NodeJS 7: EventEmitter + await/async - javascript

How we can end an async function from a callback passed to an event emitter without promisifing the event emitter?
Also without using external modules, just plain NodeJS 7.x/8.x (Which supports Es6 syntax and async/await.
We want basically to mix an async function ... with an event emitter, so that it resolves when the event emitter signals end.
Also bear in mind that we won't start with the event emitter until done with some other async functions, using await.
If we had a "new Promise(...)" we would call resolve(); and the headache would be over, but in 'async' there's no 'resolve', plus we cannot use 'return' because we're inside a callback.
/*
* Example of mixing Events + async/await.
*/
// Supose a random pomise'd function like:
function canIHazACheezBurger () {
return new Promise((resolve, reject) => {
setTimeout(() => {
resolve(Math.random() > 0.5);
}, 500 + Math.random() * 500)
});
}
/**
* Then, we want to mix an event emitter with this logic,
* what we want is that this function resolves the promise
* when the event emitter signals 'end' (for example).
* Also bear in mind that we won't start with the event emitter
* until done with the above function.
* If I had a "new Promise(...)" I would call resolve(); and the
* headache would be over, but in 'async' there's no 'resolve',
* plus I cannot use 'return' because I'm inside a callback.
*/
async function bakeMeSomeBurgers () {
let canIHave = await canIHazACheezBurger();
// Do something with the result, as an example.
if (canIHave) {
console.log('Hehe, you can have...');
} else {
console.log('NOPE');
}
// Here invoke our event emitter:
let cook = new BurgerCooking('cheez');
// Assume that is a normal event emitter, like for handling a download.
cook.on('update', (percent) => {
console.log(`The burger is ${percent}% done`);
});
// Here lies the problem:
cook.on('end', () => {
console.log('I\'ve finished the burger!');
if (canIHave) {
console.log('Here, take it :)');
} else {
console.log('Too bad you can\'t have it >:)');
}
// So, now... What?
// resolve(); ? nope
// return; ?
});
}
Disclaimer
I want to apologize if this question is already done somewhere. The research done shows questions related to mix async with sync logic, but I've found nothing about this.
A similar question in title is this 'write async function with EventEmitter' but it has nothing to do with this question.

Can we end an async function from a callback passed to an event emitter without promisifing the event emitter?
No. async/await syntax is just sugar for then calls and relies on promises.
async function bakeMeSomeBurgers () {
let canIHave = await canIHazACheezBurger();
if (canIHave)
console.log('Hehe, you can have...');
else
console.log('NOPE');
// Here we create and await our promise:
await new Promise((resolve, reject) => {
// Here invoke our event emitter:
let cook = new BurgerCooking('cheez');
// a normal event callback:
cook.on('update', percent => {
console.log(`The burger is ${percent}% done`);
});
cook.on('end', resolve); // call resolve when its done
cook.on('error', reject); // don't forget this
});
console.log('I\'ve finished the burger!');
if (canIHave)
console.log('Here, take it :)');
else
console.log('Too bad, you can\'t have it >:)');
}

Related

Javascript - Filter result from function that can return Promise boolean OR boolean

I wonder if someone ever had this issue before.
Before I had an EventHandler that would look like this:
export interface EventHandler {
name: string;
canHandleEvent(event: EventEntity): boolean;
handleEvent(event: EventEntity): Promise<void>;
}
And my filter function would work normally, also my tests were passing - where I was filtering the events using:
messages.forEach(message => {
const event: EventEntity = JSON.parse(message.Body);
this.handlers
.filter(handler => handler.canHandleEvent(event)) // WORKED WELL
.forEach(handler => {
// LOGIC
});
Currently, we had to change the canHandleEvent to either Boolean or Promise. Since we had some promises to be resolved and identify whether the event can be handle or not.
export interface EventHandler {
// ...
canHandleEvent(event: EventEntity): boolean | Promise<boolean>;
}
So, in order to solve it, I used Promise.resolve and Promise.all. No luck:
messages.forEach(async message => {
const event: EventEntity = JSON.parse(message.Body);
const handlersResolved = await Promise.all(this.handlers);
handlersResolved
.filter(handler => handler.canHandleEvent(event))
.forEach(handler => {
Now, my tests pass for the Promise canHandleEvent, but they are failing for the events passed that is boolean. They look like this:
class HandlerB implements EventHandler {
name = HandlerB.name;
numRuns = 0;
canHandleEvent(event: EventEntity): boolean {
console.log('event', event)
return event.eventType === EventType.ONE_EVENT || event.eventType === EventType.SECOND_EVENT;
}
async handleEvent(event: EventEntity): Promise<void> {
return new Promise(resolve => {
setTimeout(() => {
this.numRuns += 1;
resolve();
}, 25);
});
}
}
And my test that are now failing and before was passing are:
it('Should process handlers that match, including canHandleEvent that returns Promise<boolean> TRUE', async () => {
setHandlers([handlerA, handlerB, handlerC]);
const event = await createEvent(EventType.SECOND_EVENT);
await sleep(1000);
expect(handlerA.numRuns, 'handleA').to.eql(0);
expect(handlerB.numRuns, 'handleB').to.eql(1);
expect(handlerC.numRuns, 'handleC').to.eql(1); // handlerC is Promise<boolean>, it works fine
expect(errorHandler.numRuns).to.eql(0);
handlerC.numRuns = 0;
});
it('Should allow handlers to pass even if one has an error', async () => {
setHandlers([handlerA, handlerB, errorHandler]);
const event = await createEvent(EventType.USER_REGISTRATION_STATUS);
await sleep(1000);
expect(handlerA.numRuns, 'handlerA').to.eql(1);
expect(handlerB.numRuns, 'handlerB').to.eql(1);
expect(errorHandler.numRuns, 'errorHandler').to.eql(1);
});
Any thoughts on how to solve this? I've tried to identify whether is promise or boolean before inside the .filter but still no luck:
this.handlers
.filter(async handler => {
if(typeof handler.canHandleEvent(event).then == 'function') {
const result = await Promise.resolve(handler.canHandleEvent(event))
console.log('IS PROMISE!!', result);
return result
}
console.log('IT IS NOT PROMISE', handler.canHandleEvent(event))
return handler.canHandleEvent(event)
})
Currently, we had to change the canHandleEvent to either Boolean or Promise...
Just to be clear, that's a massive semantic change that will ripple through every layer of the code that uses that method. You can't directly use filter with it anymore, for instance, and any synchronous function that uses it is now potentially asynchronous (and fundamentally, "potentially asynchronous" = "asynchronous"). But if it has to happen, it has to happen! :-)
Your original code using canHandleEvent like this:
messages.forEach(message => {
const event: EventEntity = JSON.parse(message.Body);
this.handlers
.filter(handler => handler.canHandleEvent(event)) // WORKED WELL
.forEach(handler => {
// LOGIC
});
});
has to become asynchronous, like this:
// Handles things in parallel, not series
await/*or return*/ Promise.all(messages.map(message => {
const event: EventEntity = JSON.parse(message.Body);
return Promise.all(this.handlers.map(handler => async {
if (await handler.canHandleEvent(event)) {
// LOGIC
}
}));
}));
Notice how each layer was affected. messages.forEach turned into building an array of promises via messages.map and waiting for them via await (or using .then, etc., or returning to a calling function). For each message, we do the same thing for handlers, since we can't know whether a handler can handle something synchronously. (No need for Promise.resolve, Promise.all will handle that for you.)
The code above assumes it's okay for all of this to overlap (both the messages and the handlers for a message), whereas before because it was all synchronous, they all happened in series (all of the relevant handlers for one message, in order, then all of the handlers for the next, etc.). If you need it to be in series like that, you can use for-of loops:
// Handles things in series, not parallel
// (In an `async` function)
for (const message of messages) {
const event: EventEntity = JSON.parse(message.Body);
for (const handler of this.handlers) {
if (await handler.canHandleEvent(event)) {
// LOGIC
}
}
}
In both cases, it's possible to handle the ones returning boolean differently (synchronously) from the ones returning promises, but it complicates the code.
To solve your issue, I think the most simple way is to first populate the array with the expected values, so you can properly filter.
const transformedHandlers = await Promise.all(this.handlers.map(async handler => {
return {
...handler,
eventCanBeHandled: await handler.canHandleEvent(event)
}
}))
This will transform the array so you have a key that shows what handlers can be handled.
To finish it off you use your code like you would always do but instead of checking
canHandleEvent
you use the new field that has been introduced in the const transformedhandlers
below is the example:
transformedHandlers
.filter(handler => handler.eventCanBeHandled)
.forEach(handler => {
// LOGIC
});
This should be enough to keep you code working like it used to.
sorry for my English. it's not my native language

JavaScript event handler working with an async data store API causing race condition

I need to update some data every time certain browser event fires (for example, when a browser tab closes):
chrome.tabs.onRemoved.addListener(async (tabId) => {
let data = await getData(); // async operation
... // modify data
await setData(data); // async operation
});
The problem is, when multiple such event triggers in quick succession, the async getData() could return stale result in subsequent invocation of the event handler before setData() gets a chance to finish in earlier ones, leading to inconsistent result.
If the event handler can execute synchronously then this problem wouldn't occur, but getData() and setData() both are async operations.
Is this a race condition? What's the recommended pattern to handle this type of logic?
--- Update ---
To provide more context, getData() and setData() are simply promisified version of some Chrome storage API:
async function getData() {
return new Promise(resolve => {
chrome.storage.local.get(key, function(data) => {
// callback
});
});
}
async function setData() {
return new Promise(resolve => {
chrome.storage.local.set({ key: value }, function() => {
// callback
});
});
}
I wrapped the API call in a Promise for readability purposes, but I think it's an async op either way?
You have a fairly classic race condition for a data store with an asynchronous API and the race condition is even worse if you use asynchronous operations in the processing of the data (between the getData() and setData(). The asynchronous operations allow another event to run in the middle of your processing, ruining the atomicity of your sequence of events.
Here's an idea for how to put the incoming tabId in a queue and make sure you're only processing one of these events at a time:
const queue = [];
chrome.tabs.onRemoved.addListener(async (newTabId) => {
queue.push(newTabId);
if (queue.length > 1) {
// already in the middle of processing one of these events
// just leave the id in the queue, it will get processed later
return;
}
async function run() {
// we will only ever have one of these "in-flight" at the same time
try {
let tabId = queue[0];
let data = await getData(); // async operation
... // modify data
await setData(data); // async operation
} finally {
queue.shift(); // remove this one from the queue
}
}
while (queue.length) {
try {
await run();
} catch(e) {
console.log(e);
// decide what to do if you get an error
}
}
});
This could be made more generic so it could be reusably used in more than place (each with their own queue) like this:
function enqueue(fn) {
const queue = [];
return async function(...args) {
queue.push(args); // add to end of queue
if (queue.length > 1) {
// already processing an item in the queue,
// leave this new one for later
return;
}
async function run() {
try {
const nextArgs = queue[0]; // get oldest item from the queue
await fn(...nextArgs); // process this queued item
} finally {
queue.shift(); // remove the one we just processed from the queue
}
}
// process all items in the queue
while (queue.length) {
try {
await run();
} catch(e) {
console.log(e);
// decide what to do if you get an error
}
}
}
}
chrome.tabs.onRemoved.addListener(enqueue(async function(tabId) {
let data = await getData(); // async operation
... // modify data
await setData(data); // async operation
}));
JS ascync/await does not really turns JS code synchronous.
What you cold do is block the event loop on getData using Promisse.all.
So,
chrome.tabs.onRemoved.addListener(async (tabId) => {
... // turns in a composition
await setData(Promise.all([getData])[0]); // async composition
});
You cold do a async composition with a block on event loop, when the event is triggered, the VM will have a list with events, and a block on the await getData.
In fact does not exist async composition, is just a trick with the VM to block the event loop and awaits to the result of an operation cause the VM process this as a list and lists don't wait.
Be careful with your code to become readable when using compositions.

Promise callback queue with priority for some callbacks

My code needs to perform a multitude of async actions simultaneously and handle their promises in a specific sequential way.
What I mean by "specific sequential way" ==> Assume you are starting promises promise1, promise2, promise3 in that order, and that promise3 actually resolves first, and promise2 second, then what I want is to process promise3, promise2 and promise1 sequentially in that order
Let's consider a timeout async function that times out after X seconds, and fetchMyItem1, fetchMyItem2, that return promises which, when fulfilled, should execute a different code depending whether timeout has resolved or not.
For a concrete scenario, imagine there is a customer waiting at the counter for an item to be delivered, and either the customer stays and we can serve him directly at the counter by bringing one item at a time, or the customer goes away (timeout) and we have to ask a waiter to come so that when the items arrive, he/she can bring the items to him. Note here that even when one item is being delivered, the other items should still be undergoing delivery (the promises are pending), and might even arrive (be fulfilled) while the customer is being served one item or the server arrives.
Here is some code to start with
const allItemsToBeDeliveredPromises = [fetchMyItem1(), fetchMyItem2(), ...]
const customerLeavesCounterPromise = timeout()
const waiter = undefined
const allPromisesToBeFulfilled = [...allItemsToBeDeliveredPromises, customerLeavesCounterPromise]
// LOOP
const itemDeliveredOrVisitorLeft = await Promise.all(allPromisesToBeFulfilled)
if hasCustomerLeft(itemDeliveredOrCustomerLeft) {
// hasCustomerLeft allows us to detect if the promise that resolved first is `customerLeavesCounterPromise` or not
waiter = await callWaiter()
} else {
// An item has arrived
if (waiter) {
deliverItemViaWaiter(itemDeliveredOrVisitorLeft)
} else {
deliverItemAtCounter(itemDeliveredOrVisitorLeft)
}
}
// remove itemDeliveredOrCustomerLeft from allPromisesToBeFulfilled
// END loop
I am not sure how to implement a loop for this scenario. Promises must be accumulated into a queue as they resolve, but there is a priority for a specific promise in the queue (the timeout promise should be executed asap when it arrives, but after finishing the processing of the current promise if a promise fulfilment is already being processed)
My code needs to perform a multitude of async actions simultaneously and handle their promises in a specific sequential way.
You could use streams to consume the promises, as streams are essentially queues that process one message at a time.
The idea (i.e. not tested):
import { Readable, Writable } from 'stream';
let customerHasLeft = false;
/*const customerLeavesCounterPromise = */timeout() // your code...
.then(() => { customerHasLeft = true; }); // ... made boolean
// let's push all our promises in a readable stream
// (they are supposedly sorted in the array)
const input = new Readable({
objectMode: true,
read: function () { // don't use arrow function: we need `this`
const allItemsToBeDeliveredPromises = [fetchMyItem1(), fetchMyItem2(), ...]; // your code
// put everything, in the same order, in the output queue
allItemsToBeDeliveredPromises.forEach(p => this.push(p));
this.push(null); // terminate the stream after all these
}
});
// let's declare the logic to process each promise
// (depending on `timeout()` being done)
const consumer = new Writable({
write: async function (promise, uselessEncoding, callback) {
try {
const order = await promise; // wait for the current promise to be completed
} catch (e) {
/* delivery error, do something cool like a $5 coupon */
return callback(e); // or return callback() without e if you don't want to crash the pipe
}
if (customerHasLeft) { /* find a waiter (you can still `await`) and deliver `order` */ }
else { /* deliver `order` at the counter */ }
callback(); // tell the underlying queue we can process the next promise now
}
});
// launch the whole pipe
input.pipe(consumer);
// you can add listeners on all events you'd like:
// 'error', 'close', 'data', whatever...
EDIT: actually we want to process promises as they resolve, but sequentially (i.e. a single post-process for all promises)
let customerHasLeft = false;
timeout() // your code...
.then(() => { customerHasLeft = true; }); // ... made boolean
const allItemsToBeDeliveredPromises = [fetchMyItem1(), fetchMyItem2(), ...];
const postProcessChain = Promise.resolve(); // start with a promise ready to be thened
// add a next step to each promise so that as soon as one resolves, it registers
// as a next step to the post-process chain
allItemsToBeDeliveredPromises.forEach(p => p.then(order => postProcessChain.then(async () => {
// do something potentially async with the resulting order, like this:
if (customerHasLeft) { /* find a waiter (you can still `await`) and deliver `order` */ }
else { /* deliver `order` at the counter */ }
})));
one of them must have the effect that, whenever it fulfils, it should alter the processing of other fulfilled promises that have not yet been processed or are not yet being processed.
Do you run them all together? Something like:
promise1 = asyncFunc1()
promise2 = asyncFunc2()
promise3 = asyncFunc3()
Promise.all([promise1, promise2, promise3]).then(//sometthing)
If yes, it can't be done, unless the promise2 function and promise3 function aren't waiting for an event, a lock, or something handled by the promise1 function.
If this is the case is better to organize the promises like:
asyncFunc1()
.then(() => asyncFunc2(paramIfOk))
.catch(() => asyncFunc2(paramIfFail))
In your example:
const allItemsToBeDelivered = [myPromise1(), myPromise2(), ...]
myPromise1() code should wait for the item to be delivered and check if someone is waiting for it. It's a model/code design problem, not a promise one.
Another way to do it is consider some event driven logic: an entity Customer has a listener for the delivered event that will be fired by the waitItemDelivered() promise just before resolve itself.
EDIT: as requested here a little more elaboration on the event-driven solution.
Short answer: it highly depend on your software design.
It's already something released and running in production? Be carefull with changes like this. If it's a service that you are developing you're still in time to take in consideration some logic changes. A solution that doesn't change radically how is working but use an events is not that great, mixing patterns never pay off on long term.
Example:
const events = require('events');
class Customer() {
constructor(shop) {
this.emitter = new events.EventEmitter()
this.shopEventListener = shop.emitter
this.setupEventLinstening() // for keeping things clean in the constructor
// other properties here
}
setupEventLinstening() {
this.shopEventListener.on('product-delivered', (eventData) => {
// some logic
})
}
buyProduct() {
// some logic
this.emitter.emit('waiting-delivery', eventData)
}
}
class Shop() {
constructor(shop) {
this.emitter = new events.EventEmitter()
// other properties here
}
addCustomer(customer) {
customer.emitter.on('waiting-delivery', (eventData) => {
// some logic
self.waitDelivery().then(() => self.emitter.emit('product-delivered'))
})
}
waitDelivery() {
return new Promise((resolve, reject) => {
// some logic
resolve()
})
}
}
// setup
const shop = new Shop()
const customer = new Customer(shop)
shop.addCustomer(customer)
This is a new way of seeing the logic, but a similar approach can be used inside a promise:
const waitDelivery = () => new Promise((resolve, reject) => {
logisticWaitDelivery().then(() => {
someEmitter.emit('item-delivered')
resolve()
})
}
const customerPromise = () => new Promise((resolve, reject) => {
someListener.on('item-delivered', () => {
resolve()
})
}
promiseAll([waitDelivery, customerPromise])
Make 2 queues, the second starting after the first ends:
var highPriority=[ph1,ph2,...]//promises that have to be executed first
var lowPriority=[pl1,pl2,...]//promises that have to wait the high priority promises
Promise.all(highPriority).then(()=>{
Promise.all(lowPriority)
})

How to delay execution of a function in Javascript [duplicate]

I have javascript function like this:
function myFunction(number) {
var x=number;
...
... more initializations
//here need to wait until flag==true
while(flag==false)
{}
...
... do something
}
The problem is that the javascript is stuck in the while and stuck my program. so my question is how can I wait in the middle of the function until flag is true without "busy-wait"?
Javascript is single threaded, hence the page blocking behaviour. You can use the deferred/promise approach suggested by others. The most basic way would be to use window.setTimeout. E.g.
function checkFlag() {
if(flag === false) {
window.setTimeout(checkFlag, 100); /* this checks the flag every 100 milliseconds*/
} else {
/* do something*/
}
}
checkFlag();
Here is a good tutorial with further explanation: Tutorial
EDIT
As others pointed out, the best way would be to re-structure your code to use callbacks. However, this answer should give you an idea how you can 'simulate' an asynchronous behaviour with window.setTimeout.
You created an infinite loop where the flag value that terminates the loop can never be changed by code outside this loop because no code outside the loop ever gets to run - thus this will never work.
Because javascript in a browser is single threaded (except for webworkers which aren't involved here) and one thread of javascript execution runs to completion before another can run, your statement:
// this won't work!
while(flag==false) {}
will simply run forever (or until the browser complains about a non-responsive javascript loop), the page will appear to be hung and no other javascript will ever get a chance to run, thus the flag's value can never be changed by code outside this loop.
For a little more explanation, Javascript is an event driven language. That means that it runs a piece of Javascript until it returns control back to the interpreter. Then, only when it returns back to the interpreter, Javascript gets the next event from the event queue and runs it.
All things like timers and network events run through the event queue. So, when a timer fires or a network request arrives, it does not ever "interrupt" the currently running Javascript. Instead, an event gets put in the Javascript event queue and then, when the currently running Javascript finishes, the next event is pulled from the event queue and it gets its turn to run.
So, when you do an infinite loop such as while(flag==false) {}, the currently running Javascript never finishes and thus the next event is never pulled from the event queue and thus the value of flag never gets changed. They key here is that Javascript is not interrupt driven. When a timer fires, it does not interrupt the currently running Javascript, run some other Javascript and then let the currently running Javascript continue. It just gets put in the event queue waiting until the currently running Javascript is done to get its turn to run.
What you need to do is rethink how your code works and find a different way to trigger whatever code you want to run when the flag value changes. Javascript is designed as an event-driven language. So, what you need to do is figure out what events you can register an interest in so you can either listen for the event that might cause the flag to change and you can examine the flag on that event or you can trigger your own event from whatever code might change the flag or you can implement a callback function that whatever code changes that flag can call your callback whenever the piece of code responsible for changing the flag value would change it's value to true, it just calls the callback function and thus your code that wants to run when the flag gets set to true will get to run at the right time. This is much, much more efficient than trying to use some sort of timer to constantly check the flag value.
function codeThatMightChangeFlag(callback) {
// do a bunch of stuff
if (condition happens to change flag value) {
// call the callback to notify other code
callback();
}
}
Solution using Promise, async\await and EventEmitter which allows to react immediate on flag change without any kind of loops at all
const EventEmitter = require('events');
const bus = new EventEmitter();
let lock = false;
async function lockable() {
if (lock) await new Promise(resolve => bus.once('unlocked', resolve));
....
lock = true;
...some logic....
lock = false;
bus.emit('unlocked');
}
EventEmitter is builtin in node. In browser you shall need to include it by your own, for example using this package: https://www.npmjs.com/package/eventemitter3
ES6 with Async / Await ,
let meaningOfLife = false;
async function waitForMeaningOfLife(){
while (true){
if (meaningOfLife) { console.log(42); return };
await null; // prevents app from hanging
}
}
waitForMeaningOfLife();
setTimeout(()=>meaningOfLife=true,420)
Modern solution using Promise
myFunction() in the original question can be modified as follows
async function myFunction(number) {
var x=number;
...
... more initializations
await until(_ => flag == true);
...
... do something
}
where until() is this utility function
function until(conditionFunction) {
const poll = resolve => {
if(conditionFunction()) resolve();
else setTimeout(_ => poll(resolve), 400);
}
return new Promise(poll);
}
Some references to async/await and arrow functions are in a similar post:
https://stackoverflow.com/a/52652681/209794
function waitFor(condition, callback) {
if(!condition()) {
console.log('waiting');
window.setTimeout(waitFor.bind(null, condition, callback), 100); /* this checks the flag every 100 milliseconds*/
} else {
console.log('done');
callback();
}
}
Use:
waitFor(() => window.waitForMe, () => console.log('got you'))
I solved this issue by implementing the method below.
const waitUntil = (condition, checkInterval=100) => {
return new Promise(resolve => {
let interval = setInterval(() => {
if (!condition()) return;
clearInterval(interval);
resolve();
}, checkInterval)
})
}
Now, whenever you want to wait until a certain condition is met you can call it like this.
await waitUntil(() => /* your condition */)
const waitUntil = (condition, checkInterval=100) => {
return new Promise(resolve => {
let interval = setInterval(() => {
if (!condition()) return;
clearInterval(interval);
resolve();
}, checkInterval)
})
}
async function start() {
let flag = false;
console.log('wait 5 sec');
setTimeout(()=> {flag=true}, 5000); // set flag=true after 5 seconds
await waitUntil(() => flag==true ); // wait
console.log('do something when flag is true...');
}
start();
With Ecma Script 2017 You can use async-await and while together to do that
And while will not crash or lock the program even variable never be true
//First define some delay function which is called from async function
function __delay__(timer) {
return new Promise(resolve => {
timer = timer || 2000;
setTimeout(function () {
resolve();
}, timer);
});
};
//Then Declare Some Variable Global or In Scope
//Depends on you
var flag = false;
//And define what ever you want with async fuction
async function some() {
while (!flag)
await __delay__(1000);
//...code here because when Variable = true this function will
};
For iterating over ($.each) objects and executing a longish-running operation (containing nested ajax sync calls) on each object:
I first set a custom done=false property on each.
Then, in a recursive function, set each done=true and continued using setTimeout. (It's an operation meant to stop all other UI, show a progress bar and block all other use so I forgave myself for the sync calls.)
function start()
{
GlobalProducts = getproductsfromsomewhere();
$.each(GlobalProducts, function(index, product) {
product["done"] = false;
});
DoProducts();
}
function DoProducts()
{
var doneProducts = Enumerable.From(GlobalProducts).Where("$.done == true").ToArray(); //linqjs
//update progress bar here
var nextProduct = Enumerable.From(GlobalProducts).Where("$.done == false").First();
if (nextProduct) {
nextProduct.done = true;
Me.UploadProduct(nextProduct.id); //does the long-running work
setTimeout(Me.UpdateProducts, 500)
}
}
If you are allowed to use: async/await on your code, you can try this one:
const waitFor = async (condFunc: () => boolean) => {
return new Promise((resolve) => {
if (condFunc()) {
resolve();
}
else {
setTimeout(async () => {
await waitFor(condFunc);
resolve();
}, 100);
}
});
};
const myFunc = async () => {
await waitFor(() => (window as any).goahead === true);
console.log('hello world');
};
myFunc();
Demo here:
https://stackblitz.com/edit/typescript-bgtnhj?file=index.ts
On the console, just copy/paste: goahead = true.
TMCDR; (= "too much code... didn't read")
Simplest in terms of readability of the calling code and conciseness of the implementing code:
const until = (predFn) => {
const poll = (done) => (predFn() ? done() : setTimeout(() => poll(done), 500));
return new Promise(poll);
};
Example calling code:
await until(() => { myBankBalance > 1000000 });
More detailed example:
https://replit.com/#SteveChambers1/Javascript-until-function?v=1
The cleanest solution (improvement of #tdxius solution) based on controlled time interval loop, promise and timeout to reject the promise and clear intervals in case condition isn't met in a given time
const waitUntil = (condition) => {
return new Promise((resolve, reject) => {
const interval = setInterval(() => {
if (!condition()) {
return;
}
clearInterval(interval);
resolve();
}, 100);
setTimeout(() => {
clearInterval(interval);
reject('your error msg');
}, 5000);
});
};
Now, whenever you want to wait until a certain condition is met, you can call it like this.
waitUntil(CONDITION_FUNCTION)
.then(() => DO_SOMETHING)
.catch((YOUR_ERROR_MSG) => console.warn(YOUR_ERROR_MSG))
using non blocking javascript with EventTarget API
In my example, i need to wait for a callback before to use it. I have no idea when this callback is set. It can be before of after i need to execute it. And i can need to call it several time (everything async)
// bus to pass event
const bus = new EventTarget();
// it's magic
const waitForCallback = new Promise((resolve, reject) => {
bus.addEventListener("initialized", (event) => {
resolve(event.detail);
});
});
// LET'S TEST IT !
// launch before callback has been set
waitForCallback.then((callback) => {
console.log(callback("world"));
});
// async init
setTimeout(() => {
const callback = (param) => { return `hello ${param.toString()}`; }
bus.dispatchEvent(new CustomEvent("initialized", {detail: callback}));
}, 500);
// launch after callback has been set
setTimeout(() => {
waitForCallback.then((callback) => {
console.log(callback("my little pony"));
});
}, 1000);
Did anyone ever think of just doing this?
function resolveAfter2Seconds() {
return new Promise(resolve => {
setTimeout(() => {
resolve();
}, 2000);
});
}
function myFunction(number) {
var x=number;
...
... more initializations
//here need to wait until flag==true
while(flag==false)
{
await resolveAfter2Seconds();
}
...
... do something
}
I tried to used #Kiran approach like follow:
checkFlag: function() {
var currentObject = this;
if(flag == false) {
setTimeout(currentObject.checkFlag, 100);
} else {
/* do something*/
}
}
(framework that I am using force me to define functions this way).
But without success because when execution come inside checkFlag function second time, this is not my object it is Window.
So, I finished with code below
checkFlag: function() {
var worker = setInterval (function(){
if(flag == true){
/* do something*/
clearInterval (worker);
}
},100);
}
there is a node package delay very easy to use
const delay = require('delay');
(async () => {
bar();
await delay(100);
// Executed 100 milliseconds later
baz();
})();
I took an approach along the lines of the callback solutions here, but tried to make it a bit more generic. The idea is you add functions that you need to execute after something changes to a queue. When the thing happens, you then loop through the queue, call the functions and empty the queue.
Add function to queue:
let _queue = [];
const _addToQueue = (funcToQ) => {
_queue.push(funcToQ);
}
Execute and flush the queue:
const _runQueue = () => {
if (!_queue || !_queue.length) {
return;
}
_queue.forEach(queuedFunc => {
queuedFunc();
});
_queue = [];
}
And when you invoke _addToQueue you'll want to wrap the callback:
_addToQueue(() => methodYouWantToCallLater(<pass any args here like you normally would>));
When you've met the condition, call _runQueue()
This was useful for me because I had several things that needed to wait on the same condition. And it decouples the detection of the condition from whatever needs to be executed when that condition is hit.
Try avoid while loop as it could be blocking your code, use async and promises.
Just wrote this library:
https://www.npmjs.com/package/utilzed
There is a function waitForTrue
import utilzed from 'utilzed'
const checkCondition = async () => {
// anything that you are polling for to be expecting to be true
const response = await callSomeExternalApi();
return response.success;
}
// this will waitForTrue checkCondition to be true
// checkCondition will be called every 100ms
const success = await utilzed.waitForTrue(100, checkCondition, 1000);
if (success) {
// Meaning checkCondition function returns true before 1000 ms
return;
}
// meaning after 1000ms the checkCondition returns false still
// handle unsuccessful "poll for true"
Similar to Lightbeard's answer, I use the following approach
function sleep(ms) {
return new Promise(resolve => setTimeout(resolve, ms))
}
async function until(fn) {
while (!fn()) {
await sleep(0)
}
}
async function myFunction(number) {
let x = number
...
... more initialization
await until(() => flag == true)
...
... do something
}
//function a(callback){
setTimeout(function() {
console.log('Hi I am order 1');
}, 3000);
// callback();
//}
//function b(callback){
setTimeout(function() {
console.log('Hi I am order 2');
}, 2000);
// callback();
//}
//function c(callback){
setTimeout(function() {
console.log('Hi I am order 3');
}, 1000);
// callback();
//}
/*function d(callback){
a(function(){
b(function(){
c(callback);
});
});
}
d();*/
async function funa(){
var pr1=new Promise((res,rej)=>{
setTimeout(()=>res("Hi4 I am order 1"),3000)
})
var pr2=new Promise((res,rej)=>{
setTimeout(()=>res("Hi4 I am order 2"),2000)
})
var pr3=new Promise((res,rej)=>{
setTimeout(()=>res("Hi4 I am order 3"),1000)
})
var res1 = await pr1;
var res2 = await pr2;
var res3 = await pr3;
console.log(res1,res2,res3);
console.log(res1);
console.log(res2);
console.log(res3);
}
funa();
async function f1(){
await new Promise(r=>setTimeout(r,3000))
.then(()=>console.log('Hi3 I am order 1'))
return 1;
}
async function f2(){
await new Promise(r=>setTimeout(r,2000))
.then(()=>console.log('Hi3 I am order 2'))
return 2;
}
async function f3(){
await new Promise(r=>setTimeout(r,1000))
.then(()=>console.log('Hi3 I am order 3'))
return 3;
}
async function finaloutput2(arr){
return await Promise.all([f3(),f2(),f1()]);
}
//f1().then(f2().then(f3()));
//f3().then(f2().then(f1()));
//finaloutput2();
//var pr1=new Promise(f3)
async function f(){
console.log("makesure");
var pr=new Promise((res,rej)=>{
setTimeout(function() {
console.log('Hi2 I am order 1');
}, 3000);
});
var result=await pr;
console.log(result);
}
// f();
async function g(){
console.log("makesure");
var pr=new Promise((res,rej)=>{
setTimeout(function() {
console.log('Hi2 I am order 2');
}, 2000);
});
var result=await pr;
console.log(result);
}
// g();
async function h(){
console.log("makesure");
var pr=new Promise((res,rej)=>{
setTimeout(function() {
console.log('Hi2 I am order 3');
}, 1000);
});
var result=await pr;
console.log(result);
}
async function finaloutput(arr){
return await Promise.all([f(),g(),h()]);
}
//finaloutput();
//h();
In my example, I log a new counter value every second:
var promises_arr = [];
var new_cntr_val = 0;
// fill array with promises
for (let seconds = 1; seconds < 10; seconds++) {
new_cntr_val = new_cntr_val + 5; // count to 50
promises_arr.push(new Promise(function (resolve, reject) {
// create two timeouts: one to work and one to resolve the promise
setTimeout(function(cntr) {
console.log(cntr);
}, seconds * 1000, new_cntr_val); // feed setTimeout the counter parameter
setTimeout(resolve, seconds * 1000);
}));
}
// wait for promises to finish
Promise.all(promises_arr).then(function (values) {
console.log("all promises have returned");
});
Modern and simple solution
async function waitUntil(condition, time = 100) {
while (!condition()) {
await new Promise((resolve) => setTimeout(resolve, time));
}
}
Usage
async function foo() {
await waitUntil(() => flag === true);
console.log('condition is met!');
}
Inspired by jfriend00, this worked for me
const seconds = new Date();
// wait 5 seconds for flag to become true
const waitTime = 5
const extraSeconds = seconds.setSeconds(seconds.getSeconds() + waitTime);
while (Date.now() < extraSeconds) {
// break when flag is false
if (flag === false) break;
}

Promise - is it possible to force cancel a promise

I use ES6 Promises to manage all of my network data retrieval and there are some situations where I need to force cancel them.
Basically the scenario is such that I have a type-ahead search on the UI where the request is delegated to the backend has to carry out the search based on the partial input. While this network request (#1) may take a little bit of time, user continues to type which eventually triggers another backend call (#2)
Here #2 naturally takes precedence over #1 so I would like to cancel the Promise wrapping request #1. I already have a cache of all Promises in the data layer so I can theoretically retrieve it as I am attempting to submit a Promise for #2.
But how do I cancel Promise #1 once I retrieve it from the cache?
Could anyone suggest an approach?
In modern JavaScript - no
Promises have settled (hah) and it appears like it will never be possible to cancel a (pending) promise.
Instead, there is a cross-platform (Node, Browsers etc) cancellation primitive as part of WHATWG (a standards body that also builds HTML) called AbortController. You can use it to cancel functions that return promises rather than promises themselves:
// Take a signal parameter in the function that needs cancellation
async function somethingIWantToCancel({ signal } = {}) {
// either pass it directly to APIs that support it
// (fetch and most Node APIs do)
const response = await fetch('.../', { signal });
// return response.json;
// or if the API does not already support it -
// manually adapt your code to support signals:
const onAbort = (e) => {
// run any code relating to aborting here
};
signal.addEventListener('abort', onAbort, { once: true });
// and be sure to clean it up when the action you are performing
// is finished to avoid a leak
// ... sometime later ...
signal.removeEventListener('abort', onAbort);
}
// Usage
const ac = new AbortController();
setTimeout(() => ac.abort(), 1000); // give it a 1s timeout
try {
await somethingIWantToCancel({ signal: ac.signal });
} catch (e) {
if (e.name === 'AbortError') {
// deal with cancellation in caller, or ignore
} else {
throw e; // don't swallow errors :)
}
}
No. We can't do that yet.
ES6 promises do not support cancellation yet. It's on its way, and its design is something a lot of people worked really hard on. Sound cancellation semantics are hard to get right and this is work in progress. There are interesting debates on the "fetch" repo, on esdiscuss and on several other repos on GH but I'd just be patient if I were you.
But, but, but.. cancellation is really important!
It is, the reality of the matter is cancellation is really an important scenario in client-side programming. The cases you describe like aborting web requests are important and they're everywhere.
So... the language screwed me!
Yeah, sorry about that. Promises had to get in first before further things were specified - so they went in without some useful stuff like .finally and .cancel - it's on its way though, to the spec through the DOM. Cancellation is not an afterthought it's just a time constraint and a more iterative approach to API design.
So what can I do?
You have several alternatives:
Use a third party library like bluebird who can move a lot faster than the spec and thus have cancellation as well as a bunch of other goodies - this is what large companies like WhatsApp do.
Pass a cancellation token.
Using a third party library is pretty obvious. As for a token, you can make your method take a function in and then call it, as such:
function getWithCancel(url, token) { // the token is for cancellation
var xhr = new XMLHttpRequest;
xhr.open("GET", url);
return new Promise(function(resolve, reject) {
xhr.onload = function() { resolve(xhr.responseText); });
token.cancel = function() { // SPECIFY CANCELLATION
xhr.abort(); // abort request
reject(new Error("Cancelled")); // reject the promise
};
xhr.onerror = reject;
});
};
Which would let you do:
var token = {};
var promise = getWithCancel("/someUrl", token);
// later we want to abort the promise:
token.cancel();
Your actual use case - last
This isn't too hard with the token approach:
function last(fn) {
var lastToken = { cancel: function(){} }; // start with no op
return function() {
lastToken.cancel();
var args = Array.prototype.slice.call(arguments);
args.push(lastToken);
return fn.apply(this, args);
};
}
Which would let you do:
var synced = last(getWithCancel);
synced("/url1?q=a"); // this will get canceled
synced("/url1?q=ab"); // this will get canceled too
synced("/url1?q=abc"); // this will get canceled too
synced("/url1?q=abcd").then(function() {
// only this will run
});
And no, libraries like Bacon and Rx don't "shine" here because they're observable libraries, they just have the same advantage user level promise libraries have by not being spec bound. I guess we'll wait to have and see in ES2016 when observables go native. They are nifty for typeahead though.
With AbortController
It is possible to use abort controller to reject promise or resolve on your demand:
let controller = new AbortController();
let task = new Promise((resolve, reject) => {
// some logic ...
const abortListener = ({target}) => {
controller.signal.removeEventListener('abort', abortListener);
reject(target.reason);
}
controller.signal.addEventListener('abort', abortListener);
});
controller.abort('cancelled reason'); // task is now in rejected state
Also it's better to remove event listener on abort to prevent memory leaks
And you can later check if error was thrown by abort by checking the controller.signal.aborted boolean property like:
const res = task.catch((err) => (
controller.signal.aborted
? { value: err }
: { value: 'fallback' }
));
If you would check if task is aborted and just return, then the Promise will be in pending status forever. But in that case you also will not get .catch fired with any error if that's your intension:
controller.abort();
new Promise((resolve, reject) => {
if(controller.signal.aborted) return;
}
Same works for cancelling fetch:
let controller = new AbortController();
fetch(url, {
signal: controller.signal
});
or just pass controller:
let controller = new AbortController();
fetch(url, controller);
And call abort method to cancel one, or infinite number of fetches where you passed this controller
controller.abort();
Standard proposals for cancellable promises have failed.
A promise is not a control surface for the async action fulfilling it; confuses owner with consumer. Instead, create asynchronous functions that can be cancelled through some passed-in token.
Another promise makes a fine token, making cancel easy to implement with Promise.race:
Example: Use Promise.race to cancel the effect of a previous chain:
let cancel = () => {};
input.oninput = function(ev) {
let term = ev.target.value;
console.log(`searching for "${term}"`);
cancel();
let p = new Promise(resolve => cancel = resolve);
Promise.race([p, getSearchResults(term)]).then(results => {
if (results) {
console.log(`results for "${term}"`,results);
}
});
}
function getSearchResults(term) {
return new Promise(resolve => {
let timeout = 100 + Math.floor(Math.random() * 1900);
setTimeout(() => resolve([term.toLowerCase(), term.toUpperCase()]), timeout);
});
}
Search: <input id="input">
Here we're "cancelling" previous searches by injecting an undefined result and testing for it, but we could easily imagine rejecting with "CancelledError" instead.
Of course this doesn't actually cancel the network search, but that's a limitation of fetch. If fetch were to take a cancel promise as argument, then it could cancel the network activity.
I've proposed this "Cancel promise pattern" on es-discuss, exactly to suggest that fetch do this.
I have checked out Mozilla JS reference and found this:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
Let's check it out:
var p1 = new Promise(function(resolve, reject) {
setTimeout(resolve, 500, "one");
});
var p2 = new Promise(function(resolve, reject) {
setTimeout(resolve, 100, "two");
});
Promise.race([p1, p2]).then(function(value) {
console.log(value); // "two"
// Both resolve, but p2 is faster
});
We have here p1, and p2 put in Promise.race(...) as arguments, this is actually creating new resolve promise, which is what you require.
For Node.js and Electron, I'd highly recommend using Promise Extensions for JavaScript (Prex). Its author Ron Buckton is one of the key TypeScript engineers and also is the guy behind the current TC39's ECMAScript Cancellation proposal. The library is well documented and chances are some of Prex will make to the standard.
On a personal note and coming from C# background, I like very much the fact that Prex is modelled upon the existing Cancellation in Managed Threads framework, i.e. based on the approach taken with CancellationTokenSource/CancellationToken .NET APIs. In my experience, those have been very handy to implement robust cancellation logic in managed apps.
I also verified it to work within a browser by bundling Prex using Browserify.
Here is an example of a delay with cancellation (Gist and RunKit, using Prex for its CancellationToken and Deferred):
// by #noseratio
// https://gist.github.com/noseratio/141a2df292b108ec4c147db4530379d2
// https://runkit.com/noseratio/cancellablepromise
const prex = require('prex');
/**
* A cancellable promise.
* #extends Promise
*/
class CancellablePromise extends Promise {
static get [Symbol.species]() {
// tinyurl.com/promise-constructor
return Promise;
}
constructor(executor, token) {
const withCancellation = async () => {
// create a new linked token source
const linkedSource = new prex.CancellationTokenSource(token? [token]: []);
try {
const linkedToken = linkedSource.token;
const deferred = new prex.Deferred();
linkedToken.register(() => deferred.reject(new prex.CancelError()));
executor({
resolve: value => deferred.resolve(value),
reject: error => deferred.reject(error),
token: linkedToken
});
await deferred.promise;
}
finally {
// this will also free all linkedToken registrations,
// so the executor doesn't have to worry about it
linkedSource.close();
}
};
super((resolve, reject) => withCancellation().then(resolve, reject));
}
}
/**
* A cancellable delay.
* #extends Promise
*/
class Delay extends CancellablePromise {
static get [Symbol.species]() { return Promise; }
constructor(delayMs, token) {
super(r => {
const id = setTimeout(r.resolve, delayMs);
r.token.register(() => clearTimeout(id));
}, token);
}
}
// main
async function main() {
const tokenSource = new prex.CancellationTokenSource();
const token = tokenSource.token;
setTimeout(() => tokenSource.cancel(), 2000); // cancel after 2000ms
let delay = 1000;
console.log(`delaying by ${delay}ms`);
await new Delay(delay, token);
console.log("successfully delayed."); // we should reach here
delay = 2000;
console.log(`delaying by ${delay}ms`);
await new Delay(delay, token);
console.log("successfully delayed."); // we should not reach here
}
main().catch(error => console.error(`Error caught, ${error}`));
Note that cancellation is a race. I.e., a promise may have been resolved successfully, but by the time you observe it (with await or then), the cancellation may have been triggered as well. It's up to you how you handle this race, but it doesn't hurts to call token.throwIfCancellationRequested() an extra time, like I do above.
I faced similar problem recently.
I had a promise based client (not a network one) and i wanted to always give the latest requested data to the user to keep the UI smooth.
After struggling with cancellation idea, Promise.race(...) and Promise.all(..) i just started remembering my last request id and when promise was fulfilled i was only rendering my data when it matched the id of a last request.
Hope it helps someone.
See https://www.npmjs.com/package/promise-abortable
$ npm install promise-abortable
You can make the promise reject before finishing:
// Our function to cancel promises receives a promise and return the same one and a cancel function
const cancellablePromise = (promiseToCancel) => {
let cancel
const promise = new Promise((resolve, reject) => {
cancel = reject
promiseToCancel
.then(resolve)
.catch(reject)
})
return {promise, cancel}
}
// A simple promise to exeute a function with a delay
const waitAndExecute = (time, functionToExecute) => new Promise((resolve, reject) => {
timeInMs = time * 1000
setTimeout(()=>{
console.log(`Waited ${time} secs`)
resolve(functionToExecute())
}, timeInMs)
})
// The promise that we will cancel
const fetchURL = () => fetch('https://pokeapi.co/api/v2/pokemon/ditto/')
// Create a function that resolve in 1 seconds. (We will cancel it in 0.5 secs)
const {promise, cancel} = cancellablePromise(waitAndExecute(1, fetchURL))
promise
.then((res) => {
console.log('then', res) // This will executed in 1 second
})
.catch(() => {
console.log('catch') // We will force the promise reject in 0.5 seconds
})
waitAndExecute(0.5, cancel) // Cancel previous promise in 0.5 seconds, so it will be rejected before finishing. Commenting this line will make the promise resolve
Unfortunately the fetch call has already be done, so you will see the call resolving in the Network tab. Your code will just ignore it.
Using the Promise subclass provided by the external package, this can be done as follows: Live demo
import CPromise from "c-promise2";
function fetchWithTimeout(url, {timeout, ...fetchOptions}= {}) {
return new CPromise((resolve, reject, {signal}) => {
fetch(url, {...fetchOptions, signal}).then(resolve, reject)
}, timeout)
}
const chain= fetchWithTimeout('http://localhost/')
.then(response => response.json())
.then(console.log, console.warn);
//chain.cancel(); call this to abort the promise and releated request
Using AbortController
I've been researching about this for a few days and I still feel that rejecting the promise inside an abort event handler is only part of the approach.
The thing is that as you may know, only rejecting a promise, makes the code awaiting for it to resume execution but if there's any code that runs after the rejection or resolution of the promise, or outside of its execution scope, e.g. Inside of an event listener or an async call, it will keep running, wasting cycles and maybe even memory on something that isn't really needed anymore.
Lacking approach
When executing the snippet below, after 2 seconds, the console will contain the output derived from the execution of the promise rejection, and any output derived from the pending work. The promise will be rejected and the work awaiting for it can continue, but the work will not, which in my opinion is the main point of this exercise.
let abortController = new AbortController();
new Promise( ( resolve, reject ) => {
if ( abortController.signal.aborted ) return;
let abortHandler = () => {
reject( 'Aborted' );
};
abortController.signal.addEventListener( 'abort', abortHandler );
setTimeout( () => {
console.log( 'Work' );
console.log( 'More work' );
resolve( 'Work result' );
abortController.signal.removeEventListener( 'abort', abortHandler );
}, 2000 );
} )
.then( result => console.log( 'then:', result ) )
.catch( reason => console.error( 'catch:', reason ) );
setTimeout( () => abortController.abort(), 1000 );
Which leads me to think that after defining the abort event handler there must be calls to
if ( abortController.signal.aborted ) return;
in sensible points of the code that is performing the work so that the work doesn't get performed and can gracefully stop if necessary (Adding more statements before the return in the if block above).
Proposal
This approach reminds me a little about the cancellable token proposal from a few years back but it will in fact prevent work to be performed in vain. The console output should now only be the abort error and nothing more and even, when the work is in progress, and then cancelled in the middle, it can stop, as said before in a sensible step of the processing, like at the beginning of a loop's body
let abortController = new AbortController();
new Promise( ( resolve, reject ) => {
if ( abortController.signal.aborted ) return;
let abortHandler = () => {
reject( 'Aborted' );
};
abortController.signal.addEventListener( 'abort', abortHandler );
setTimeout( () => {
if ( abortController.signal.aborted ) return;
console.log( 'Work' );
if ( abortController.signal.aborted ) return;
console.log( 'More work' );
resolve( 'Work result' );
abortController.signal.removeEventListener( 'abort', abortHandler );
}, 2000 );
} )
.then( result => console.log( 'then:', result ) )
.catch( reason => console.error( 'catch:', reason ) );
setTimeout( () => abortController.abort(), 1000 );
I found the posted solutions here a little hard to read, so I created a helper function that is in my opinion easier to use.
The helper function gives access to to the information whether the current call is already obsolete or not. With this information the function itself has to take care of things accordingly (usually by simply returning).
// Typescript
export function obsoletableFn<Res, Args extends unknown[]>(
fn: (isObsolete: () => boolean, ...args: Args) => Promise<Res>,
): (...args: Args) => Promise<Res> {
let lastCaller = null;
return (...args: Args) => {
const me = Symbol();
lastCaller = me;
const isObsolete = () => lastCaller !== me;
return fn(isObsolete, ...args);
};
}
// helper function
function obsoletableFn(fn) {
let lastCaller = null;
return (...args) => {
const me = Symbol();
lastCaller = me;
const isObsolete = () => lastCaller !== me;
return fn(isObsolete, ...args);
};
}
const simulateRequest = () => new Promise(resolve => setTimeout(resolve, Math.random() * 2000 + 1000));
// usage
const myFireAndForgetFn = obsoletableFn(async(isObsolete, x) => {
console.log(x, 'starting');
await simulateRequest();
if (isObsolete()) {
console.log(x, 'is obsolete');
// return, as there is already a more recent call running
return;
}
console.log(x, 'is not obsolete');
document.querySelector('div').innerHTML = `Response ${x}`;
});
myFireAndForgetFn('A');
myFireAndForgetFn('B');
<div>Waiting for response...</div>
So I have an async function that I needed to cancel on user input, but it's a long running one that involves mouse control.
I used p-queue and added each line in my function into it and have an observable that I feed the cancellation signal. Anything that the queue starts processing will run no matter what but you should be able to cancel anything after that by clearing the queue. The shorter the task you add to the queue, the sooner you can quit after getting the cancel signal. You can be lazy and throw whole chunks of code into the queue instead of the one liners i have in the example.
p-queue releases Version 6 works with commonjs, 7+ switches to ESM and could break your app. Breaks my electron/typescript/webpack one.
const cancellable_function = async () => {
const queue = new PQueue({concurrency:1});
queue.pause();
queue.addAll([
async () => await move_mouse({...}),
async () => await mouse_click({...}),
])
for await (const item of items) {
queue.addAll([
async () => await do_something({...}),
async () => await do_something_else({...}),
])
}
const {information} = await get_information();
queue.addAll([
async () => await move_mouse({...}),
async () => await mouse_click({...}),
])
cancel_signal$.pipe(take(1)).subscribe(() => {
queue.clear();
});
queue.start();
await queue.onEmpty()
}
Because #jib reject my modify, so I post my answer here. It's just the modfify of #jib's anwser with some comments and using more understandable variable names.
Below I just show examples of two different method: one is resolve() the other is reject()
let cancelCallback = () => {};
input.oninput = function(ev) {
let term = ev.target.value;
console.log(`searching for "${term}"`);
cancelCallback(); //cancel previous promise by calling cancelCallback()
let setCancelCallbackPromise = () => {
return new Promise((resolve, reject) => {
// set cancelCallback when running this promise
cancelCallback = () => {
// pass cancel messages by resolve()
return resolve('Canceled');
};
})
}
Promise.race([setCancelCallbackPromise(), getSearchResults(term)]).then(results => {
// check if the calling of resolve() is from cancelCallback() or getSearchResults()
if (results == 'Canceled') {
console.log("error(by resolve): ", results);
} else {
console.log(`results for "${term}"`, results);
}
});
}
input2.oninput = function(ev) {
let term = ev.target.value;
console.log(`searching for "${term}"`);
cancelCallback(); //cancel previous promise by calling cancelCallback()
let setCancelCallbackPromise = () => {
return new Promise((resolve, reject) => {
// set cancelCallback when running this promise
cancelCallback = () => {
// pass cancel messages by reject()
return reject('Canceled');
};
})
}
Promise.race([setCancelCallbackPromise(), getSearchResults(term)]).then(results => {
// check if the calling of resolve() is from cancelCallback() or getSearchResults()
if (results !== 'Canceled') {
console.log(`results for "${term}"`, results);
}
}).catch(error => {
console.log("error(by reject): ", error);
})
}
function getSearchResults(term) {
return new Promise(resolve => {
let timeout = 100 + Math.floor(Math.random() * 1900);
setTimeout(() => resolve([term.toLowerCase(), term.toUpperCase()]), timeout);
});
}
Search(use resolve): <input id="input">
<br> Search2(use reject and catch error): <input id="input2">

Categories