvents : "mousemove,mousedown,mouseup".split(",")
};
function mouseMove(e) {
var t = e.type, m = mouse;
m.x = e.offsetX; m.y = e.offsetY;
if (m.x === undefined) { m.x = e.clientX; m.y = e.clientY; }
if (t === "mousedown") { m.buttonRaw |= m.bm[e.which-1];
} else if (t === "mouseup") { m.buttonRaw &= m.bm[e.which + 2];}
e.preventDefault();
}
mouse.start = function(element = document){
if(mouse.element !== undefined){ mouse.removeMouse();}
mouse.element = element;
mouse.mouseEvents.forEach(n => { element.addEventListener(n, mouseMove); } );
}
mouse.remove = function(){
if(mouse.element !== undefined){
mouse.mouseEvents.forEach(n => { mouse.element.removeEventListener(n, mouseMove); } );
mouse.element = undefined;
}
}
return mouse;
})();
var canvas,ctx;
function createCanvas(){
canvas = document.createElement("canvas");
canvas.style.position = "absolute";
canvas.style.left = "0px";
canvas.style.top = "0px";
canvas.style.zIndex = 1000;
document.body.appendChild(canvas);
}
function resizeCanvas(){
if(canvas === undefined){
createCanvas();
}
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
ctx = canvas.getContext("2d");
if(box){
box.w = canvas.width * 0.10;
box.h = box.w * 2;
box.mass = box.w * box.h;
}
}
window.addEventListener("resize",resizeCanvas);
resizeCanvas();
mouse.start(canvas)
var tempVecs = [];
function addTempVec(v,vec,col,life = LIFE,scale = SCALE_VEC){tempVecs.push({v:v,vec:vec,col:col,scale:scale,life:life,sLife:life});}
function drawTempVecs(){
for(var i = 0; i < tempVecs.length; i ++ ){
var t = tempVecs[i]; t.life -= 1;
if(t.life <= 0){tempVecs.splice(i, 1); i--; continue}
ctx.globalAlpha = (t.life / t.sLife)*0.25;
drawVec(t.v, t.vec ,t.col, t.scale)
}
}
function drawVec(v,vec,col,scale = SCALE_VEC){
vec = asPolar(vec)
ctx.setTransform(1,0,0,1,v.x,v.y);
var d = vec.dir;
var m = vec.mag;
ctx.rotate(d);
ctx.beginPath();
ctx.lineWidth = LINE_W;
ctx.strokeStyle = col;
ctx.moveTo(0,0);
ctx.lineTo(m * scale,0);
ctx.moveTo(m * scale-ARROW_SIZE,-ARROW_SIZE);
ctx.lineTo(m * scale,0);
ctx.lineTo(m * scale-ARROW_SIZE,ARROW_SIZE);
ctx.stroke();
}
function drawText(text,x,y,font,size,col){
ctx.font = size + "px "+font;
ctx.textAlign = "center";
ctx.textBaseline = "middle";
ctx.setTransform(1,0,0,1,x,y);
ctx.globalAlpha = 1;
ctx.fillStyle = col;
ctx.fillText(text,0,0);
}
function createBox(x,y,w,h){
var box = {
x : x, // pos
y : y,
r : 0.1, // its rotation AKA orientation or direction in radians
h : h, // its height, and I will assume that its depth is always equal to its height
w : w, // its width
dx : 0, // delta x in pixels per frame 1/60th second
dy : 0, // delta y
dr : 0.0, // deltat rotation in radians per frame 1/60th second
getDesc : function(){
var vel = Math.hypot(this.dx ,this.dy);
var radius = Math.hypot(this.w,this.h)/2
var rVel = Math.abs(this.dr * radius);
var str = "V " + (vel*60).toFixed(0) + "pps ";
str += Math.abs(this.dr * 60 * 60).toFixed(0) + "rpm ";
str += "Va " + (rVel*60).toFixed(0) + "pps ";
return str;
},
mass : function(){ return (this.w * this.h * this.h)/1000; }, // mass in K things
draw : function(){
ctx.globalAlpha = 1;
ctx.setTransform(1,0,0,1,this.x,this.y);
ctx.rotate(this.r);
ctx.fillStyle = "#444";
ctx.fillRect(-this.w/2, -this.h/2, this.w, this.h)
ctx.strokeRect(-this.w/2, -this.h/2, this.w, this.h)
},
update :function(){
this.x += this.dx;
this.y += this.dy;
this.dy += 0.061; // alittle gravity
this.r += this.dr;
},
getPoint : function(which){
var dx,dy,x,y,xx,yy,velocityA,velocityT,velocity;
dx = Math.cos(this.r);
dy = Math.sin(this.r);
switch(which){
case 0:
x = -this.w /2;
y = -this.h /2;
break;
case 1:
x = this.w /2;
y = -this.h /2;
break;
case 2:
x = this.w /2;
y = this.h /2;
break;
case 3:
x = -this.w /2;
y = this.h /2;
break;
case 4:
x = this.x;
y = this.y;
}
var xx,yy;
xx = x * dx + y * -dy;
yy = x * dy + y * dx;
var details = asPolar(vector(xx, yy))
xx += this.x;
yy += this.y;
velocityA = polar(details.mag * this.dr, details.dir + PI90);
velocityT = vectorAdd(velocity = vector(this.dx, this.dy), velocityA);
return {
velocity : velocity, // only directional
velocityT : velocityT, // total
velocityA : velocityA, // angular only
pos : vector(xx, yy),
radius : details.mag,
}
},
}
box.mass = box.mass(); // Mass remains the same so just set it with its function
return box;
}
// calculations can result in a negative magnitude though this is valide for some
// calculations this results in the incorrect vector (reversed)
// this simply validates that the polat vector has a positive magnitude
// it does not change the vector just the sign and direction
function validatePolar(vec){
if(isPolar(vec)){
if(vec.mag < 0){
vec.mag = - vec.mag;
vec.dir += PI;
}
}
return vec;
}
// converts a vector from polar to cartesian returning a new one
function polarToCart(pVec, retV = {x : 0, y : 0}){
retV.x = Math.cos(pVec.dir) * pVec.mag;
retV.y = Math.sin(pVec.dir) * pVec.mag;
return retV;
}
// converts a vector from cartesian to polar returning a new one
function cartToPolar(vec, retV = {dir : 0, mag : 0}){
retV.dir = Math.atan2(vec.y,vec.x);
retV.mag = Math.hypot(vec.x,vec.y);
return retV;
}
function polar (mag = 1, dir = 0) { return validatePolar({dir : dir, mag : mag}); } // create a polar vector
function vector (x= 1, y= 0) { return {x: x, y: y}; } // create a cartesian vector
function isPolar (vec) { if(vec.mag !== undefined && vec.dir !== undefined) { return true; } return false; }// returns true if polar
function isCart (vec) { if(vec.x !== undefined && vec.y !== undefined) { return true; } return false; }// returns true if cartesian
// copy and converts an unknown vec to polar if not already
function asPolar(vec){
if(isCart(vec)){ return cartToPolar(vec); }
if(vec.mag < 0){
vec.mag = - vec.mag;
vec.dir += PI;
}
return { dir : vec.dir, mag : vec.mag };
}
// copy and converts an unknown vec to cart if not already
function asCart(vec){
if(isPolar(vec)){ return polarToCart(vec); }
return { x : vec.x, y : vec.y};
}
// normalise makes a vector a unit length and returns it as a cartesian
function normalise(vec){
var vp = asPolar(vec);
vap.mag = 1;
return asCart(vp);
}
function vectorAdd(vec1, vec2){
var v1 = asCart(vec1);
var v2 = asCart(vec2);
return vector(v1.x + v2.x, v1.y + v2.y);
}
// This splits the vector (polar or cartesian) into the components along dir and the tangent to that dir
function vectorComponentsForDir(vec,dir){
var v = asPolar(vec); // as polar
var pheta = v.dir - dir;
var Fv = Math.cos(pheta) * v.mag;
var Fa = Math.sin(pheta) * v.mag;
var d1 = dir;
var d2 = dir + PI90;
if(Fv < 0){
d1 += PI;
Fv = -Fv;
}
if(Fa < 0){
d2 += PI;
Fa = -Fa;
}
return {
along : polar(Fv,d1),
tangent : polar(Fa,d2)
};
}
function doCollision(pointDetails, wallIndex){
var vv = asPolar(pointDetails.velocity); // Cartesian V make sure the velocity is in cartesian form
var va = asPolar(pointDetails.velocityA); // Angular V make sure the velocity is in cartesian form
var vvc = vectorComponentsForDir(vv, WALL_NORMS[wallIndex])
var vac = vectorComponentsForDir(va, WALL_NORMS[wallIndex])
vvc.along.mag *= 1.18; // Elastic collision requiers that the two equal forces from the wall
vac.along.mag *= 1.18; // against the box and the box against the wall be summed.
// As the wall can not move the result is that the force is twice
// the force the box applies to the wall (Yes and currently force is in
// velocity form untill the next line)
vvc.along.mag *= box.mass; // convert to force
//vac.along.mag/= pointDetails.radius
vac.along.mag *= box.mass
vvc.along.dir += PI; // force is in the oppisite direction so turn it 180
vac.along.dir += PI; // force is in the oppisite direction so turn it 180
// split the force into components based on the wall normal. One along the norm the
// other along the wall
vvc.tangent.mag *= 0.18; // add friction along the wall
vac.tangent.mag *= 0.18;
vvc.tangent.mag *= box.mass //
vac.tangent.mag *= box.mass
vvc.tangent.dir += PI; // force is in the oppisite direction so turn it 180
vac.tangent.dir += PI; // force is in the oppisite direction so turn it 180
// apply the force out from the wall
box.applyForce(vvc.along, pointDetails.pos)
// apply the force along the wall
box.applyForce(vvc.tangent, pointDetails.pos)
// apply the force out from the wall
box.applyForce(vac.along, pointDetails.pos)
// apply the force along the wall
box.applyForce(vac.tangent, pointDetails.pos)
//addTempVec(pointDetails.pos, vvc.tangent, "red", LIFE, 10)
//addTempVec(pointDetails.pos, vac.tangent, "red", LIFE, 10)
}
function applyForce(force, loc){ // force is a vector, loc is a coordinate
validatePolar(force); // make sure the force is a valid polar
// addTempVec(loc, force,"White", LIFE, SCALE_FORCE) // show the force
var l = asCart(loc); // make sure the location is in cartesian form
var toCenter = asPolar(vector(this.x - l.x, this.y - l.y));
var pheta = toCenter.dir - force.dir;
var Fv = Math.cos(pheta) * force.mag;
var Fa = Math.sin(pheta) * force.mag;
var accel = asPolar(toCenter); // copy the direction to center
accel.mag = Fv / this.mass; // now use F = m * a in the form a = F/m
var deltaV = asCart(accel); // convert it to cartesian
this.dx += deltaV.x // update the box delta V
this.dy += deltaV.y
var accelA = Fa / (toCenter.mag * this.mass); // for the angular component get the rotation
// acceleration
this.dr += accelA;// now add that to the box delta r
}
// make a box
ctx.globalAlpha = 1;
var lx,ly;
function update(){
// clearLog();
ctx.setTransform(1, 0, 0, 1, 0, 0);
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.setTransform(1, 0, 0, 1, 0, 0);
ctx.lineWidth = 1;
ctx.strokeStyle = "black";
ctx.fillStyle = "#888";
ctx.fillRect(INSET, INSET, canvas.width - INSET * 2, canvas.height - INSET * 2);
ctx.strokeRect(INSET, INSET, canvas.width - INSET * 2, canvas.height - INSET * 2);
ctx.lineWidth = 2;
ctx.strokeStyle = "black";
box.update();
box.draw();
if(mouse.buttonRaw & 1){
var force = asPolar(vector(mouse.x - lx, mouse.y - ly));
force.mag *= box.mass * 0.1;
box.applyForce(force,vector(mouse.x, mouse.y))
addTempVec(vector(mouse.x, mouse.y), asPolar(vector(mouse.x - lx, mouse.y - ly)), "Cyan", LIFE, 5);
}
lx = mouse.x;
ly = mouse.y;
for(i = 0; i < 4; i++){
var p = box.getPoint(i);
// only do one collision per frame or we will end up adding energy
if(p.pos.x < INSET){
box.x += (INSET) - p.pos.x;
doCollision(p,3)
}else
if( p.pos.x > canvas.width-INSET){
box.x += (canvas.width - INSET) - p.pos.x;
doCollision(p,1)
}else
if(p.pos.y < INSET){
box.y += (INSET) -p.pos.y;
doCollision(p,0)
}else
if( p.pos.y > canvas.height-INSET){
box.y += (canvas.height - INSET) -p.pos.y;
doCollision(p,2)
}
drawVec(p.pos,p.velocity,"blue")
}
drawTempVecs();
ctx.globalAlpha = 1;
drawText(box.getDesc(),canvas.width/2,FONT_SIZE,FONT,FONT_SIZE,"black");
drawText("Click drag to apply force to box",canvas.width/2,FONT_SIZE +17,FONT,14,"black");
requestAnimationFrame(update)
}
update();

Make and animate wave in canvas

I’m looking for a way to create a wave in a shape designed in canvas. After much research I found something that is pretty close to what I want:
var c = document.getElementById('c'),
ctx = c.getContext('2d'),
cw = c.width = window.innerWidth,
ch = c.height = window.innerHeight,
points = [],
tick = 0,
opt = {
count: 5,
range: {
x: 20,
y: 80
},
duration: {
min: 20,
max: 40
},
thickness: 10,
strokeColor: '#444',
level: .35,
curved: true
},
rand = function(min, max) {
return Math.floor((Math.random() * (max - min + 1)) + min);
},
ease = function(t, b, c, d) {
if ((t /= d / 2) < 1) return c / 2 * t * t + b;
return -c / 2 * ((--t) * (t - 2) - 1) + b;
};
ctx.lineJoin = 'round';
ctx.lineWidth = opt.thickness;
ctx.strokeStyle = opt.strokeColor;
var Point = function(config) {
this.anchorX = config.x;
this.anchorY = config.y;
this.x = config.x;
this.y = config.y;
this.setTarget();
};
Point.prototype.setTarget = function() {
this.initialX = this.x;
this.initialY = this.y;
this.targetX = this.anchorX + rand(0, opt.range.x * 2) - opt.range.x;
this.targetY = this.anchorY + rand(0, opt.range.y * 2) - opt.range.y;
this.tick = 0;
this.duration = rand(opt.duration.min, opt.duration.max);
}
Point.prototype.update = function() {
var dx = this.targetX - this.x;
var dy = this.targetY - this.y;
var dist = Math.sqrt(dx * dx + dy * dy);
if (Math.abs(dist) <= 0) {
this.setTarget();
} else {
var t = this.tick;
var b = this.initialY;
var c = this.targetY - this.initialY;
var d = this.duration;
this.y = ease(t, b, c, d);
b = this.initialX;
c = this.targetX - this.initialX;
d = this.duration;
this.x = ease(t, b, c, d);
this.tick++;
}
};
Point.prototype.render = function() {
ctx.beginPath();
ctx.arc(this.x, this.y, 3, 0, Math.PI * 2, false);
ctx.fillStyle = '#000';
ctx.fill();
};
var updatePoints = function() {
var i = points.length;
while (i--) {
points[i].update();
}
};
var renderPoints = function() {
var i = points.length;
while (i--) {
points[i].render();
}
};
var renderShape = function() {
ctx.beginPath();
var pointCount = points.length;
ctx.moveTo(points[0].x, points[0].y);
var i;
for (i = 0; i < pointCount - 1; i++) {
var c = (points[i].x + points[i + 1].x) / 2;
var d = (points[i].y + points[i + 1].y) / 2;
ctx.quadraticCurveTo(points[i].x, points[i].y, c, d);
}
ctx.lineTo(-opt.range.x - opt.thickness, ch + opt.thickness);
ctx.lineTo(cw + opt.range.x + opt.thickness, ch + opt.thickness);
ctx.closePath();
ctx.fillStyle = 'hsl(' + (tick / 2) + ', 80%, 60%)';
ctx.fill();
ctx.stroke();
};
var clear = function() {
ctx.clearRect(0, 0, cw, ch);
};
var loop = function() {
window.requestAnimFrame(loop, c);
tick++;
clear();
updatePoints();
renderShape();
//renderPoints();
};
var i = opt.count + 2;
var spacing = (cw + (opt.range.x * 2)) / (opt.count - 1);
while (i--) {
points.push(new Point({
x: (spacing * (i - 1)) - opt.range.x,
y: ch - (ch * opt.level)
}));
}
window.requestAnimFrame = function() {
return window.requestAnimationFrame || window.webkitRequestAnimationFrame || window.mozRequestAnimationFrame || window.oRequestAnimationFrame || window.msRequestAnimationFrame || function(a) {
window.setTimeout(a, 1E3 / 60)
}
}();
loop();
canvas {
display: block;
}
<canvas id="c"></canvas>
http://codepen.io/jackrugile/pen/BvLHg
The problem is that the movement of the wave appears a bit unreal. I'd like to keep this notion of random motion and not have a shape that repeats itself by moving from left to right but it will be great if I found a way to create a ‘realistic’ water movement (good fluid dynamics, collisions of this wave with the edges of its container (custom shape)).
I think I'm asking a lot but ... A small line of research could help :)
Interference
You can make a more realistic wave using interference.
Have one big wave (swell) running slowly with a big motion
Have another one or two smaller sine waves running (oscillators)
All with random amplitudes
Mix the waves horizontally using average and calculate the various points
Draw the result using a cardinal spline (or if the resolution is high you can just draw simple lines between the points instead).
Use various parameters so you can adjust it live to find a good combination.
You can also add oscillators to represent the z axis to make it more realistic in case you want to layer the waves to make a pseudo-3D wave.
Example
I cannot give you wave collision, fluid dynamics - that would be a bit too broad for SO but I can give you a fluid-ish wave example (as you have the point of each segment you can use that for collision detection).
And example would be to create an oscillator object which you could set the various settings on such as amplitude, rotation speed (phase) etc.
Then have a mixer function which mixes the result of these oscillators that you use.
Live demo here (full-screen version here)
The oscillator object in this demo look like this:
function osc() {
/// various settings
this.variation = 0.4; /// how much variation between random and max
this.max = 100; /// max amplitude (radius)
this.speed = 0.02; /// rotation speed (for radians)
var me = this, /// keep reference to 'this' (getMax)
a = 0, /// current angle
max = getMax(); /// create a temp. current max
/// this will be called by mixer
this.getAmp = function() {
a += this.speed; /// add to rotation angle
if (a >= 2.0) { /// at break, reset (see note)
a = 0;
max = getMax();
}
/// calculate y position
return max * Math.sin(a * Math.PI) + this.horizon;
}
function getMax() {
return Math.random() * me.max * me.variation +
me.max * (1 - me.variation);
}
return this;
}
This do all the setup and calculations for us and all we need to do is to call the getAmp() to get a new value for each frame.
Instead of doing it manually we can use a "mixer". This mixer allows us to add as many oscillators we want to the mix:
function mixer() {
var d = arguments.length, /// number of arguments
i = d, /// initialize counter
sum = 0; /// sum of y-points
if (d < 1) return horizon; /// if none, return
while(i--) sum += arguments[i].getAmp(); /// call getAmp and sum
return sum / d + horizon; /// get average and add horizon
}
Putting this in a loop with a point recorder which shifts the point in one direction will create a fluid looking wave.
The demo above uses three oscillators. (A tip in that regard is to keep the rotation speed lower than the big swell or else you will get small bumps on it.)
NOTE: The way I create a new random max is not the best way as I use a break point (but simple for demo purpose). You can instead replace this with something better.
Since you are searching for a realistic effect, best idea might be to simulate the water. It is not that hard, in fact : water can be nicely enough approximated by a network of springs linked together.
Result is quite good, you can find it here :
http://jsfiddle.net/gamealchemist/Z7fs5/
So i assumed it was 2D effect and built an array holding, for each point of a water surface, its acceleration, speed, and position. I store them in a single array, at 3*i + 0, 3*i + 1, and 3*i+2.
Then on each update, i simply apply newton's laws with elasticity, and with some friction to get the movement to stop.
I influence each point so it goes to its stable state + get influenced by its right and left neighboor.
(If you want smoother animation, use also i-2 and i+2 points, and lower kFactor.)
var left = 0, y = -1;
var right = water[2];
for (pt = 0 ; pt < pointCount; pt++, i += 3) {
y = right;
right = (pt < pointCount - 1) ? water[i + 5] : 0;
if (right === undefined) alert('nooo');
// acceleration
water[i] = (-0.3 * y + (left - y) + (right - y)) * kFactor - water[i + 1] * friction;
// speed
water[i + 1] += water[i] * dt;
// height
water[i + 2] += water[i + 1] * dt;
left = y;
}
The draw is very simple : just iterate though the points and draw. But it's hard to get a smooth effect while drawing, since it's hard to have bezier and quadraticCurve to have their derivates match. I suggested a few drawing methods, you can switch if you want.
Then i added rain, so that the water can move in a random way. Here it's just very simple trajectory, then i compute if there's collision with the water, and, if so, i add some velocity and shift the point.
I'd like to create a ‘realistic’ water movement with good fluid dynamics, collisions of this wave with the edges of a custom
container..
Oh boy.. That is quite a mouthful.
You should probably ask your Question here: gamedev.stackexchange
Anyways, have you tried to program any sort of wave yet, or are you just looking for WaveCreator.js ?
Go and Google some Non-language-specific Guides on how to create 2D water.
If you are a beginner, then start with something simple to get the idea behind things.
How about creating a bunch of Boxes for "minecraft-style" water ?
Here every "line" of water could be represented as a position in an Array. Then loop through it and set the "height" of the water based on the previous Array Index.
(You could smooth the water out by either making the blocks very thin (More work for your program!) or by smoothing out the edges and giving them an angle based on the other Squares.
I think this could be a neat solution. Anyhow. Hope that gave you some ideas.

Categories