If you know that the Promise has already been resolved why can't you just call get() on it and receive the value? As opposed to using then(..) with a callback function.
So instead of doing:
promise.then(function(value) {
// do something with value
});
I want to be able to do the much simpler:
var value = promise.get();
Java offers this for it's CompletableFuture and I see no reason why JavaScript couldn't offer the same.
Java's get method "Waits if necessary for this future to complete", i.e. it blocks the current thread. We absolutely never want to do that in JavaScript, which has only one "thread".
It would have been possible to integrate methods in the API to determine synchronously whether and with what results the promise completed, but it's a good thing they didn't. Having only one single method, then, to get results when they are available, makes things a lot easier, safer and more consistent. There's no benefit in writing your own if-pending-then-this-else-that logic, it only opens up possibilities for mistakes. Asynchrony is hard.
Of course it not, because the task will run asynchronously so you can't get result immediately.
But you can use a sync/await to write sequential asynchronous code.
Related
Straight to the point, I am running an http server in Node.js managing a hotel's check-in/out info where I write all the JSON data from memory to the same file using "fs.writeFile".
The data usually don't exceed 145kB max, however since I need to write them everytime that I get an update from my DataBase, I have data loss/bad JSON format when calls to fs.writeFile happen one after each other immediately.
Currently I have solved this problem using "fs.writeFileSync" however I would like to hear for a more sophisticated solution and not using the easy/bad solution of sync function.
Using fs.promises results in the same error since again I have to make multiple calls to fs.promises.
According to Node's documentation , calling fs.writefile or fs.promises multiple times is not safe and they suggest using a filestream, however this is not currently an option.
To summarize, I need to wait for fs.writeFile to end normally before attempting any repeated write action, and using the callback is not useful since I don't know a priori when a write action needs to be done.
Thank you very much in advance
I assume you mean you are overwriting or truncating the file while the last write request is still being written. If I were you, I would use the promises API and heed the warning from the documentation:
It is unsafe to use fsPromises.writeFile() multiple times on the same file without waiting for the promise to be settled.
You can await the result in a traditional loop, or very carefully use .then() to "synchronize" your callbacks, but if you're not doing anything else in your event loop except reading from your database and writing to this file, you might as well just use writeFileSync to keep things simple/safe. The asynchronous APIs (callback and Promises) are intended to allow your program to do other things in the meantime; if this is not necessary and the async APIs add troublesome complexity for your code, just use the synchronous APIs. That's true for any node API or library function, not just fs.writeFile.
There are also libraries that will perform atomic filesystem operations for you and abstract away the implementation details, but I think these are probably overkill for you unless you describe your use case in more detail. For example, why you're dumping a database to disk as JSON as fast/frequently as you can, rather than keeping things in memory or using event-based incremental updates (e.g. a real, local database with atomicity and consistency guarantees).
thank you for your response!
Since my app is mainly an http server,yes I do other things rather than simply input/output, although with not a great amount of requests. I will review again the promises solution but the first time I had no luck.
To explain more I have a:function updateRoom(data){ ...update things in memory... writetoDisk(); }
and the function writetoDisk(){
fsWriteFile(....)
}
Making the function writetoDisk an async function and implementing "await" inside it still does not solve the problem since the updateRoom function will call the writetoDisk without waiting for it to end.
The ".then" approach can not be implemented since my updateRoom is being called constantly and dynamically .
If you happen to know 1-2 thing about async-await you are more than welcome to explain me a bit more, thanks again nevertheless!
Suppose I have written a library class:
class ComplexThingDoer implements ThingDoer {
...
doComplexThing(arg1, arg2) {
// lots of complex code here
return finalResult;
}
...
}
And I have made this class available to others, who are using it as intended, completely ignorant of how doComplexThing actually does the complex thing and making use of the finalResult for whatever they're using it for.
Now, suppose I decide that I actually want to reimplement doComplexThing so that instead of synchronously running a lot of complex code here, it makes a request to a specialized server that returns the final result. Or makes a call to a database in which results of the complex thing have been precalculated. Or does one of those things the first time it's called with a particular set of arguments, and caches the result so that the next time it's called with the same arguments it can just return the previously-calculated value.
As far as I can tell, whether I use callbacks, Promises, or async/await, I am screwed - I can't do any of those things without breaking my interface. I have to return a Promise, or accept a callback, or something - there doesn't seem to be any way to just not return until I have the result, the way I've always done before. My callers don't care how I'm getting the result; they just want the result.
Am I missing something? Is there in fact a way to "de-promisify" a function so that its caller doesn't have to know that it's performing an asynchronous operation? Should I be pre-emptively writing everything as Promises just in case someday I might want to reimplement it in an asynchronous way (sounds like a terrible idea)?
Thanks!
Nope, you're not missing anything. If you make your function asynchronous, then every caller of it will have to treat it as such and also be asynchronous itself. The result of an asynchronous call will be available sometime later, on subsequent iterations of the underlying event loop. There is absolutely no way to block synchronous code to wait for that, because if you block in code the event loop won't advance and the result will never become available.
Switching an interface from synchronous to asynchronous is a breaking change.
I know there is similar questions on here about this, but I cannot make sense of them for the life of me.
Here's an example, where I need to click a button and check the url.
My initial thought is I would write it as
element(by.id('button')).click();
expect(browser.getCurrentUrl()).toContain('asyncisconfusing');
I know the expect handles its promise but what about the .click? Shouldn't I have to write it like this?
element(by.id('button')).click().then(() => {
expect(browser.getCurrentUrl()).toContain('asyncisconfusing')
})
Or is protractor/webdriver auto-magically doing this?
In theory, since Protractor maintains a queue of promises via Control Flow and works in sync with an AngularJS application under test, you should not resolve promises explicitly unless you need a real value for further processing. In other words, this should be the prefferred form:
element(by.id('button')).click();
expect(browser.getCurrentUrl()).toContain('asyncisconfusing');
In practice though, explicitly resolving click() promises, or adding explicit waits via browser.wait() helps to deal with occasional and random timing issues.
http://seleniumhq.github.io/selenium/docs/api/javascript/module/selenium-webdriver/lib/promise.html
The first section talks about how the control flow is used to manage promises without having to chain together every single command.
I've got this problem that I couldn't find a solution for by googling.
I've got a library, that I'm using (and do not want to edit, unless it's really necessary) that allows the user to select an item, then calls my custom callback function to modify the item and then continues working with it.
I need to perform some asynchronous tasks on it, which may take some time. This creates a race condition as my async tasks have not yet finished when the callback function is finished and the library continues its work on the item.
library.onItemSelectionCallback = function (item) {
myService.modifyItem(item).then(
function (modifiedItemProperty) {
item.newProperty = modifiedItemProperty;
});
myService.anotherModifyItem(item).then(
function (modifiedItemProperty) {
item.existingProperty = modifiedItemProperty;
});
}
How do I wait for both of my async tasks to finish, before allowing this callback to finish?
Only thing I could think of is looping with while and sleep every hundred or so milliseconds until both of the promises have been resolved, but that doesn't seem to be a very good solution.
I understand that this makes async requests quite synchronous and might possibly be detrimental for UX, but do not really see another way out.
EDIT: I know that i'm risking with removing the generic nature of the question and thus making it too localized, I will say that I'm trying to use angular-file-upload module, specifically, trying to mount a custom imageService, that would resize the picture before it's upload. I'm mounting it on the onBeforeUploadItem callback. The idea is that creating the resized image may take a while and that is why I need to return a promise from my imageService, that needs to be resolved before upload.
If modifyItem and anotherModifyItem work independently (that is, one does not rely on the other), you can just pipe them both into $q.all, eg
library.onItemSelectionCallback = function(item) {
var promises = {
newProperty: myService.modifyItem(item),
existingProperty: myService.anotherModifyItem(item)
};
return $q.all(promises).then(function(values) {
return angular.extend(item, values);
});
}
This will return a promise that resolves with item.
For the first part of my question -- Yes, I guess the only way to really wait for those two promises to be resolved would be something with a while and sleep, making them synchronous, which would probably work and not even be that bad (except for the site pausing until the requests are fulfilled), but would make me feel very, very bad about myself as a person and how my actions affect this world.
It is not possible to correctly mix callbacks and promises without hacks afaik.
For the second part of my question -- as per comments of #georgeawg, figured that an AngularJS module that implements HTML5 API and callbacks instead of $http service and promises is not how a good AngularJS module should be implemented, and so I moved towards a different module ng-file-upload, which, even though one could argue is less stylish, does the job very well and in an Angular way (ng-file-upload provides a simple $upload service, that returns a promise. If you want to modify files before upload, suggested way is to simply $watch and catch the moment user drag-drops or selects a file.).
I'm wondering if there's a way to cause JavaScript to wait for some variable-length code execution to finish before continuing using events and loops. Before answering with using timeouts, callbacks or referencing this as a duplicate, hear me out.
I want to expose a large API to a web worker. I want this API to feel 'native' in the sense that you can access each member using a getter which gets the information from the other thread. My initial idea was to compile the API and rebuild the entire object on the worker. While this works (and was a really fun project), it's slow at startup and cannot show changes made to the API without it being sent to the worker again after modification. Observers would solve part of this, and web workers transferrable objects would solve all, but they aren't adopted widely yet.
Since worker round-trip calls happen in a matter of milliseconds, I think stalling the thread for a few milliseconds may be an alright solution. Of course I would think about terminating in cases where calls take too long, but I'm trying to create a proof of concept first.
Let's say I want to expose the api object to the worker. I would define a getter for self.api which would fetch the first layer of properties. Each property would then be another getter and the process would continue until the final object is found.
worker.js
self.addEventListener('message', function(event) {
self.dataRecieved = true;
self.data = event.data; // would actually build new getters here
});
Object.defineProperty(self, 'api', {
get: function() {
self.dataRecieved = false;
self.postMessage('request api first-layer properties');
while(!self.dataRecieved);
return self.data; // whatever properties were received from host
}
});
For experimentation, we'll do a simple round-trip with no data processing:
index.html (only JS part)
var worker = new Worker("worker.js");
worker.onmessage = function() {
worker.postMessage();
};
If onmessage would interrupt the loop, the script should theoretically work. Then the worker could access objects like window.document.body.style on the fly.
My question really boils down to: is there a way to guarantee that an event will interrupt an executing code block?
From my understanding of events in JavaScript, I thought they did interrupt the current thread. Does it not because it's executing a blank statement over and over? What if I generated code to be executed and kept doing that until the data returned?
is there a way to guarantee that an event will interrupt an executing code block
As #slebetman suggests in comments, no, not in Javascript running in a browser's web-worker (with one possible exception that I can think of, see suggestion 3. below).
My suggestions, in decreasing order of preference:
Give up the desire to feel "native" (or maybe "local" might be a better term). Something like the infinite while loop that you suggest also seems to be very much fighting agains the cooperative multitasking environment offered by Javascript, including when thinking about a single web worker.
Communication between workers in Javascript is asynchronous. Perhaps it can fail, take longer than just a few milliseconds. I'm not sure what your use case is, but my feeling is that when the project grows, you might want to use those milliseconds for something else.
You could change your defined property to return a promise, and then the caller would do a .then on the response to retrieve the value, just like any other asynchronous API.
Angular Protractor/Webdriver has an API that uses a control flow to simulate a synchronous environment using promises, by always passing promises about. Taking the code from https://stackoverflow.com/a/22697369/1319998
browser.get(url);
var title = browser.getTitle();
expect(title).toEqual('My Title');
By my understanding, each line above adds a promise to the control flow to execute asynchronously. title isn't actually the title, but a promise that resolves to the title for example. While it looks like synchronous code, the getting and testing all happens asynchronously later.
You could implement something similar in the web worker. However, I do wonder whether it will be worth the effort. There would be a lot of code to do this, and I can't help feeling that the main consequence would be that it would end up harder to write code using this, and not easier, as there would be a lot of hidden behaviour.
The only thing that I know of that can be made synchronous in Javascript, is XMLHttpRequest when setting the async parameter to false https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest#Parameters. I wonder if you could come up with some sort of way to request to the server that maintains a connection with the main thread and pass data along that way. I have to say, my instinct is that this is quite an awful idea, and would be much slower than just requesting data from the main thread.
For what I know, there is not something native in JS to do this but it is relatively easy to do something similar. I made one some time ago for myself: https://github.com/xpy/whener/blob/master/whener.js .
You use it like when( condition, callback ) where condition is a function that should return true when your condition is met, and callback is the function that you want to execute at that time.