Could this be considered a security vulnerability? - javascript

I discovered some javascript in a site that didn't sanitize external data (siteName), but it's used in such a way that I think does not represent a problem. Certainly, the best thing to do would be to filter it so that only expected values could interact with code and there would be no worry about unexpected input. But, how much damage could be inflicted in the current setup?
var branding = {
'website1.com' : {
color: 'red'
},
'website2.com' : {
color: 'blue'
}
};
var siteName = document.referrer.split('/')[2];
var myElements = document.querySelectorAll(".some-class-name");
for (var i = 0; i < myElements.length; i++) {
myElements[i].style.color = branding[siteName]['color'];
}

This code is poorly conceived, but I don't think it's exploitable.
document.referrer.split('/')[2] extracts the hostname of the referrer. An attacker might have control over the hostname, but only to a limited degree; they can't put anything into that field that they can't register or set up as a domain name.
branding[siteName] could be made to do some interesting things if siteName is the name of an internal property on Object, like __proto__, or a method name, like hasOwnProperty. However, none of these properties would have been valid as Internet hostnames, as none of them have periods in them. __proto__ contains underscores, which aren't even valid in hostnames!
If siteName were not constrained, the following ['color'] still limits this code. Functions (like hasOwnProperty) wouldn't have a color property; nor would the Object prototype, so this looks like a dead end.
Even if we assume that a weird value like a function somehow got into the result, assigning a value like that to .style.color wouldn't do anything weird.
The potential for a vulnerability could easily be avoided, though:
var siteName = document.referrer.split('/')[2];
if (branding.hasOwnProperty(siteName)) {
... everything else ...
}
Object.hasOwnProperty is false for method names and "weird" properties like __proto__; it's only true for properties that have been explicitly declared on an object. This would limit the following code to only running for the intended site names.

Related

running code in another function's scope (JavaScript)

So I'm working on a sort of JavaScript framework, just some utility things for myself to use in future projects, and I want to make a data binding system.
The first method I used was objects, and the code would just loop through the specified html element and look for occurences of {{key}} in the markup and then look for that key in the object and replace it that way in the HTML.
For example, if you had <div>{{name}} is a cool guy</div> in the HTML and had {name:"joseph"} in the JS then the final product would be displayed on screen as 'joseph is a cool guy'.
However, I decided later to change my method and instead the framework would except a function. So instead of {name:"joseph"} you would give it function(){ var name = "joseph" }.
This obviously looks better and gives a lot better functionality.
I changed the processing function so instead of looking for the key/value pair to replace the {{key}}, it just uses eval on the variable to gets its value.
My problem lies here: How do I run my search/replace code INSIDE the scope of the function the user passes.
If the user defines variables within that function, their values will not be available anywhere else due to scope issues.
I've tried using Function.toString() to actually modify the source code of the function, but nothing's working and it's all very complicated.
(The issues are not due to the actual solution, I think that Function.toString() might work, but due to my implementation. I keep getting errors)
So... What is the best way to run arbitrary code in the scope of another function?
Critera:
Obviously, I can't modify the function because the user is passing it in. (you can't just tell me to add the search/replace code to the bottom of the function)
The variables must stay in the local scope of the function. (no cheating by using window.name = "joseph" or anything)
I am also aware of how terrible eval is so any suggestions as to get it to work are greatly appreciated. Thanks!
Code:
function process(html) {
var vars = html.match( /({{)[^{}]*(}})/g )
// vars = ['{{variable}}', '{{anotherVariable}}']
var names = vars.map( function(x){ return x.replace("{{", "").replace("}}", "") } )
// names = ['variable', 'anotherVariable]
obj = {}
for (var i = 0; i < names.length; i++) {
obj[names[i]] = eval(names[i])
}
for (var p in obj) {
html = html.replace(new RegExp('{{'+p+'}}','g'), obj[p]);
}
return html
}
You should go back to your first method with the object, it's much better. You can still pass a function, but the function should return an object:
function () {
return { name: 'joseph' }
}

Create an object and give it a variable name javascript

Let's say i want to create an object that is named using a variable? how would i do this? is it even possible?
var aName = "obusdiofu";
aName = {check: true, person: false};
console.log(obusdiofu); //gives me the newly created object?
Disclaimer first, per MDN:
Do not ever use eval!
eval() is a dangerous function, which executes the code it's passed with the privileges of the caller. If you run eval() with a string
that could be affected by a malicious party, you may end up running
malicious code on the user's machine with the permissions of your
webpage / extension. More importantly, a third-party code can see the
scope in which eval() was invoked, which can lead to possible attacks
in ways to which the similar Function is not susceptible.
That being said, you can achieve something along those lines like this:
let aName = 'obusdiofu';
eval(`var ${aName} = {check: true, person: false}`);
console.log(obusdiofu);
I can't see why that would ever be necessary, and due to the issues with eval() you would be better off doing something like one of the other posted answers.
You can't do that directly. You'd want to create an object first, then you can store things as custom properties of that object.
var names = {}
var aName = 'obusdiofu'
names[aName] = { check: true, person: false }
Unfortunately, there is no such thing in Javascript, however , you could do something like this :
var aName = "obusdiofu";
this[aName] = {check: true, person: false};
console.log(obusdiofu);
// Or if the code is outside the global scope, then
// you should access it like so :
console.log(this.obusdiofu);
Note: You should be careful though when assigning the aName variable, because not all characters are accepted .

With operator & dashes in object keys

Until today, I had not known the with operator existed. I stumbled upon it while debugging an issue being thrown from a plugin (Backbone.Epoxy).
The operator creates block level scope for each property on the passed object.
var testObj = { "cat":true };
with (testObj) {
console.log(cat ? "Cat!": "dog"); // Cat!
}
Simple enough? Initially I thought this could potentially be really cool. Until I realized why my code was throwing an error. Here is an example derived from my code.
var testObj = { "css":true, "background-color":"blue" };
with (testObj) {
console.log(css ? background-color : ""); // throws
}
The actual code is a bit more dynamic, but this is essentially what occurs behind the scenes in the plugin. Since dashes are not allowed within variable names but are allowed in property names, which cause the error to be thrown.
So, to the questions:
Is there a way to sanitize the block scope local variable in order to avoid the issues with the dash while keeping it in my property name?
Has anyone else worked around this issue with epoxy?
You would have to make an exception and write:
testObj["background-color"]
As you may suspect, you cannot write just background-color, for the same reason you cannot write testObj.background-color. You should also ask whether using with, which is fairly non-standard, is worth the character-count savings. Usually the answer is "no".

Securing JavaScript eval function

We want to give our users the ability to execute self created JavaScript code within our application. For this we need to use eval to evaluate the code. To reduce all security concerns to a minimum (if not zero), our idea is to prevent the usage of any window or document function within the code. So no XMLHttpRequest or anything similar.
This is the code:
function secure_eval(s) {
var ret;
(function(){
var copyXMLHttpRequest = XMLHttpRequest; // save orginal function in copy
XMLHttpRequest = undefined; // make orignal function unavailable
(function() {
var copyXMLHttpRequest; // prevent access to copy
try {
ret = eval(s)
} catch(e) {
console.log("syntax error or illegal function used");
}
}())
XMLHttpRequest = copyXMLHttpRequest; // restore original function
}())
return ret;
}
This works as follows:
secure_eval('new XMLHttpRequest()'); // ==> "illegal function used"
Now I have several questions:
Is this pattern the right way to secure eval?
What functions of window and document are the ones which are considered harmful?
To ship around question 2. I tried to mask all (native) functions of window But I am not able to enumerate them:
This does not list XMLHttpRequest for instance:
for( var x in window) {
if( window[x] instanceof Function) {
console.log(x);
}
}
Is there a way to get a list of all native functions of window and document?
EDIT:
One of my ideas is to perform the eval within a Worker and prevent access to XMLHttpRequest and document.createElement (see my solution above). This would have (to my mind) the following consequences:
no access to the original document
no access to the original window
no chance to communicate with external resources (no ajax, no scripts)
Do you see any drawback or leaks here?
EDIT2:
In the meantime I have found this question which answer solves many of my problems plus a couple of things I did not even think about (i.e. browser dead lock with "while(true){}".
Your code does not actually prevent the use of XMLHttpRequest. I can instantiate an XMLHttpRequest object with these methods:
secure_eval("secure_eval = eval"); // Yep, this completely overwrites secure_eval.
secure_eval("XMLHttpRequest()");
Or:
secure_eval("new (window.open().XMLHttpRequest)()")
Or:
secure_eval("new (document.getElementById('frame').contentWindow.XMLHttpRequest)()")
This 3rd method relies on the presence of an iframe in the HTML of the page, which someone could add by manipulating the DOM in their browser. I do such manipulations every now and then with Greasemonkey to remove annoyances or fix broken GUIs.
This took me about 5 minutes to figure out, and I am not by any means a security guru. And these are only the holes I was able to find quickly, there are probably others, that I don't know about. The lesson here is that it is really really really hard to secure code through eval.
Using A Worker
Ok, so using a Worker to run the code is going to take care of the 2nd and 3rd cases above because there's no window accessible in a Worker. And... hmm.. the 1st case can be handled by shadowing secure_eval inside its scope. End of story? If only...
If I put secure_eval inside a web worker and run the following code, I can reacquire XMLHttpRequest:
secure_eval("var old_log = console.log; console.log = function () { foo = XMLHttpRequest; old_log.apply(this, arguments); };");
console.log("blah");
console.log(secure_eval("foo"));
The principle is to override a function that is used outside secure_eval to capture XMLHttpRequest by assigning it to a variable that will be deliberately leaked to the global space of the worker, wait until that function is used by the worker outside secure_eval, and then grab the saved value. The first console.log above simulates the use of the tampered function outside secure_eval and the 2nd console.log shows that the value was captured. I've used console.log because why not? But really any function in the global space could be modified like this.
Actually, why wait until the worker may use some function we tampered with? Here's another, better, quicker way to do access XMLHttpRequest:
secure_eval("setTimeout(function () { console.log(XMLHttpRequest);}, 0);");
Even in a worker (with a pristine console.log), this will output the actual value of XMLHttpRequest to the console. I'll also note that the value of this inside the function passed to setTimeout is the global scope object (i.e. window when not in a worker, or self in a worker), unaffected by any variable shadowing.
What About the Other Question Mentioned in This Question?
What about the solution here? Much much better but there is still a hole when run in Chrome 38:
makeWorkerExecuteSomeCode('event.target.XMLHttpRequest',
function (answer) { console.log( answer ); });
This will show:
function XMLHttpRequest() { [native code] }
Again, I'm no security guru or cracker bent on causing trouble. There are probably still more ways I'm not thinking about.
I'll try and answer your questions in order here.
Is this pattern the right way to secure eval?
This part is slightly subjective. I don't see any major security drawbacks to this. I tried several ways to access XMLHttpRequest, but i couldn't:
secure_eval('XMLHttpRequest')
secure_eval('window.XMLHttpRequest')
secure_eval('eval("XMLHttpRequest")()')
secure_eval('window.__proto__.XMLHttpRequest') // nope, it's not inherited
However, it will be a lot if you want to blacklist more things.
What functions of window and document are the ones which are considered harmful?
That depends on what you consider "harmful". Is it bad if the DOM is accessible at all? Or what about WebKit desktop notifications, or speech synthesis?
You'll have to decide this based on your specific use case.
To ship around question 2. I tried to mask all (native) functions of window, but I am not able to enumerate them:
That's because most of the methods are non-enumerable. To enumerate, you can use Object.getOwnPropertyNames(window):
var globals = Object.getOwnPropertyNames(window);
for (var i = 0; i < globals.length; i++) {
if( window[globals[i]] instanceof Function) {
console.log(globals[i]);
}
}
One of my ideas is to perform the eval within a Worker and prevent access to XMLHttpRequest and document.createElement (see my solution above).
This sounds like a good idea.
I stumbled across a really, really nice blog article about the notorious Eval here. The article does discuss in detail. You won't be able to alleviate all security concerns, but you can prevent Cross-Script Attacks by building tokens for the input. This would in theory prevent malicious code that could be harmful from being introduced.
Your only other hurdle will be Man-In-The-Middle Attacks. I'm not sure if that would be possible, as you can't trust input and output.
The Mozilla Developer Network does explicitly state:
eval() is a dangerous function, which executes the code it's passed
with the privileges of the caller. If you run eval() with a string
that could be affected by a malicious party, you may end up running
malicious code on the user's machine with the permissions of your
webpage / extension. More importantly, third party code can see the
scope in which eval() was invoked, which can lead to possible attacks
in ways to which the similar Function is not susceptible.
eval() is also generally slower than the alternatives, since it has to
invoke the JS interpreter, while many other constructs are optimized
by modern JS engines.
There are safer (and faster!) alternatives to eval() for common
use-cases.
I'm slightly against Eval and truly try to use it when warranted.
I have stated it yet in my question, but to make it more clear I will post it as an answer also:
I think the accepted answer on this question is the correct and only way to completely isolate and constrain eval().
It is also secure against these hacks:
(new ('hello'.constructor.constructor)('alert("hello from global");'))()
(function(){return this;})().alert("hello again from global!");
while(true){} // if no worker --> R.I.P. browser tab
Array(5000000000).join("adasdadadasd") // memory --> boom!
There was a question long ago much like this. So I dusted off some old code and fixed it up.
It essentially works by taking advantage of the with keyword and providing it with a frozen empty object. The prototype of the empty object is filled with null properties, the keys of which match the names global variables like self, window and their enumerable property keys; The prototype object is also frozen. eval is then called within the with statement (Almost the same way that scripts run with an implicit with(window){} block if I understand correctly). When you try to access window or its properties you get redirected (via the with block) to null versions (with same key) found in empty object (or rather the empty object's prototype):
function buildQuarantinedEval(){
var empty=(function(){
var exceptionKeys = [
"eval", "Object", //need exceptions for these else error. (ie, 'Exception: redefining eval is deprecated')
"Number", "String", "Boolean", "RegExp", "JSON", "Date", "Array", "Math",
"this",
"strEval"
];
var forbiddenKeys=["window","self"];
var forbidden=Object.create(null);
[window,this,self].forEach(function(obj){
Object.getOwnPropertyNames(obj).forEach(function(key){
forbidden[key]=null;
});
//just making sure we get everything
Object.keys(obj).forEach(function(key){
forbidden[key]=null;
});
for(var key in obj){
forbidden[key]=null;
}
});
forbiddenKeys.forEach(function(key){
forbidden[key]=null;
});
exceptionKeys.forEach(function(key){
delete forbidden[key];
});
Object.freeze(forbidden);
var empty=Object.create(forbidden);
Object.freeze(empty);
return empty;
})();
return function(strEval){
return (function(empty,strEval){
try{
with(empty){
return eval(strEval);
}
}
catch(err){
return err.message;
}
}).call(empty,empty,strEval);
};
}
Setup by building a function/closure that evaluates some expression:
var qeval=buildQuarantinedEval();
qeval("'some expression'"); //evaluate
Tests:
var testBattery=[
"'abc'","8*8","console","window","location","XMLHttpRequest",
"console","eval('1+1+1')","eval('7/9+1')","Date.now()","document",
"/^http:/","JSON.stringify({a:0,b:1,c:2})","HTMLElement","typeof(window)",
"Object.keys(window)","Object.getOwnPropertyNames(window)",
"var result; try{result=window.location.href;}catch(err){result=err.message;}; result;",
"parseInt('z')","Math.random()",
"[1,2,3,4,8].reduce(function(p,c){return p+c;},0);"
];
var qeval=buildQuarantinedEval();
testBattery.map(function(code){
const pad=" ";
var result= qeval(code);
if(typeof(result)=="undefined")result= "undefined";
if(result===null)result= "null";
return (code+pad).slice(0,16)+": \t"+result;
}).join("\n");
Results:
/*
'abc' : abc
8*8 : 64
console : null
window : null
location : null
XMLHttpRequest : null
console : null
eval('1+1+1') : 3
eval('7/9+1') : 1.7777777777777777
Date.now() : 1415335338588
document : null
/^http:/ : /^http:/
JSON.stringify({: {"a":0,"b":1,"c":2}
HTMLElement : null
typeof(window) : object
Object.keys(wind: window is not an object
Object.getOwnPro: can't convert null to object
var result; try{: window is null
parseInt('z') : parseInt is not a function
Math.random() : 0.8405481658901747
[1,2,3,4,8].redu: 18
*/
Notes: This technique can fail when some properties of window are defined late (after initializing/creating our quarantined eval function). In the past, I've noticed some property keys are not enumerated until after you access the property, after which Object.keys or Object.getOwnPropertyNames will finally be able grab their keys. On the other hand this technique can also be quite aggressive in blocking objects/functions you do not want blocked (an example would be like parseInt); In these cases, you'll need to manually add global objects/functions that you do want into the exceptionKeys array.
*edit* Additional considerations: How well this all performs depends entirely on how well the mask matches that of the property keys of the window object. Any time you add an element to the document and give it a new ID, you just inserted a new property into the global window object, potentially allowing our 'attacker' to grab it and break out of the quarantine/firewall we've setup (i.e. access element.querySelector then eventually window obj from there). So the mask (i.e., the variable forbidden) either needs to be updated constantly perhap with watch method or rebuilt each time; The former conflicts with the necessity of the mask to have a frozen interface, and the latter is kinda expensive having to enumerate all the keys of window for each evaluation.
Like I said earlier, this is mostly old code I was working on, then abandoned, that was quickly fixed up on short order. So it's not by any means thoroughly tested. I'll leave that to you.
and a jsfiddle
I have small idea about secure eval for small or limited things if you know well what u going to use eval in you can create white list and black list and excute only the strings that has the valid but it good for small covered app for example calculator has few options (x, y) and (+,*,-,/) if i added this characters in white list and add check for script length and study what excepted length of the script run it can be secure and no one can pass that
const x = 5;
const y = 10;
function secureEval(hack_string){
// 0 risk eval calculator
const whiteList = ['',' ', 'x', 'y','+','*','/','-'];
for (let i=0; i<hack_string.length; i++){
if (!whiteList.includes(hack_string[i])){
return 'Sorry u can not hack my systems';
}
}
return 'good code system identify result is : ' + eval(hack_string);
}
// bad code
document.getElementById("secure_demo").innerHTML = secureEval('x * y; alert("hacked")');
document.getElementById("demo").innerHTML = secureEval('x * y');
<!DOCTYPE html>
<html>
<body>
<h1>Secure Eval</h1>
<p id="secure_demo"></p>
<p id="demo"></p>
</body>
</html>

Is safety of Object as dictonary really really guaranteed by standard?

var x = Object.create(null);
x["hello"] = "world";
But can I allow unverified user input as keys? I want to use it as player name -> player object map. Player names will only be constrained by length of 32. I'm worried if there are special property keys that would allow players to gain control of the server.
EDIT: I'm not making web server. JavaScript will be ran server-side via SpiderMonkey embedded into the game server. If someone hijacks the JavaScript running there, they could ruin the game.
In one word: no, just remember the Google Docs __proto__ fail
You should use a Hash-like class, or at least access these keys prefixed:
var hash = {}, key = "something-evil", value = Math.PI;
hash["$" + key] = value;
console.log( hash["$" + key] == value );
Property keys are always strings. You'll never encounter a problem with any property name, except for maybe:
Object.prototype.hasOwnProperty. For example in:
var obj = {hasOwnProperty:'fail'};
for (var i in obj) {
if (obj.hasOwnProperty(i)) ; // ...
}
which can be solved by using Object.keys(obj).forEach( ... ) or:
for (var i in obj) {
if (Object.hasOwnProperty.call(obj, i)) ; // ...
}
The only hazard is caused by how you deal with the object. The previous example is not an uncommon usage of hasOwnProperty, but it can be used to break your script, because you don't expect the key name hasOwnProperty. The same can apply to .toString, or any other property of the object which can be overriden by setting a new name.
No, an object is basically a blank slate, there are no special keys. On top of that, even if somebody hacks your Javascript it is very unlikely that they will gain control of your server unless you are using very lax security policies (like putting the root password in your Javascript or something silly like that).
You cannot control what will be sent to your web server. At all. Ever.
So, you need to put restrictions on what you server will do, in response to anything sent to it. Part of this is validating all user input, even if it's JSON representing a JavaScript object that was created by your code.

Categories