Cone rotation around apex with Cesium.js - javascript

I am trying to rotate a cone from its apex, rather than its centre, so that the apex remains in the same position.
I've found the example below from the following link:
https://groups.google.com/forum/#!topic/cesium-dev/f9ZiSWPMgus
But it only shows how to rotate the cone by 90 degrees, if you choose a different value for roll, like 45 or 30 degrees, it gets skewed, and the apex ends up in the wrong place.
I know its something to do with the offset, but can't make any progress from there. Is there some way to calculate the correct offset for any value of roll?
I'd also like to extend the length of the cone when its rotated, so that when its rotated 30 degrees for example, the bottom of the cone will still reach the ground in that direction, while the apex still remains in its original place, I don't know how feasible that is though.
Here's a glitch of the code sample below:
https://glitch.com/edit/#!/cesium-cone-rotation
var viewer = new Cesium.Viewer('cesiumContainer');
var position = Cesium.Cartesian3.fromDegrees(-75, 40, 90);
//Original, non-rotated cone for comparison.
viewer.entities.add(new Cesium.Entity({
position: position,
point: {
color: Cesium.Color.YELLOW,
show: true,
pixelSize: 20
},
cylinder: {
topRadius: 0,
bottomRadius: 45,
length: 180,
material: Cesium.Color.YELLOW.withAlpha(0.5)
}
}));
var heading = Cesium.Math.toRadians(0.0);
var pitch = Cesium.Math.toRadians(0.0);
var roll = Cesium.Math.toRadians(90.0);
var hpr = new Cesium.HeadingPitchRoll(heading, pitch, roll);
//Create a rotation
var orientation = Cesium.Transforms.headingPitchRollQuaternion(position, hpr);
// offset the rotation so it's rotating from the apex of the cone, instead of the centre
var offset = new Cesium.Cartesian3(0, 90, 90);
//Create a transform for the offset.
var enuTransform = Cesium.Transforms.eastNorthUpToFixedFrame(position);
//Transform the offset
Cesium.Matrix4.multiplyByPointAsVector(enuTransform, offset, offset);
//Add the offset to the original position to get the final value.
Cesium.Cartesian3.add(position, offset, position);
viewer.entities.add(new Cesium.Entity({
position: position,
orientation: orientation,
point: {
color: Cesium.Color.YELLOW,
show: true,
pixelSize: 20
},
cylinder: {
topRadius: 0,
bottomRadius: 45,
length: 180,
material: Cesium.Color.YELLOW.withAlpha(0.5)
}
}));
viewer.zoomTo(viewer.entities);

Here's what I came up with to rotate and translate a cylinder when you want to point it in a specific orientation specified by an azimuth and elevation.
/**
* Calculate the position and orientation needed for the beam entity.
* #param {Cesium.Cartesian3} position - The position of the desired origin.
* #param {Number} az - The azimuth of the beam center in radians.
* #param {Number} el - The elevation of the beam center in radians.
* #param {Number} range - The range of the beam in meters.
*
* #returns {[Cesium.Cartesian3, Cesium.Quaternion]} Array of the position and
* orientation to use for the beam.
*/
calculateBeam(position, az, el, range) {
// The origin of Cesium Cylinder entities is the center of the cylinder.
// They are also pointed straight down towards the local East-North plane. The
// math below rotates and translates the cylinder so that its origin is the tip
// of the cylinder and its orientation is pointed in the direction specified by
// the az/el.
let heading = az - Cesium.Math.toRadians(90);
let pitch = Cesium.Math.toRadians(90) + el;
let hpr = new Cesium.HeadingPitchRoll(heading, pitch, 0.0);
let x = range/2.0 * Math.sin(pitch) * Math.cos(heading);
let y = -range/2.0 * Math.sin(heading) * Math.sin(pitch);
let z = -range/2.0 * Math.cos(pitch);
var offset = new Cesium.Cartesian3(x, y, z);
let enuTransform = Cesium.Transforms.eastNorthUpToFixedFrame(position);
Cesium.Matrix4.multiplyByPointAsVector(enuTransform, offset, offset);
let newPosition = Cesium.Cartesian3.add(position, offset, new Cesium.Cartesian3());
let orientation = Cesium.Transforms.headingPitchRollQuaternion(position, hpr);
return [newPosition, orientation];
}
This will give you the position/orientation to use when you create the cylinder entity. It will place the cylinder such that the tip of the cylinder is located at 'position' and it is pointed in the direction specified by the azimuth and elevation. Azimuth is relative to North with positive angles towards East. Elevation is relative to the North-East plane, with positive angles up. Range is the length of the cylinder.
This doesn't get you the behavior you wanted as far as lengthening the cylinder as you rotate it, but hopefully it helps.

I have the same problem as you. This is my reference code. This is a function of computing the matrix of a cone at any angle.
computedModelMatrix(Cartesian3: any, attitude: any, length: any) {
//锥体距离卫星的高度
let oldLength = length / 2;
let centerCartesian3 = new Cesium.Cartesian3(Cartesian3.x, Cartesian3.y, Cartesian3.z);
let oldX = 0, oldY = 0, oldZ = -oldLength, newX = 0, newY = 0, newZ = 0;
let heading = attitude.heading;
//规定顺时针为正旋转,正东方向为0度
if (heading < 0) {
heading = heading + 360;
}
let roll = attitude.roll;
let pitch = attitude.pitch;
let headingRadians = Cesium.Math.toRadians(heading);
let pitchRadians = Cesium.Math.toRadians(pitch);
let rollRadians = Cesium.Math.toRadians(roll);
let hpr = new Cesium.HeadingPitchRoll(headingRadians, pitchRadians, rollRadians);
let orientation = Cesium.Transforms.headingPitchRollQuaternion(centerCartesian3, hpr);
//旋转roll
newY = oldY + oldLength * Math.sin(rollRadians);
newZ = oldZ + oldLength - oldLength * Math.cos(rollRadians);
let pitchTouying = oldLength * Math.cos(rollRadians);//进行pitch变化时在Y轴和Z轴组成的平面的投影
//旋转pitch
newX = oldX + pitchTouying * Math.sin(pitchRadians);
newZ = newZ + (pitchTouying - pitchTouying * Math.cos(pitchRadians));
if (heading != 0) {
let headingTouying = Math.sqrt(Math.pow(Math.abs(newX), 2) + Math.pow(Math.abs(newY), 2));//进行heading变化时在Y轴和X轴组成的平面的投影
//旋转heading
let Xdeg = Cesium.Math.toDegrees(Math.acos(Math.abs(newX) / Math.abs(headingTouying)));//现有投影线与X轴的夹角
let newXdeg = 0;//旋转heading后与X轴的夹角
let newXRadians = 0;//旋转heading后与X轴的夹角弧度
if (newX >= 0 && newY >= 0) {
newXdeg = heading - Xdeg;
} else if (newX > 0 && newY < 0) {
newXdeg = heading + Xdeg;
} else if (newX < 0 && newY > 0) {
newXdeg = heading + (180 + Xdeg);
} else {
newXdeg = heading + (180 - Xdeg)
}
if (newXdeg >= 360) {
newXdeg = 360 - newXdeg;
}
if (newXdeg >= 0 && newXdeg <= 90) {
newXRadians = Cesium.Math.toRadians(newXdeg);
newY = -headingTouying * Math.sin(newXRadians);
newX = headingTouying * Math.cos(newXRadians);
} else if (newXdeg > 90 && newXdeg <= 180) {
newXRadians = Cesium.Math.toRadians(180 - newXdeg);
newY = -headingTouying * Math.sin(newXRadians);
newX = -headingTouying * Math.cos(newXRadians)
} else if (newXdeg > 180 && newXdeg <= 270) {
newXRadians = Cesium.Math.toRadians(newXdeg - 180);
newY = headingTouying * Math.sin(newXRadians);
newX = -(headingTouying * Math.cos(newXRadians))
} else {
newXRadians = Cesium.Math.toRadians(360 - newXdeg);
newY = headingTouying * Math.sin(newXRadians);
newX = headingTouying * Math.cos(newXRadians)
}
}
let offset = new Cesium.Cartesian3(newX, newY, newZ);
let newPosition = this.computeOffset(centerCartesian3, offset);
return Cesium.Matrix4.fromTranslationQuaternionRotationScale(newPosition, orientation, new Cesium.Cartesian3(1, 1, 1))
}
computeOffset(Cartesian3: any, offset: any) {
let enuTransform = Cesium.Transforms.eastNorthUpToFixedFrame(Cartesian3);
Cesium.Matrix4.multiplyByPointAsVector(enuTransform, offset, offset);
return Cesium.Cartesian3.add(Cartesian3, offset, new Cesium.Cartesian3());
}

Related

Camera gets restricted sideways when tilted in center - orbitControl()

I'm trying to create a 3D map in p5.js.
I took the code in mouseDragged() and mouseWheel() from prototype.orbitControl function in order to modify it based on the needs of the map.
For some reason, when I tilt the camera to the center and then try to mouse drag in order to move, it would get restricted left to right.
What I need help from is regardless of the tilt and rotation, I'd still be able to move the camera on top of the plane just like google earth.
let canvas, camera;
const sensitivityZ = 0.1;
const scaleFactor = 100;
const sensitivityX = 1;
const sensitivityY = 1;
function setup() {
canvas = createCanvas(windowWidth, 500, WEBGL);
camera = createCamera();
camera._orbit(0, 1, 0); // initial tilt
debugMode(); // show grid
// cursor: suppress right-click context menu
document.oncontextmenu = () => false;
}
function draw() {
background(170);
fill(50);
box(100);
}
function mouseDragged() {
// rotating
if (mouseButton === RIGHT) {
const deltaTheta = (-sensitivityX * (mouseX - pmouseX)) / scaleFactor;
const deltaPhi = (sensitivityY * (mouseY - pmouseY)) / scaleFactor;
camera._orbit(deltaTheta, deltaPhi, 0);
}
// moving
if (mouseButton === LEFT) {
const sensitivityTouch = 1;
const local = camera._getLocalAxes();
// normalize portions along X/Z axes
const xmag = Math.sqrt(local.x[0] * local.x[0] + local.x[2] * local.x[2]);
if (xmag !== 0) {
local.x[0] /= xmag;
local.x[2] /= xmag;
}
// normalize portions along X/Z axes
const ymag = Math.sqrt(local.y[0] * local.y[0] + local.y[2] * local.y[2]);
if (ymag !== 0) {
local.y[0] /= ymag;
local.y[2] /= ymag;
}
// move along those vectors by amount controlled by mouseX, pmouseY
const dx = -1 * sensitivityTouch * (mouseX - pmouseX);
const dz = -1 * sensitivityTouch * (mouseY - pmouseY);
// restrict movement to XZ plane in world space
camera.setPosition(
camera.eyeX + dx * local.x[0] + dz * local.z[0],
camera.eyeY,
camera.eyeZ + dx * local.x[2] + dz * local.z[2]
);
}
}
function mouseWheel(event) {
if (event.delta > 0) {
camera._orbit(0, 0, sensitivityZ * scaleFactor);
} else {
camera._orbit(0, 0, -sensitivityZ * scaleFactor);
}
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.5.0/p5.min.js" integrity="sha512-WJXVjqeINVpi5XXJ2jn0BSCfp0y80IKrYh731gLRnkAS9TKc5KNt/OfLtu+fCueqdWniouJ1ubM+VI/hbo7POQ==" crossorigin="anonymous" referrerpolicy="no-referrer"></script>

Get correct mouse position after zooming in/out an isometric map on HTML Canvas

Hi I am trying to create isometric graphic app with React, mostly base on the code here.
I achieved most of the functions (ie. zoom and scroll).
But hovering tiles after zooming gives me wrong mouse position (hover position).
You can see what I mean here.
You can zoom with scrolling vertically.
When it is not zoomed in or out, hovering tile works correctly (tile color changes where the mouse positions).
But after zooming out/in it is not working right.
Does anyone know how to get the mouse position or tile index correctly after zooming in/out?
Implemented code can be found on my Github repo here
Code snippet for getting target tile is below:
const handleHover = (x: number, y: number) => {
const { e: xPos, f: yPos } = ctx.getTransform()
const mouse_x = mouseRef.current.x - x - xPos
const mouse_y = mouseRef.current.y - y - yPos
const hoverTileX =
Math.floor(
mouse_y / Tile.TILE_HEIGHT + mouse_x / Tile.TILE_WIDTH
) - 1
const hoverTileY = Math.floor(
-mouse_x / Tile.TILE_WIDTH + mouse_y / Tile.TILE_HEIGHT
)
if (
hoverTileX >= 0 &&
hoverTileY >= 0 &&
hoverTileX < gridSize &&
hoverTileY < gridSize
) {
const renderX =
x + (hoverTileX - hoverTileY) * Tile.TILE_HALF_WIDTH
const renderY =
y + (hoverTileX + hoverTileY) * Tile.TILE_HALF_HEIGHT
renderTileHover(ctx)(renderX, renderY + Tile.TILE_HEIGHT)
}
}
I am not good at maths so I really need help...
Thank you.
I figured out how to achieve this.
I will leave it here so anyone who has the same issue wont waste a lot of time for this kind of issue.
My code is like this:
/**
* #param context canvas context 2d
* #param inputX mouse/touch input position x (ie. clientX)
* #param inputY mouse/touch input position y (ie. clientY)
* #returns {x, y} x and y position of inputX/Y which map scale and position are taken into account
*/
export const getTransformedPoint = (context: CanvasRenderingContext2D, inputX: number, inputY: number) => {
const transform = context.getTransform()
const invertedScaleX = DEFAULT_MAP_SCALE / transform.a
const invertedScaleY = DEFAULT_MAP_SCALE / transform.d
const transformedX = invertedScaleX * inputX - invertedScaleX * transform.e
const transformedY = invertedScaleY * inputY - invertedScaleY * transform.f
return { x: transformedX, y: transformedY }
}
/**
*
* #param startPosition position where map start rendered (Position2D has {x: number, y: number} type)
* #param inputX mouse/touch input position x (ie. clientX)
* #param inputY mouse/touch input position x (ie. clientY)
* #returns positionX, positionY: tile position x, y axis
*/
export const getTilePosition = (
startPosition: Position2D,
inputX: number,
inputY: number
): { positionX: number; positionY: number } => {
const positionX =
Math.floor((inputY - startPosition.y) / TILE_HEIGHT + (inputX - startPosition.x) / TILE_WIDTH) - 1
const positionY = Math.floor(
(inputY - startPosition.y) / TILE_HEIGHT - (inputX - startPosition.x) / TILE_WIDTH
)
return { positionX, positionY }
}
// usage
const onClick = (e: MouseEvent) => {
const { x: mouseX, y: mouseY } = getTransformedPoint(ctx, e.clientX, e.clientY)
const { positionX, positionY } = getTilePosition(startPositionRef.current, mouseX, mouseY)
// Do something with positionX and positionY...
// ie.
if (return positionX >= 0 && positionY >= 0 && positionX < GRID_SIZE && positionY < GRID_SIZE) {
// code when a user clicks a tile within the map
}
}
I referenced this for calculating the mouse position when the map is zoomed out/in.
Try below
const handleHover = (x: number, y: number) => {
// use the current scale of the canvas context
const { a: scale, e: xPos, f: yPos } = ctx.getTransform()
const mouse_x = (mouseRef.current.x - x - xPos) * scale
const mouse_y = (mouseRef.current.y - y - yPos) * scale
// rest of the code...
}

rotate only an image in a canvas

I'm trying to rotate an image inside a canvas.
Here's my Fiddle: https://jsfiddle.net/kevinludwig11/s6rgpjm9/
I try it with save and restore, but the path is also rotating.
The falcon should fly with his face towards and change the angle in the corners.
Can anybody help me?
Edit: One solution i've found: save the image 360 times with every rotation and load every image in the right position. But i think thats not the smartest solution.
Canvas 2D image lookat transform.
No need to create 360 images to rotate a single image. Also you had a few incorrect ways of doing things.
Code problems
Only load the image once. You were loading it each time it was rendered.
Use requestAnimationFrame on its own. Putting it inside a timer makes its use completely redundant.
If you find yourself typing in long lists of numbers, and especially if you repeat these numbers in other sections of code you should use a single store to hold everything. Eg your paths were all hand coded. Move them into an array then iterate the array for the various things you need to do with the paths. One of the top ten programing rules. "Don't repeat/duplicate anything."
The lookat transform
To do the bird you will need to get the direction it is heading towards so I added a second point on the curves that is ahead of the bird. With these two points (birds pos and lookat pos) I then create a transformation using the lookat direction as the xAxis of the transformation. See function drawImageLookat(image,pos,lookat) I found that the image is not along the X axis so I rotate the bird 90deg after finding the lookat transformation.
Lookat function
// function assumes front (forward) of image is along the x axis to the right
function drawImageLookat(image, point, lookat ) {
var xAx,xAy; // vector for x Axis of image
var x,y;
x = lookat.x - point.x;
y = lookat.y - point.y;
var dist = Math.max(0.01,Math.sqrt(x * x + y * y)); // Math.max to avoid zero which will create NaN
xAx = x / dist; // get x component of x Axis
xAy = y / dist; // get y component of x Axis
// y axis is at 90 deg so dont need y axis vector
ctx.setTransform( // position the image using transform
xAx, xAy, // set direction of x Axis
-xAy, xAx, // set direction oy y axis
point.x, point.y
);
ctx.drawImage(image, -image.width / 2, -image.height / 2);
}
Demo from fiddle.
Your code that I took from the fiddle https://jsfiddle.net/kevinludwig11/s6rgpjm9/ and modified to run as your question implies.
var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
// only load image once
var birdImage = new Image();
birdImage.src = 'http://www.happy-innovation.de/images/Falke_Flug.png';
birdImage.onload = function(){animate()}; // start animation when image has loaded
// set starting values
var speed = 0.25
var percent = speed;
var direction = speed;
var length = 300;
function animate() {
ctx.setTransform(1,0,0,1,0,0); // restore default transform incase its not
ctx.clearRect(0, 0, canvas.width, canvas.height);
percent += direction;
// need to keep the position away from the ends as there is no lookat beyond the path.
if(percent >= length - speed){
percent = length- speed;
direction = -speed;
}else if(percent <= speed){
percent = speed;
direction = speed;
}
draw(percent,direction);
requestAnimationFrame(animate);
}
function P(x,y){return {x,y}}; // quick way to create a point
var paths = [
{col : 'red', points : [P(100, 200), P(600, 350), P( 700, 400)]},
{col : "green", points : [P(700, 400), P( 900, 500), P( 200, 600), P( 950, 900)]},
{col : "blue", points : [P(950, 900), P(1200, 950), P( 300, 200), P( 150, 1200)]},
{col : "brown", points : [P(150, 1200),P( 120, 1700),P( 1000, 700),P(850, 1500)]},
{col : "Purple",points : [P(850, 1500),P(800, 1900), P( 200, 900), P( 250, 1800)]},
{col : "yellow", points : [P(250, 1800),P(250, 1950), P( 600, 1500),P(950, 1800)]},
]
// draw the current frame based on sliderValue
function draw(sliderValue,direction) {
var getPos = false; // true if need pos on current curve
var getForwardPos = false; // true if need pos on current curve
var percent,percent1; // get the percentage on curves
var birdPos; // get bird pos
var birdLookAtPos; // get bird look at pos
ctx.lineWidth = 5;
for(var i = 0; i < paths.length; i ++){
var path = paths[i]; // get a path from array
var p = path.points;
ctx.strokeStyle = path.col;
ctx.beginPath();
ctx.moveTo(p[0].x,p[0].y);
if(sliderValue >= i * 50 && sliderValue < (i+1) * 50){
getPos = true;
percent = (sliderValue % 50) / 50;
}
if(sliderValue + direction >= i * 50 && sliderValue + direction < (i+1) * 50){
getForwardPos = true;
percent1 = ((sliderValue + direction) % 50) / 50;
}
if(p.length > 3){
ctx.bezierCurveTo(p[1].x,p[1].y,p[2].x,p[2].y,p[3].x,p[3].y);
if(getPos){
birdPos = getCubicBezierXYatPercent(p[0],p[1],p[2],p[3],percent);
getPos = false;
}
if(getForwardPos){
birdLookAtPos = getCubicBezierXYatPercent(p[0],p[1],p[2],p[3],percent1);
getForwardPos = false;
}
}else{
ctx.quadraticCurveTo(p[1].x,p[1].y,p[2].x,p[2].y);
if(getPos){
birdPos = getQuadraticBezierXYatPercent(p[0],p[1],p[2],percent);
getPos = false;
}
if(getForwardPos){
birdLookAtPos = getQuadraticBezierXYatPercent(p[0],p[1],p[2],percent1);
getForwardPos = false;
}
}
ctx.stroke();
}
drawImageLookingAt(birdImage,birdPos,birdLookAtPos);
}
function drawImageLookingAt(image, point, lookat ) {
if(lookat === undefined){ // if no lookat then exit or it will crash.
return;
}
var xAx,xAy; // vector for x Axis of image
var x,y;
x = lookat.x - point.x;
y = lookat.y - point.y;
var dist = Math.max(0.01,Math.sqrt(x * x + y * y)); // Math.max to avoid zero which will create NaN
xAx = x / dist; // get x component of x Axis
xAy = y / dist; // get y component of x Axis
// y axis is at 90 deg so dont need y axis vector
ctx.setTransform( // position the image using transform
xAx, xAy, // set direction of x Axis
-xAy, xAx, // set direction oy y axis
point.x, point.y
);
// bird is pointing in the wrong direction. Not along x axis
// so rotate the image 90 deg clockwise
ctx.rotate(Math.PI / 2);
ctx.drawImage(image, -image.width / 2, -image.height / 2);
ctx.setTransform(1,0,0,1,0,0); // Restore default Not really needed if you only use setTransform to do transforms
// but in case you use transform, rotate, translate or scale you need to reset the
// transform.
}
// line: percent is 0-1
function getLineXYatPercent(startPt, endPt, percent) {
var dx = endPt.x - startPt.x;
var dy = endPt.y - startPt.y;
var X = startPt.x + dx * percent;
var Y = startPt.y + dy * percent;
return ({
x: X,
y: Y
});
}
// quadratic bezier: percent is 0-1
function getQuadraticBezierXYatPercent(startPt, controlPt, endPt, percent) {
var x = Math.pow(1 - percent, 2) * startPt.x + 2 * (1 - percent) * percent * controlPt.x + Math.pow(percent, 2) * endPt.x;
var y = Math.pow(1 - percent, 2) * startPt.y + 2 * (1 - percent) * percent * controlPt.y + Math.pow(percent, 2) * endPt.y;
return ({
x: x,
y: y
});
}
// cubic bezier percent is 0-1
function getCubicBezierXYatPercent(startPt, controlPt1, controlPt2, endPt, percent) {
var x = CubicN(percent, startPt.x, controlPt1.x, controlPt2.x, endPt.x);
var y = CubicN(percent, startPt.y, controlPt1.y, controlPt2.y, endPt.y);
return ({
x: x,
y: y
});
}
// cubic helper formula at percent distance
function CubicN(pct, a, b, c, d) {
var t2 = pct * pct;
var t3 = t2 * pct;
return a + (-a * 3 + pct * (3 * a - a * pct)) * pct + (3 * b + pct * (-6 * b + b * 3 * pct)) * pct + (c * 3 - c * 3 * pct) * t2 + d * t3;
}
<canvas height="1961" width="1000" id="canvas"></canvas>

Calculating angular velocity after a collision

I've got the linear component of collision resolution down relatively well, but I can't quite figure out how to do the same for the angular one. From what I've read, it's something like... torque = point of collision x linear velocity. (cross product) I tried to incorporate an example I found into my code but I actually don't see any rotation at all when objects collide. The other fiddle works perfectly with a rudimentary implementation of the seperating axis theorem and the angular velocity calculations. Here's what I've come up with...
Property definitions (orientation, angular velocity, and angular acceleration):
rotation: 0,
angularVelocity: 0,
angularAcceleration: 0
Calculating the angular velocity in the collision response:
var pivotA = this.vector(bodyA.x, bodyA.y);
bodyA.angularVelocity = 1 * 0.2 * (bodyA.angularVelocity / Math.abs(bodyA.angularVelocity)) * pivotA.subtract(isCircle ? pivotA.add(bodyA.radius) : {
x: pivotA.x + boundsA.width,
y: pivotA.y + boundsA.height
}).vCross(bodyA.velocity);
var pivotB = this.vector(bodyB.x, bodyB.y);
bodyB.angularVelocity = 1 * 0.2 * (bodyB.angularVelocity / Math.abs(bodyB.angularVelocity)) * pivotB.subtract(isCircle ? pivotB.add(bodyB.radius) : {
x: pivotB.x + boundsB.width,
y: pivotB.y + boundsB.height
}).vCross(bodyB.velocity);
Updating the orientation in the update loop:
var torque = 0;
torque += core.objects[o].angularVelocity * -1;
core.objects[o].angularAcceleration = torque / core.objects[o].momentOfInertia();
core.objects[o].angularVelocity += core.objects[o].angularAcceleration;
core.objects[o].rotation += core.objects[o].angularVelocity;
I would post the code that I have for calculating the moments of inertia but there's a seperate one for every object so that would be a bit... lengthy. Nonetheless, here's the one for a circle as an example:
return this.mass * this.radius * this.radius / 2;
Just to show the result, here's my fiddle. As shown, objects do not rotate on collision. (not exactly visible with the circles, but it should work for the zero and seven)
What am I doing wrong?
EDIT: Reason they weren't rotating at all was because of an error with groups in the response function -- it rotates now, just not correctly. However, I've commented that out for now as it messes things up.
Also, I've tried another method for rotation. Here's the code in the response:
_bodyA.angularVelocity = direction.vCross(_bodyA.velocity) / (isCircle ? _bodyA.radius : boundsA.width);
_bodyB.angularVelocity = direction.vCross(_bodyB.velocity) / (isCircle ? _bodyB.radius : boundsB.width);
Note that direction refers to the "collision normal".
Angular and linear acceleration due to force vector
Angular and directional accelerations due to an applied force are two components of the same thing and can not be separated. To get one you need to solve for both.
Define the calculations
From simple physics and standing on shoulders we know the following.
F is force (equivalent to inertia)
Fv is linear force
Fa is angular force
a is acceleration could be linear or rotational depending on where it is used
v is velocity. For angular situations it is the tangential component only
m is mass
r is radius
For linear forces
F = m * v
From which we derive
m = F / v
v = F / m
For rotational force (v is tangential velocity)
F = r * r * m * (v / r) and simplify F = r * m * v
From which we derive
m = F / ( r * v )
v = F / ( r * m )
r = F / ( v * m )
Because the forces we apply are instantaneous we can interchange a acceleration and v velocity to give all the following formulas
Linear
F = m * a
m = F / a
a = F / m
Rotational
F = r * m * a
m = F / ( r * a )
a = F / ( r * m )
r = F / ( a * m )
As we are only interested in the change in velocity for both linear and rotation solutions
a1 = F / m
a2 = F / ( r * m )
Where a1 is acceleration in pixels per frame2 and a2 is acceleration in radians per frame2 ( the frame squared just denotes it is acceleration)
From 1D to 2D
Because this is a 2D solution and all above are 1D we need to use vectors. I for this problem use two forms of the 2D vector. Polar that has a magnitude (length, distance, the like...) and direction. Cartesian which has x and y. What a vector represents depends on how it is used.
The following functions are used as helpers in the solution. They are written in ES6 so for non compliant browsers you will have to adapt them, though I would not ever suggest you use these as they are written for convenience, they are very inefficient and do a lot of redundant calculations.
Converts a vector from polar to cartesian returning a new one
function polarToCart(pVec, retV = {x : 0, y : 0}) {
retV.x = Math.cos(pVec.dir) * pVec.mag;
retV.y = Math.sin(pVec.dir) * pVec.mag;
return retV;
}
Converts a vector from cartesian to polar returning a new one
function cartToPolar(vec, retV = {dir : 0, mag : 0}) {
retV.dir = Math.atan2(vec.y, vec.x);
retV.mag = Math.hypot(vec.x, vec.y);
return retV;
}
Creates a polar vector
function polar(mag = 1, dir = 0) {
return validatePolar({dir : dir,mag : mag});
}
Create a vector as a cartesian
function vector(x = 1, y = 0) {
return {x : x, y : y};
}
True is the arg vec is a vector in polar form
function isPolar(vec) {
if (vec.mag !== undefined && vec.dir !== undefined) {return true;}
return false;
}
Returns true if arg vec is a vector in cartesian form
function isCart(vec) {
if (vec.x !== undefined && vec.y !== undefined) {return true;}
return false;
}
Returns a new vector in polar form also ensures that vec.mag is positive
function asPolar(vec){
if(isCart(vec)){ return cartToPolar(vec); }
if(vec.mag < 0){
vec.mag = - vec.mag;
vec.dir += PI;
}
return { dir : vec.dir, mag : vec.mag };
}
Copy and converts an unknown vec to cart if not already
function asCart(vec){
if(isPolar(vec)){ return polarToCart(vec); }
return { x : vec.x, y : vec.y};
}
Calculations can result in a negative magnitude though this is valid for some calculations this results in the incorrect vector (reversed) this simply validates that the polar vector has a positive magnitude it does not change the vector just the sign and direction
function validatePolar(vec) {
if (isPolar(vec)) {
if (vec.mag < 0) {
vec.mag = - vec.mag;
vec.dir += PI;
}
}
return vec;
}
The Box
Now we can define an object that we can use to play with. A simple box that has position, size, mass, orientation, velocity and rotation
function createBox(x,y,w,h){
var box = {
x : x, // pos
y : y,
r : 0.1, // its rotation AKA orientation or direction in radians
h : h, // its height
w : w, // its width
dx : 0, // delta x in pixels per frame 1/60th second
dy : 0, // delta y
dr : 0.0, // deltat rotation in radians per frame 1/60th second
mass : w * h, // mass in things
update :function(){
this.x += this.dx;
this.y += this.dy;
this.r += this.dr;
},
}
return box;
}
Applying a force to an object
So now we can redefine some terms
F (force) is a vector force the magnitude is the force and it has a direction
var force = polar(100,0); // create a force 100 units to the right (0 radians)
The force is meaningless without a position where it is applied.
Position is a vector that just holds and x and y location
var location = vector(canvas.width/2, canvas.height/2); // defines a point in the middle of the canvas
Directional vector holds the direction and distance between to positional vectors
var l1 = vector(canvas.width/2, canvas.height/2); // defines a point in the middle of the canvas
var l2 = vector(100,100);
var direction = asPolar(vector(l2.x - l1.x, l2.y - l1.y)); // get the direction as polar vector
direction now has the direction from canvas center to point (100,100) and the distance.
The last thing we need to do is extract the components from a force vector along a directional vector. When you apply a force to an object the force is split into two, one is the force along the line to the object center and adds to the object acceleration, the other force is at 90deg to the line to the object center (the tangent) and that is the force that changes rotation.
To get the two components you get the difference in direction between the force vector and the directional vector from where the force is applied to the object center.
var force = polar(100,0); // the force
var forceLoc = vector(50,50); // the location the force is applied
var direction2Center = asPolar(vector(box.x - forceLoc.x, box.y - forceLoc.y)); // get the direction as polar vector
var pheta = direction2Center - force.dir; // get the angle between the force and object center
Now that you have that angle pheta the force can be split into its rotational and linear components with trig.
var F = force.mag; // get the force magnitude
var Fv = Math.cos(pheta) * F; // get the linear force
var Fa = Math.sin(pheta) * F; // get the angular force
Now the forces can be converted back to accelerations for linear a = F/m and angular a = F/(m*r)
accelV = Fv / box.mass; // linear acceleration in pixels
accelA = Fa / (box.mass * direction2Center.mag); // angular acceleration in radians
You then convert the linear force back to a vector that has a direction to the center of the object
var forceV = polar(Fv, direction2Center);
Convert is back to the cartesian so we can add it to the object deltaX and deltaY
forceV = asCart(forceV);
And add the acceleration to the box
box.dx += forceV.x;
box.dy += forceV.y;
Rotational acceleration is just one dimensional so just add it to the delta rotation of the box
box.dr += accelA;
And that is it.
Function to apply force to Box
The function if attached to the box will apply a force vector at a location to the box.
Attach to the box like so
box.applyForce = applyForce; // bind function to the box;
You can then call the function via the box
box.applyForce(force, locationOfForce);
function applyForce(force, loc){ // force is a vector, loc is a coordinate
var toCenter = asPolar(vector(this.x - loc.x, this.y - loc.y)); // get the vector to the center
var pheta = toCenter.dir - force.dir; // get the angle between the force and the line to center
var Fv = Math.cos(pheta) * force.mag; // Split the force into the velocity force along the line to the center
var Fa = Math.sin(pheta) * force.mag; // and the angular force at the tangent to the line to the center
var accel = asPolar(toCenter); // copy the direction to center
accel.mag = Fv / this.mass; // now use F = m * a in the form a = F/m to get acceleration
var deltaV = asCart(accel); // convert acceleration to cartesian
this.dx += deltaV.x // update the box delta V
this.dy += deltaV.y //
var accelA = Fa / (toCenter.mag * this.mass); // for the angular component get the rotation
// acceleration from F=m*a*r in the
// form a = F/(m*r)
this.dr += accelA;// now add that to the box delta r
}
The Demo
The demo is only about the function applyForce the stuff to do with gravity and bouncing are only very bad approximations and should not be used for any physic type of stuff as they do not conserve energy.
Click and drag to apply a force to the object in the direction that the mouse is moved.
const PI90 = Math.PI / 2;
const PI = Math.PI;
const PI2 = Math.PI * 2;
const INSET = 10; // playfeild inset
const ARROW_SIZE = 6
const SCALE_VEC = 10;
const SCALE_FORCE = 0.15;
const LINE_W = 2;
const LIFE = 12;
const FONT_SIZE = 20;
const FONT = "Arial Black";
const WALL_NORMS = [PI90,PI,-PI90,0]; // dirction of the wall normals
var box = createBox(200, 200, 50, 100);
box.applyForce = applyForce; // Add this function to the box
// render / update function
var mouse = (function(){
function preventDefault(e) { e.preventDefault(); }
var i;
var mouse = {
x : 0, y : 0,buttonRaw : 0,
bm : [1, 2, 4, 6, 5, 3], // masks for setting and clearing button raw bits;
mouseEvents : "mousemove,mousedown,mouseup".split(",")
};
function mouseMove(e) {
var t = e.type, m = mouse;
m.x = e.offsetX; m.y = e.offsetY;
if (m.x === undefined) { m.x = e.clientX; m.y = e.clientY; }
if (t === "mousedown") { m.buttonRaw |= m.bm[e.which-1];
} else if (t === "mouseup") { m.buttonRaw &= m.bm[e.which + 2];}
e.preventDefault();
}
mouse.start = function(element = document){
if(mouse.element !== undefined){ mouse.removeMouse();}
mouse.element = element;
mouse.mouseEvents.forEach(n => { element.addEventListener(n, mouseMove); } );
}
mouse.remove = function(){
if(mouse.element !== undefined){
mouse.mouseEvents.forEach(n => { mouse.element.removeEventListener(n, mouseMove); } );
mouse.element = undefined;
}
}
return mouse;
})();
var canvas,ctx;
function createCanvas(){
canvas = document.createElement("canvas");
canvas.style.position = "absolute";
canvas.style.left = "0px";
canvas.style.top = "0px";
canvas.style.zIndex = 1000;
document.body.appendChild(canvas);
}
function resizeCanvas(){
if(canvas === undefined){
createCanvas();
}
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
ctx = canvas.getContext("2d");
if(box){
box.w = canvas.width * 0.10;
box.h = box.w * 2;
box.mass = box.w * box.h;
}
}
window.addEventListener("resize",resizeCanvas);
resizeCanvas();
mouse.start(canvas)
var tempVecs = [];
function addTempVec(v,vec,col,life = LIFE,scale = SCALE_VEC){tempVecs.push({v:v,vec:vec,col:col,scale:scale,life:life,sLife:life});}
function drawTempVecs(){
for(var i = 0; i < tempVecs.length; i ++ ){
var t = tempVecs[i]; t.life -= 1;
if(t.life <= 0){tempVecs.splice(i, 1); i--; continue}
ctx.globalAlpha = (t.life / t.sLife)*0.25;
drawVec(t.v, t.vec ,t.col, t.scale)
}
}
function drawVec(v,vec,col,scale = SCALE_VEC){
vec = asPolar(vec)
ctx.setTransform(1,0,0,1,v.x,v.y);
var d = vec.dir;
var m = vec.mag;
ctx.rotate(d);
ctx.beginPath();
ctx.lineWidth = LINE_W;
ctx.strokeStyle = col;
ctx.moveTo(0,0);
ctx.lineTo(m * scale,0);
ctx.moveTo(m * scale-ARROW_SIZE,-ARROW_SIZE);
ctx.lineTo(m * scale,0);
ctx.lineTo(m * scale-ARROW_SIZE,ARROW_SIZE);
ctx.stroke();
}
function drawText(text,x,y,font,size,col){
ctx.font = size + "px "+font;
ctx.textAlign = "center";
ctx.textBaseline = "middle";
ctx.setTransform(1,0,0,1,x,y);
ctx.globalAlpha = 1;
ctx.fillStyle = col;
ctx.fillText(text,0,0);
}
function createBox(x,y,w,h){
var box = {
x : x, // pos
y : y,
r : 0.1, // its rotation AKA orientation or direction in radians
h : h, // its height, and I will assume that its depth is always equal to its height
w : w, // its width
dx : 0, // delta x in pixels per frame 1/60th second
dy : 0, // delta y
dr : 0.0, // deltat rotation in radians per frame 1/60th second
getDesc : function(){
var vel = Math.hypot(this.dx ,this.dy);
var radius = Math.hypot(this.w,this.h)/2
var rVel = Math.abs(this.dr * radius);
var str = "V " + (vel*60).toFixed(0) + "pps ";
str += Math.abs(this.dr * 60 * 60).toFixed(0) + "rpm ";
str += "Va " + (rVel*60).toFixed(0) + "pps ";
return str;
},
mass : function(){ return (this.w * this.h * this.h)/1000; }, // mass in K things
draw : function(){
ctx.globalAlpha = 1;
ctx.setTransform(1,0,0,1,this.x,this.y);
ctx.rotate(this.r);
ctx.fillStyle = "#444";
ctx.fillRect(-this.w/2, -this.h/2, this.w, this.h)
ctx.strokeRect(-this.w/2, -this.h/2, this.w, this.h)
},
update :function(){
this.x += this.dx;
this.y += this.dy;
this.dy += 0.061; // alittle gravity
this.r += this.dr;
},
getPoint : function(which){
var dx,dy,x,y,xx,yy,velocityA,velocityT,velocity;
dx = Math.cos(this.r);
dy = Math.sin(this.r);
switch(which){
case 0:
x = -this.w /2;
y = -this.h /2;
break;
case 1:
x = this.w /2;
y = -this.h /2;
break;
case 2:
x = this.w /2;
y = this.h /2;
break;
case 3:
x = -this.w /2;
y = this.h /2;
break;
case 4:
x = this.x;
y = this.y;
}
var xx,yy;
xx = x * dx + y * -dy;
yy = x * dy + y * dx;
var details = asPolar(vector(xx, yy))
xx += this.x;
yy += this.y;
velocityA = polar(details.mag * this.dr, details.dir + PI90);
velocityT = vectorAdd(velocity = vector(this.dx, this.dy), velocityA);
return {
velocity : velocity, // only directional
velocityT : velocityT, // total
velocityA : velocityA, // angular only
pos : vector(xx, yy),
radius : details.mag,
}
},
}
box.mass = box.mass(); // Mass remains the same so just set it with its function
return box;
}
// calculations can result in a negative magnitude though this is valide for some
// calculations this results in the incorrect vector (reversed)
// this simply validates that the polat vector has a positive magnitude
// it does not change the vector just the sign and direction
function validatePolar(vec){
if(isPolar(vec)){
if(vec.mag < 0){
vec.mag = - vec.mag;
vec.dir += PI;
}
}
return vec;
}
// converts a vector from polar to cartesian returning a new one
function polarToCart(pVec, retV = {x : 0, y : 0}){
retV.x = Math.cos(pVec.dir) * pVec.mag;
retV.y = Math.sin(pVec.dir) * pVec.mag;
return retV;
}
// converts a vector from cartesian to polar returning a new one
function cartToPolar(vec, retV = {dir : 0, mag : 0}){
retV.dir = Math.atan2(vec.y,vec.x);
retV.mag = Math.hypot(vec.x,vec.y);
return retV;
}
function polar (mag = 1, dir = 0) { return validatePolar({dir : dir, mag : mag}); } // create a polar vector
function vector (x= 1, y= 0) { return {x: x, y: y}; } // create a cartesian vector
function isPolar (vec) { if(vec.mag !== undefined && vec.dir !== undefined) { return true; } return false; }// returns true if polar
function isCart (vec) { if(vec.x !== undefined && vec.y !== undefined) { return true; } return false; }// returns true if cartesian
// copy and converts an unknown vec to polar if not already
function asPolar(vec){
if(isCart(vec)){ return cartToPolar(vec); }
if(vec.mag < 0){
vec.mag = - vec.mag;
vec.dir += PI;
}
return { dir : vec.dir, mag : vec.mag };
}
// copy and converts an unknown vec to cart if not already
function asCart(vec){
if(isPolar(vec)){ return polarToCart(vec); }
return { x : vec.x, y : vec.y};
}
// normalise makes a vector a unit length and returns it as a cartesian
function normalise(vec){
var vp = asPolar(vec);
vap.mag = 1;
return asCart(vp);
}
function vectorAdd(vec1, vec2){
var v1 = asCart(vec1);
var v2 = asCart(vec2);
return vector(v1.x + v2.x, v1.y + v2.y);
}
// This splits the vector (polar or cartesian) into the components along dir and the tangent to that dir
function vectorComponentsForDir(vec,dir){
var v = asPolar(vec); // as polar
var pheta = v.dir - dir;
var Fv = Math.cos(pheta) * v.mag;
var Fa = Math.sin(pheta) * v.mag;
var d1 = dir;
var d2 = dir + PI90;
if(Fv < 0){
d1 += PI;
Fv = -Fv;
}
if(Fa < 0){
d2 += PI;
Fa = -Fa;
}
return {
along : polar(Fv,d1),
tangent : polar(Fa,d2)
};
}
function doCollision(pointDetails, wallIndex){
var vv = asPolar(pointDetails.velocity); // Cartesian V make sure the velocity is in cartesian form
var va = asPolar(pointDetails.velocityA); // Angular V make sure the velocity is in cartesian form
var vvc = vectorComponentsForDir(vv, WALL_NORMS[wallIndex])
var vac = vectorComponentsForDir(va, WALL_NORMS[wallIndex])
vvc.along.mag *= 1.18; // Elastic collision requiers that the two equal forces from the wall
vac.along.mag *= 1.18; // against the box and the box against the wall be summed.
// As the wall can not move the result is that the force is twice
// the force the box applies to the wall (Yes and currently force is in
// velocity form untill the next line)
vvc.along.mag *= box.mass; // convert to force
//vac.along.mag/= pointDetails.radius
vac.along.mag *= box.mass
vvc.along.dir += PI; // force is in the oppisite direction so turn it 180
vac.along.dir += PI; // force is in the oppisite direction so turn it 180
// split the force into components based on the wall normal. One along the norm the
// other along the wall
vvc.tangent.mag *= 0.18; // add friction along the wall
vac.tangent.mag *= 0.18;
vvc.tangent.mag *= box.mass //
vac.tangent.mag *= box.mass
vvc.tangent.dir += PI; // force is in the oppisite direction so turn it 180
vac.tangent.dir += PI; // force is in the oppisite direction so turn it 180
// apply the force out from the wall
box.applyForce(vvc.along, pointDetails.pos)
// apply the force along the wall
box.applyForce(vvc.tangent, pointDetails.pos)
// apply the force out from the wall
box.applyForce(vac.along, pointDetails.pos)
// apply the force along the wall
box.applyForce(vac.tangent, pointDetails.pos)
//addTempVec(pointDetails.pos, vvc.tangent, "red", LIFE, 10)
//addTempVec(pointDetails.pos, vac.tangent, "red", LIFE, 10)
}
function applyForce(force, loc){ // force is a vector, loc is a coordinate
validatePolar(force); // make sure the force is a valid polar
// addTempVec(loc, force,"White", LIFE, SCALE_FORCE) // show the force
var l = asCart(loc); // make sure the location is in cartesian form
var toCenter = asPolar(vector(this.x - l.x, this.y - l.y));
var pheta = toCenter.dir - force.dir;
var Fv = Math.cos(pheta) * force.mag;
var Fa = Math.sin(pheta) * force.mag;
var accel = asPolar(toCenter); // copy the direction to center
accel.mag = Fv / this.mass; // now use F = m * a in the form a = F/m
var deltaV = asCart(accel); // convert it to cartesian
this.dx += deltaV.x // update the box delta V
this.dy += deltaV.y
var accelA = Fa / (toCenter.mag * this.mass); // for the angular component get the rotation
// acceleration
this.dr += accelA;// now add that to the box delta r
}
// make a box
ctx.globalAlpha = 1;
var lx,ly;
function update(){
// clearLog();
ctx.setTransform(1, 0, 0, 1, 0, 0);
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.setTransform(1, 0, 0, 1, 0, 0);
ctx.lineWidth = 1;
ctx.strokeStyle = "black";
ctx.fillStyle = "#888";
ctx.fillRect(INSET, INSET, canvas.width - INSET * 2, canvas.height - INSET * 2);
ctx.strokeRect(INSET, INSET, canvas.width - INSET * 2, canvas.height - INSET * 2);
ctx.lineWidth = 2;
ctx.strokeStyle = "black";
box.update();
box.draw();
if(mouse.buttonRaw & 1){
var force = asPolar(vector(mouse.x - lx, mouse.y - ly));
force.mag *= box.mass * 0.1;
box.applyForce(force,vector(mouse.x, mouse.y))
addTempVec(vector(mouse.x, mouse.y), asPolar(vector(mouse.x - lx, mouse.y - ly)), "Cyan", LIFE, 5);
}
lx = mouse.x;
ly = mouse.y;
for(i = 0; i < 4; i++){
var p = box.getPoint(i);
// only do one collision per frame or we will end up adding energy
if(p.pos.x < INSET){
box.x += (INSET) - p.pos.x;
doCollision(p,3)
}else
if( p.pos.x > canvas.width-INSET){
box.x += (canvas.width - INSET) - p.pos.x;
doCollision(p,1)
}else
if(p.pos.y < INSET){
box.y += (INSET) -p.pos.y;
doCollision(p,0)
}else
if( p.pos.y > canvas.height-INSET){
box.y += (canvas.height - INSET) -p.pos.y;
doCollision(p,2)
}
drawVec(p.pos,p.velocity,"blue")
}
drawTempVecs();
ctx.globalAlpha = 1;
drawText(box.getDesc(),canvas.width/2,FONT_SIZE,FONT,FONT_SIZE,"black");
drawText("Click drag to apply force to box",canvas.width/2,FONT_SIZE +17,FONT,14,"black");
requestAnimationFrame(update)
}
update();

Find distance the mouse has moved along a vector in Three.js

I'm trying to find the distance that the mouse has traveled along a normal vector.
The idea is to move a set of vertices within an object along the intersecting face's normal vector.
Currently, I have an onmousedown event handler that finds the intersecting face, adjacent faces with the same normal, and the vertices associated to those faces. I also have an onmousemove event handler that moves the vertices along the normal.
Right now, the onmousemove just moves the vertices 1 unit along the face normal every time the event is fired. I'd like them to move with the mouse.
The code that I am working off of came largely from the three.js editor. Any help is very much appreciated, thanks!
var object; // Set outside this code
var camera; // Set outside this code
var viewport; // Set outside this code
var raycaster = new THREE.Raycaster();
var point = new THREE.Vector2();
var mouse = new THREE.Vector2();
var _dragging = false;
var faces = [];
var vertices = [];
function onMouseDown(event) {
if (object === undefined || _dragging === true) {
return;
}
event.preventDefault();
event.stopPropagation();
var intersect = getIntersects(event, object)[0];
if (intersect && intersect.face) {
faces = getAdjacentNormalFaces(intersect.object.geometry, intersect.face);
vertices = getFaceVertices(intersect.object.geometry, self.faces);
}
_dragging = true;
}
function onMouseMove(event) {
if (object === undefined || vertices.length === 0 || _dragging === false) {
return;
}
event.preventDefault();
event.stopPropagation();
var normal = faces[0].normal;
/*
* Get the distance to move the vertices
*/
var distance = 1;
var i;
for (i = 0; i < self.vertices.length; i++) {
self.vertices[i].x += (normal.x * distance);
self.vertices[i].y += (normal.y * distance);
self.vertices[i].z += (normal.z * distance);
}
object.geometry.verticesNeedUpdate = true;
object.geometry.computeBoundingBox();
object.geometry.computeBoundingSphere();
}
var getIntersects = function (event, object) {
var rect = viewport.getBoundingClientRect();
point.fromArray([
( event.clientX - rect.left ) / rect.width,
( event.clientY - rect.top ) / rect.height
]);
mouse.set(( point.x * 2 ) - 1, -( point.y * 2 ) + 1);
raycaster.setFromCamera(mouse, camera);
if (object instanceof Array) {
return raycaster.intersectObjects(object);
}
return raycaster.intersectObject(object);
};
var getAdjacentNormalFaces = function (geometry, face) {
// Returns an array of all faces that are adjacent and share the same normal vector
};
var getFaceVertices = function (geometry, faces) {
// Returns an array of vertices that belong to the array of faces
};
Update:
As a summary... I have the event handlers, the set of vertices that need to be moved and the normal vector that the vertices should be moved on. What I need is the offset distance that the vertices should be moved based on where the mouse is.
My first thought is to create a plane perpendicular to the normal vector and track the mouse position on that plane. However, I am not sure 1. how to create the perpendicular plane where the largest side is visible to the camera and 2. how to translate the x/y coordinates of the mouse on the plane to the distance the vertices should be moved.
The way I solved this is to map the zero and normal points on the 2D plane and then use the inverse slope to find the perpendicular line that intersects the normal line. I can then use the starting point and the point of intersection to find the distance the mouse moved. I also had to scale the final distance using the camera.
For a quick reference:
// linear slope/intercept: y = mx + b
// solve for b: b = y - mx
// solve for m: (y2 - y1) / (x2 - x1)
// get inverse slope: -1 / m
// get intersect point: (b2 - b1) / (m1 - m2)
There may be an easier way but this is what I did and hopefully it helps others:
On Mousedown
Project the center (0,0,0) vector, the face normal vector and an arbitrary 1 unit vector (1,0,0) onto the camera and get the screen position of the three points
var zero2D = toScreenPosition(0, 0, 0);
var one2D = toScreenPosition(1, 0, 0);
var normal2D = toScreenPosition(intersect.face.normal.x, intersect.face.normal.y, intersect.face.normal.z);
/ ***** /
var toScreenPosition = function (x, y, z) {
var rect = viewport.getBoundingClientRect();
var point = new THREE.Vector2();
screenPositionVector.set(x || 0, y || 0, z || 0);
screenPositionVector.project(camera);
point.set((screenPositionVector.x + 1) / 2 * rect.width, -(screenPositionVector.y - 1) / 2 * rect.height);
return point;
};
Store the mouse starting point and the x direction of the normal (1 or -1).
start2D.set(event.clientX, event.clientY);
normalDir = zero2D.x < normal2D.x ? 1 : -1;
Store the slope and inverse slope of the zero/normal line.
slope = (normal2D.y - zero2D.y) / (normal2D.x - zero2D.x); // TODO: Handle zero slope
inverseSlope = -1 / slope; // TODO: If slope is 0, inverse is infinity
Store the y intercept of the normal line based on the mouse coordinates.
startingYIntercept = event.clientY - (slope * event.clientX);
Use the zero2D and one2D point to find the camera scale. The camera scale is the distance between the two 2D points divided by the distance between the two 3D points (1).
cameraScale = one2D.distanceTo(zero2D);
For better accuracy, we are going to move the vertices based on total movement, not the delta between event handler calls. Because of this, we need to track the starting position of all the vertices.
startingVertices = [];
var i;
for (i = 0; i < vertices.length; i++) {
startingVertices.push({x: vertices[i].x, y: vertices[i].y, z: vertices[i].z});
}
On Mousemove
Using the mouse position and the inverse slope, find the perpendicular line's y intercept.
var endingYIntercept = event.clientY - (inverseSlope * event.clientX);
Use the intercept equation to find the x location where the normal line and perpendicular line intercept.
var endingX = (endingYIntercept - startingYIntercept) / (slope / inverseSlope);
Plug x back in to find the y point. Since the lines intercept at x, you can use either the normal line or perpendicular line. Set the end point based on this.
var endingY = (slope * endingX) + startingYIntercept;
end2D.set(endingX, endingY);
Find the distance between the points and divide by the camera scale.
var distance = end2D.distanceTo(start2D) / cameraScale;
If the normal is in the opposite direction of the mouse movement, multiply distance by -1.
if ((normalDir > 0 && endingX < start2D.x) || (normalDir < 0 && endingX > start2D.x)) {
distance = distance * -1;
}
Since we are moving the vertices by a total distance and not the delta between event handlers, the vertex update code is a little different.
var i;
for (i = 0; i < self.vertices.length; i++) {
vertices[i].x = startingVertices[i].x + (normal.x * distance);
vertices[i].y = startingVertices[i].y + (normal.y * distance);
vertices[i].z = startingVertices[i].z + (normal.z * distance);
}
Extra Credit On Mouseup
When the vertices are moved, the geometry's center is not changed and needs to be updated. To update the center, I can call geometry.center(), however, in Three.js, the geometry's position is based off of its center so this will effectively move the center and the position of the geometry in the opposite direction at half the distance of the vertex move. I don't want this, I want the geometry to stay in the same position when I move the vertices. To do this, I take the first vertex's ending position minus its start position divided by 2 and add that vector to the geometry's position. I then recenter the geometry.
if (_dragging && self.vertices.length > 0) {
offset.set(self.vertices[0].x - startingVertices[0].x, self.vertices[0].y - startingVertices[0].y, self.vertices[0].z - startingVertices[0].z);
offset.divideScalar(2);
object.position.add(offset);
object.geometry.center();
}
All Together
var object; // Set outside this code
var camera; // Set outside this code
var viewport; // Set outside this code
var raycaster = new THREE.Raycaster();
var point = new THREE.Vector2();
var mouse = new THREE.Vector2();
var _dragging = false;
var faces = [];
var vertices = [];
var startingVertices = [];
var slope = 0;
var inverseSlope;
var startingYIntercept = 0;
var normalDir = 1;
var cameraScale = 1;
var start2D = new THREE.Vector2();
var end2D = new THREE.Vector2();
var offset = new THREE.Vector3();
var onMouseDown = function (event) {
if (object === undefined || _dragging === true) {
return;
}
event.preventDefault();
event.stopPropagation();
var intersect = getIntersects(event, object)[0];
if (intersect && intersect.face) {
var zero2D = toScreenPosition(0, 0, 0);
var one2D = toScreenPosition(1, 0, 0);
var normal2D = toScreenPosition(intersect.face.normal.x, intersect.face.normal.y, intersect.face.normal.z);
start2D.set(event.clientX, event.clientY);
normalDir = zero2D.x < normal2D.x ? 1 : -1;
slope = (normal2D.y - zero2D.y) / (normal2D.x - zero2D.x); // TODO: Handle zero slope
inverseSlope = -1 / slope; // TODO: If slope is 0, inverse is infinity
startingYIntercept = event.clientY - (slope * event.clientX);
cameraScale = one2D.distanceTo(zero2D);
faces = getAdjacentNormalFaces(intersect.object.geometry, intersect.face);
vertices = getFaceVertices(intersect.object.geometry, self.faces);
startingVertices = [];
var i;
for (i = 0; i < vertices.length; i++) {
startingVertices.push({x: vertices[i].x, y: vertices[i].y, z: vertices[i].z});
}
}
_dragging = true;
}
var onMouseMove = function (event) {
if (object === undefined || vertices.length === 0 || _dragging === false) {
return;
}
event.preventDefault();
event.stopPropagation();
var normal = faces[0].normal;
var endingYIntercept = event.clientY - (inverseSlope * event.clientX);
var endingX = (endingYIntercept - startingYIntercept) / (slope / inverseSlope);
var endingY = (slope * endingX) + startingYIntercept;
end2D.set(endingX, endingY);
var distance = end2D.distanceTo(start2D) / cameraScale;
if ((normalDir > 0 && endingX < start2D.x) || (normalDir < 0 && endingX > start2D.x)) {
distance = distance * -1;
}
var i;
for (i = 0; i < self.vertices.length; i++) {
vertices[i].x = startingVertices[i].x + (normal.x * distance);
vertices[i].y = startingVertices[i].y + (normal.y * distance);
vertices[i].z = startingVertices[i].z + (normal.z * distance);
}
object.geometry.verticesNeedUpdate = true;
object.geometry.computeBoundingBox();
object.geometry.computeBoundingSphere();
}
var onMouseUp = function (event) {
if (_dragging && vertices.length > 0) {
offset.set(vertices[0].x - startingVertices[0].x, vertices[0].y - startingVertices[0].y, vertices[0].z - startingVertices[0].z);
offset.divideScalar(2);
object.position.add(offset);
object.geometry.center();
}
}
var getIntersects = function (event, object) {
var rect = viewport.getBoundingClientRect();
point.fromArray([
( event.clientX - rect.left ) / rect.width,
( event.clientY - rect.top ) / rect.height
]);
mouse.set(( point.x * 2 ) - 1, -( point.y * 2 ) + 1);
raycaster.setFromCamera(mouse, camera);
if (object instanceof Array) {
return raycaster.intersectObjects(object);
}
return raycaster.intersectObject(object);
};
var toScreenPosition = function (x, y, z) {
var rect = viewport.getBoundingClientRect();
var point = new THREE.Vector2();
screenPositionVector.set(x || 0, y || 0, z || 0);
screenPositionVector.project(camera);
point.set((screenPositionVector.x + 1) / 2 * rect.width, -(screenPositionVector.y - 1) / 2 * rect.height);
return point;
};
var getAdjacentNormalFaces = function (geometry, face) {
// Returns an array of all faces that are adjacent and share the same normal vector
};
var getFaceVertices = function (geometry, faces) {
// Returns an array of vertices that belong to the array of faces
};
You could achieve two ways, on mouse move or in animationframe.
onmouseMove(){
mouseX = ( event.clientX - windowHalfX ) / resistanceh;
mouseY = ( event.clientY - windowHalfY ) / resistancew;
var raycaster = new THREE.Raycaster();
raycaster.setFromCamera(mouse, camera);
var intersects = raycaster.intersectObjects(objects);
if ( intersects.length > 0 ) {
if(mousedown){
//do your thing
}
or in your animation updating these values is more accurate I found.
AnimationFrame(){
mouseX = ( event.clientX - windowHalfX ) / resistanceh;
mouseY = ( event.clientY - windowHalfY ) / resistancew;

Categories