How to convert a sequence of Promises into Rx.Observable with RxJS? - javascript

I'm trying to create an Rx.Observable from a chain of Promises with RxJS. The difference from this question is that I have unknown number of Promises, and every Promise depends on the result of the previous one.
Basically I have a sequence of pages, connected with "next page" links.
What I want the function to do is:
Wait for Promise<>
Provide the result (fire observer.onNext())
Check if there is a next page link
Create next Promise<> with that link
Repeat until there are pages remained
I tried the following:
private getPages<T>(firstPromise: PromiseLike<IODataCollectionResult<T>>): Rx.Observable<T> {
let observable = Rx.Observable.create<T>(async obs => {
let page = await firstPromise;
page.value.forEach(v => obs.onNext(v));
while (page['#odata.nextLink']) {
let nextPageUrl = <string>page['#odata.nextLink'];
let nextPagePromise = <PromiseLike<IODataCollectionResult<T>>>this.resource(nextPageUrl).get().$promise;
page = await nextPagePromise;
page.value.forEach(v => obs.onNext(v));
}
obs.onCompleted();
});
return observable;
}
(IODataCollectionResult is a OData result, where '#odata.nextLink' is the next page url and .value is an array of values)
The problem is I can't compile that with TypeScript, it gives me an error:
Argument of type '(obs: Observer) => Promise' is not assignable to parameter of type '(observer: Observer) => void | Function | IDisposable'.
Which makes sense, because async function returns a Promise<void>, not a void.
Does it mean I cannot use async/await with the Rx.Observable.create()? How can I chain a sequence of Promises into an Observable?

You can wrap the async function in something that voids its results:
function toVoid<A>(fn: A => Any): A => Void {
return x => void fn(x)
}
(forgive my lacking knowledge of TypeScript, but I hope you can guess what it's supposed to do)
With that, you should be able to call
let observable = Rx.Observable.create<T>(toVoid(async obs => {
…
}));
But maybe you shouldn't do that. Don't throw away the promise, use it instead to attach the appropriate error handler:
let observable = Rx.Observable.create<T>(obs => {
(async () => {
…
}()).catch(err => {
obs.onError(err);
});
});

The problem was solved using .then() + recursion, without async/await:
private getPages<T>(initialPromise: PromiseLike<IODataCollectionResult<T>>): Rx.Observable<T> {
return Rx.Observable.create<T>(obs => {
const getPage = (promise: PromiseLike<IODataCollectionResult<T>>) => {
promise.then(page => {
page.value.forEach(v => obs.onNext(v));
if (page['#odata.nextLink']) {
let nextPageUrl = <string>page['#odata.nextLink'];
let nextPagePromise = <PromiseLike<IODataCollectionResult<T>>>this.resource(nextPageUrl).get().$promise;
getPage(nextPagePromise);
}
else {
obs.onCompleted();
}
});
}
getPage(initialPromise);
});
}

Related

NodeJs javascript: wait until the previous object property is assigned before assigning the next property

Suppose I have code like this:
let result = {
name: downloadNameFromInternetVerySlow(),
isFamous: determineIfNameIsFamous(this.name);
}
const downloadNameFromInternetVerySlow = () => {
path = "/home";
const folders = fs.readdirSync(path).filter(file => fs.lstatSync(path).isDirectory());
console.log(folders);
return folders[0];
}
downloadNameFromInternetVerySlow can take a long time, meanwhile determineIfNameIsFamous depends on downloadNameFromInternetVerySlow's result to return correct value.
How do I make sure determineIfNameIsFamous only runs after downloadNameFromInternetVerySlow is done?
The code you show is entirely synchronous so asynchronous results aren't actually the issue here like people were guessing. The issue is that this.name cannot be used to refer to a prior property in an object literal definition for several reasons, not the least of which this isn't set to the object you want.
Instead, you can do this:
let result = {};
result.name = downloadNameFromInternetVerySlow();
result.isFamous = determineIfNameIsFamous(result.name);
You can convert downloadNameFromInternetVerySlow to a Promise(if not already). and then user await to wait till it finished. Otherwise you can use Promise.then()
(This should be inside an async function)
let name = await downloadNameFromInternetVerySlow(),
let isFamous = determineIfNameIsFamous(this.name);
let result = {
name,
isFamous
}
Another method using Promise.then
let name, isFamous;
downloadNameFromInternetVerySlow().then(result => {
name = result;
isFamous = determineIfNameIsFamous(this.name);
});
Async/await
There’s a special syntax to work with promises in a more comfortable fashion, called “async/await”.
An async function returns a promise, like in this example:
const doSomethingAsync = () => {
return new Promise(resolve => {
setTimeout(() => resolve('I did something'), 3000)
})
}
When you want to call this function you prepend await, and the calling code will stop until the promise is resolved or rejected. One caveat: the client function must be defined as async. Here's an example :
const doSomething = async () => {
console.log(await doSomethingAsync())
}
function downloadNameFromInternetVerySlow(){
return new Promise(resolve => setTimeout(() => {
console.log("Set timeout resolving...");
return resolve("Sample Name");
}, 5000))
}
function determineIfNameIsFamous(name){
if(name === "Sample Name"){
return true;
}
return false;
}
async function myFunc(){
let result = {};
result.name = await downloadNameFromInternetVerySlow();
console.log(result);
result.isFamous = determineIfNameIsFamous(result.name);
return result;
}
myFunc().then(res => console.log("result : ", res))
Assuming downloadNameFromInternetVerySlow is asynchrononous (otherwise it would already work like you want), the solution is to use await.
Please note, to be able to do that, this code needs to be wrapped in an async function (or or top level with top level await available.)
async function getAndUseResult(){
let result = {
name: await downloadNameFromInternetVerySlow(),
isFamous: determineIfNameIsFamous(this.name)
}
console.log(JSON.stringify(result))
}
getAndUseResult();

Javascript - Filter result from function that can return Promise boolean OR boolean

I wonder if someone ever had this issue before.
Before I had an EventHandler that would look like this:
export interface EventHandler {
name: string;
canHandleEvent(event: EventEntity): boolean;
handleEvent(event: EventEntity): Promise<void>;
}
And my filter function would work normally, also my tests were passing - where I was filtering the events using:
messages.forEach(message => {
const event: EventEntity = JSON.parse(message.Body);
this.handlers
.filter(handler => handler.canHandleEvent(event)) // WORKED WELL
.forEach(handler => {
// LOGIC
});
Currently, we had to change the canHandleEvent to either Boolean or Promise. Since we had some promises to be resolved and identify whether the event can be handle or not.
export interface EventHandler {
// ...
canHandleEvent(event: EventEntity): boolean | Promise<boolean>;
}
So, in order to solve it, I used Promise.resolve and Promise.all. No luck:
messages.forEach(async message => {
const event: EventEntity = JSON.parse(message.Body);
const handlersResolved = await Promise.all(this.handlers);
handlersResolved
.filter(handler => handler.canHandleEvent(event))
.forEach(handler => {
Now, my tests pass for the Promise canHandleEvent, but they are failing for the events passed that is boolean. They look like this:
class HandlerB implements EventHandler {
name = HandlerB.name;
numRuns = 0;
canHandleEvent(event: EventEntity): boolean {
console.log('event', event)
return event.eventType === EventType.ONE_EVENT || event.eventType === EventType.SECOND_EVENT;
}
async handleEvent(event: EventEntity): Promise<void> {
return new Promise(resolve => {
setTimeout(() => {
this.numRuns += 1;
resolve();
}, 25);
});
}
}
And my test that are now failing and before was passing are:
it('Should process handlers that match, including canHandleEvent that returns Promise<boolean> TRUE', async () => {
setHandlers([handlerA, handlerB, handlerC]);
const event = await createEvent(EventType.SECOND_EVENT);
await sleep(1000);
expect(handlerA.numRuns, 'handleA').to.eql(0);
expect(handlerB.numRuns, 'handleB').to.eql(1);
expect(handlerC.numRuns, 'handleC').to.eql(1); // handlerC is Promise<boolean>, it works fine
expect(errorHandler.numRuns).to.eql(0);
handlerC.numRuns = 0;
});
it('Should allow handlers to pass even if one has an error', async () => {
setHandlers([handlerA, handlerB, errorHandler]);
const event = await createEvent(EventType.USER_REGISTRATION_STATUS);
await sleep(1000);
expect(handlerA.numRuns, 'handlerA').to.eql(1);
expect(handlerB.numRuns, 'handlerB').to.eql(1);
expect(errorHandler.numRuns, 'errorHandler').to.eql(1);
});
Any thoughts on how to solve this? I've tried to identify whether is promise or boolean before inside the .filter but still no luck:
this.handlers
.filter(async handler => {
if(typeof handler.canHandleEvent(event).then == 'function') {
const result = await Promise.resolve(handler.canHandleEvent(event))
console.log('IS PROMISE!!', result);
return result
}
console.log('IT IS NOT PROMISE', handler.canHandleEvent(event))
return handler.canHandleEvent(event)
})
Currently, we had to change the canHandleEvent to either Boolean or Promise...
Just to be clear, that's a massive semantic change that will ripple through every layer of the code that uses that method. You can't directly use filter with it anymore, for instance, and any synchronous function that uses it is now potentially asynchronous (and fundamentally, "potentially asynchronous" = "asynchronous"). But if it has to happen, it has to happen! :-)
Your original code using canHandleEvent like this:
messages.forEach(message => {
const event: EventEntity = JSON.parse(message.Body);
this.handlers
.filter(handler => handler.canHandleEvent(event)) // WORKED WELL
.forEach(handler => {
// LOGIC
});
});
has to become asynchronous, like this:
// Handles things in parallel, not series
await/*or return*/ Promise.all(messages.map(message => {
const event: EventEntity = JSON.parse(message.Body);
return Promise.all(this.handlers.map(handler => async {
if (await handler.canHandleEvent(event)) {
// LOGIC
}
}));
}));
Notice how each layer was affected. messages.forEach turned into building an array of promises via messages.map and waiting for them via await (or using .then, etc., or returning to a calling function). For each message, we do the same thing for handlers, since we can't know whether a handler can handle something synchronously. (No need for Promise.resolve, Promise.all will handle that for you.)
The code above assumes it's okay for all of this to overlap (both the messages and the handlers for a message), whereas before because it was all synchronous, they all happened in series (all of the relevant handlers for one message, in order, then all of the handlers for the next, etc.). If you need it to be in series like that, you can use for-of loops:
// Handles things in series, not parallel
// (In an `async` function)
for (const message of messages) {
const event: EventEntity = JSON.parse(message.Body);
for (const handler of this.handlers) {
if (await handler.canHandleEvent(event)) {
// LOGIC
}
}
}
In both cases, it's possible to handle the ones returning boolean differently (synchronously) from the ones returning promises, but it complicates the code.
To solve your issue, I think the most simple way is to first populate the array with the expected values, so you can properly filter.
const transformedHandlers = await Promise.all(this.handlers.map(async handler => {
return {
...handler,
eventCanBeHandled: await handler.canHandleEvent(event)
}
}))
This will transform the array so you have a key that shows what handlers can be handled.
To finish it off you use your code like you would always do but instead of checking
canHandleEvent
you use the new field that has been introduced in the const transformedhandlers
below is the example:
transformedHandlers
.filter(handler => handler.eventCanBeHandled)
.forEach(handler => {
// LOGIC
});
This should be enough to keep you code working like it used to.
sorry for my English. it's not my native language

Using promise in loop results in Promise failure

I'd like to reuse the same code in a loop. This code contains promises. However, when iterating, this code results in an error.
I've tried using for and while loops. There seems to be no issue when I use the for loop for a single iteration.
Here is a minimal version of my code:
var search_url = /* Some initial URL */
var glued = "";
for(var i = 0; i < 2; i++)
{
const prom = request(search_url)
.then(function success(response /* An array from a XMLHTTPRequest*/) {
if (/* Some condition */)
{
search_url = /* Gets next URL */
glued += processQuery(response[0]);
} else {
console.log("Done.")
}
})
.catch(function failure(err) {
console.error(err.message); // TODO: do something w error
})
}
document.getElementById('api-content').textContent = glued;
I expect the results to append to the variable glued but instead, I get an error: failure Promise.catch (async) (anonymous) after the first iteration of the loop.
Answer:
You can use the Symbol.iterator in accordance with for await to perform asynchronous execution of your promises. This can be packaged up into a constructor, in the example case it's called Serial (because we're going through promises one by one, in order)
function Serial(promises = []) {
return {
promises,
resolved: [],
addPromise: function(fn) {
promises.push(fn);
},
resolve: async function(cb = i => i, err = (e) => console.log("trace: Serial.resolve " + e)) {
try {
for await (let p of this[Symbol.iterator]()) {}
return this.resolved.map(cb);
} catch (e) {
err(e);
}
},
[Symbol.iterator]: async function*() {
this.resolved = [];
for (let promise of this.promises) {
let p = await promise().catch(e => console.log("trace: Serial[Symbol.iterator] ::" + e));
this.resolved.push(p);
yield p;
}
}
}
}
What is the above?
It's a constructor called Serial.
It takes as an argument an array of Functions that return Promises.
The functions are stored in Serial.promises
It has an empty array stored in Serial.resolved - this will store the resolved promise requests.
It has two methods:
addPromise: Takes a Function that returns a Promise and adds it to Serial.promises
resolve: Asynchronously calls a custom Symbol.iterator. This iterator goes through every single promise, waits for it to be completed, and adds it to Serial.resolved. Once this is completed, it returns a map function that acts on the populated Serial.resolved array. This allows you to simply call resolve and then provide a callback of what to do with the array of responses. A.e. .resolve()((resolved_requests) => //do something with resolved_requests)
Why does it work?
Although many people don't realize this Symbol.iterator is much more powerful than standard for loops. This is for two big reasons.
The first reason, and the one that is applicable in this situation, is because it allows for asynchronous calls that can affect the state of the applied object.
The second reason is that it can be used to provide two different types of data from the same object. A.e. You may have an array that you would like to read the contents of:
let arr = [1,2,3,4];
You can use a for loop or forEach to get the data:
arr.forEach(v => console.log(v));
// 1, 2, 3, 4
But if you adjust the iterator:
arr[Symbol.iterator] = function* () {
yield* this.map(v => v+1);
};
You get this:
arr.forEach(v => console.log(v));
// 1, 2, 3, 4
for(let v of arr) console.log(v);
// 2, 3, 4, 5
This is useful for many different reasons, including timestamping requests/mapping references, etc. If you'd like to know more please take a look at the ECMAScript Documentation: For in and For Of Statements
Use:
It can be used by calling the constructor with an Array of functions that return Promises. You can also add Function Promises to the Object by using
new Serial([])
.addPromise(() => fetch(url))
It doesn't run the Function Promises until you use the .resolve method.
This means that you can add promises ad hoc if you'd like before you do anything with the asynchronous calls. A.e. These two are the same:
With addPromise:
let promises = new Serial([() => fetch(url), () => fetch(url2), () => fetch(url3)]);
promises.addPromise(() => fetch(url4));
promises.resolve().then((responses) => responses)
Without addPromise:
let promises = new Serial([() => fetch(url), () => fetch(url2), () => fetch(url3), () => fetch(url4)])
.resolve().then((responses) => responses)
Data:
Since I can't really replicate your data calls, I opted for JSONPlaceholder (a fake online rest api) to show the promise requests in action.
The data looks like this:
let searchURLs = ["https://jsonplaceholder.typicode.com/todos/1",
"https://jsonplaceholder.typicode.com/todos/2",
"https://jsonplaceholder.typicode.com/todos/3"]
//since our constructor takes functions that return promises, I map over the URLS:
.map(url => () => fetch(url));
To get the responses we can call the above data using our constructor:
let promises = new Serial(searchURLS)
.resolve()
.then((resolved_array) => console.log(resolved_array));
Our resolved_array gives us an array of XHR Response Objects. You can see that here:
function Serial(promises = []) {
return {
promises,
resolved: [],
addPromise: function(fn) {
promises.push(fn);
},
resolve: async function(cb = i => i, err = (e) => console.log("trace: Serial.resolve " + e)) {
try {
for await (let p of this[Symbol.iterator]()) {}
return this.resolved.map(cb);
} catch (e) {
err(e);
}
},
[Symbol.iterator]: async function*() {
this.resolved = [];
for (let promise of this.promises) {
let p = await promise().catch(e => console.log("trace: Serial[Symbol.iterator] ::" + e));
this.resolved.push(p);
yield p;
}
}
}
}
let searchURLs = ["https://jsonplaceholder.typicode.com/todos/1", "https://jsonplaceholder.typicode.com/todos/2", "https://jsonplaceholder.typicode.com/todos/3"].map(url => () => fetch(url));
let promises = new Serial(searchURLs).resolve().then((resolved_array) => console.log(resolved_array));
Getting Results to Screen:
I opted to use a closure function to simply add text to an output HTMLElement.
This is added like this:
HTML:
<output></output>
JS:
let output = ((selector) => (text) => document.querySelector(selector).textContent += text)("output");
Putting it together:
If we use the output snippet along with our Serial object the final functional code looks like this:
let promises = new Serial(searchURLs).resolve()
.then((resolved) => resolved.map(response =>
response.json()
.then(obj => output(obj.title))));
What's happening above is this:
we input all our functions that return promises. new Serial(searchURLS)
we tell it to resolve all the requests .resolve()
after it resolves all the requests, we tell it to take the requests and map the array .then(resolved => resolved.map
the responses we turn to objects by using .json method. This is necessary for JSON, but may not be necessary for you
after this is done, we use .then(obj => to tell it to do something with each computed response
we output the title to the screen using output(obj.title)
Result:
let output = ((selector) => (text) => document.querySelector(selector).textContent += text)("output");
function Serial(promises = []) {
return {
promises,
resolved: [],
addPromise: function(fn) {
promises.push(fn);
},
resolve: async function(cb = i => i, err = (e) => console.log("trace: Serial.resolve " + e)) {
try {
for await (let p of this[Symbol.iterator]()) {}
return this.resolved.map(cb);
} catch (e) {
err(e);
}
},
[Symbol.iterator]: async function*() {
this.resolved = [];
for (let promise of this.promises) {
let p = await promise().catch(e => console.log("trace: Serial[Symbol.iterator] ::" + e));
this.resolved.push(p);
yield p;
}
}
}
}
let searchURLs = ["https://jsonplaceholder.typicode.com/todos/1", "https://jsonplaceholder.typicode.com/todos/2", "https://jsonplaceholder.typicode.com/todos/3"].map(url => () => fetch(url));
let promises = new Serial(searchURLs).resolve()
.then((resolved) => resolved.map(response =>
response.json()
.then(obj => output(obj.title))));
<output></output>
Why go this route?
It's reusable, functional, and if you import the Serial Constructor you can keep your code slim and comprehensible. If this is a cornerstone of your code, it'll be easy to maintain and use.
Using it with your code:
I will add how to specifically use this with your code to fully answer your question and so that you may understand further.
NOTE glued will be populated with the requested data, but it's unnecessary. I left it in because you may have wanted it stored for a reason outside the scope of your question and I don't want to make assumptions.
//setup urls:
var search_urls = ["https://jsonplaceholder.typicode.com/todos/1", "https://jsonplaceholder.typicode.com/todos/2"];
var request = (url) => () => fetch(url);
let my_requests = new Serial(search_urls.map(request));
//setup glued (you don't really need to, but if for some reason you want the info stored...
var glued = "";
//setup helper function to grab title(this is necessary for my specific data)
var addTitle = (req) => req.json().then(obj => (glued += obj.title, document.getElementById('api-content').textContent = glued));
// put it all together:
my_requests.resolve().then(requests => requests.map(addTitle));
Using it with your code - Working Example:
function Serial(promises = []) {
return {
promises,
resolved: [],
addPromise: function(fn) {
promises.push(fn);
},
resolve: async function(cb = i => i, err = (e) => console.log("trace: Serial.resolve " + e)) {
try {
for await (let p of this[Symbol.iterator]()) {}
return this.resolved.map(cb);
} catch (e) {
err(e);
}
},
[Symbol.iterator]: async function*() {
this.resolved = [];
for (let promise of this.promises) {
let p = await promise().catch(e => console.log("trace: Serial[Symbol.iterator] ::" + e));
this.resolved.push(p);
yield p;
}
}
}
}
//setup urls:
var search_urls = ["https://jsonplaceholder.typicode.com/todos/1", "https://jsonplaceholder.typicode.com/todos/2"];
var request = (url) => () => fetch(url);
let my_requests = new Serial(search_urls.map(request));
//setup glued (you don't really need to, but if for some reason you want the info stored...
var glued = "";
//setup helper function to grab title(this is necessary for my specific data)
var addTitle = (req) => req.json().then(obj => (glued += obj.title, document.getElementById('api-content').textContent = glued));
// put it all together:
my_requests.resolve().then(requests => requests.map(addTitle));
<div id="api-content"></div>
Final Note
It's likely that we will be seeing a prototypal change to the Promise object in the future that allows for easy serialization of Promises. Currently (7/15/19) there is a TC39 Proposal that does add a lot of functionality to the Promise object but it hasn't been fully vetted yet, and as with many ideas trapped within the Proposal stage, it's almost impossible to tell when they will be implemented into Browsers, or even if the idea will stagnate and fall off the radar.
Until then workarounds like this are necessary and useful( the reason why I even went through the motions of constructing this Serializer object was for a transpiler I wrote in Node, but it's been very helpful beyond that! ) but do keep an eye out for any changes because you never know!
Hope this helps! Happy Coding!
Your best bet is probably going to be building up that glued variable with recursion.
Here's an example using recursion with a callback function:
var glued = "";
requestRecursively(/* Some initial URL string */, function() {
document.getElementById('api-content').textContent = glued;
});
function requestRecursively(url, cb) {
request(url).then(function (response) {
if (/* Some condition */) {
glued += processQuery(response[0]);
var next = /* Gets next URL string */;
if (next) {
// There's another URL. Make another request.
requestRecursively(next, cb);
} else {
// We're done. Invoke the callback;
cb();
}
} else {
console.log("Done.");
}
}).catch(function (err) {
console.error(err.message);
});
}

Correct way to sequence two asynchronous operations that each return a promise javascript

I was wondering what is the proper way to call a promise after another promise resolves. I know we can use async await to create functions which will resolve a promise. I was wondering which form of handling promises is consider proper practice, or is it good practice to create generators instead? consider the following code:
const fetchSomething = () => new Promise((resolve) => {
setTimeout(() => resolve(console.log('future value')), 500);
});
const fetchSomethingElse = () => new Promise((resolve) => {
setTimeout(() => resolve(console.log('future value dueeee')), 3000);
});
const get = () => {
return fetchSomething().then(function(){
fetchSomethingElse()
});
}
get();
or
const fetchSomething = () => new Promise((resolve) => {
setTimeout(() => resolve({resolve: true}), 500);
});
const fetchSomethingElse = () => new Promise((resolve) => {
setTimeout(() => resolve({resolve: true}), 3000);
});
const get = async function() {
const fet = await fetchSomething();
const fet2 = await fetchSomethingElse();
};
get();
Either one is fine. Your choice.
In the first you're nesting .then() handlers. In the second, you're using the newer await to sequence them. More people are moving to await because it appears to be simpler code for sequencing operations (assuming you do proper error handling), though in this case, they are pretty similar in complexity, particularly with the simplification suggested below so it's really up to your own personal coding style.
What is missing in both is that get() just returned a promise so you need to use .then() and .catch() with it to get the value and catch any errors.
Also, something that is missing in the first is that you aren't returning the second promise which means the caller won't know when the second operation is done.
Your first can be simplified and fixed up like this:
const get = () => {
return fetchSomething().then(fetchSomethingElse);
}
get().then(val => {
// done here
}).catch(err => {
// error here
});
As Pointy mentioned, you don't "call a promise". You "call a function that returns a promise". Promises are objects. They are not callable.
Probably what your title could be rewritten to is: "Correct way to sequence two asynchronous operations that each return a promise".
For completeness, if your two async operations don't depend upon one another, then you don't have to manually sequence them. You can start them both and then monitor when both are done. This will sometimes get a faster end-to-end response.
You can do that using Promise.all():
const get = function() {
return Promise.all([fetchSomething(), fetchSomethingElse()]).then(results => {
// process results array and then return final value
// results[0] is result from fetchSomething, results[1] is result from fetchSomethingElse
return finalVal;
});
}
Both are fine, but you are making a common mistake in the top example (and maybe it's just because of the simplification of the code for the question). You are returning the promise from get, but you are not returning the promise from the then. This means the caller of get won't know when both promises have resolved. Consider:
const fetchSomething = () => new Promise((resolve) => {
setTimeout(() => resolve(console.log('future value')), 500);
});
const fetchSomethingElse = () => new Promise((resolve) => {
setTimeout(() => resolve(console.log('future value dueeee')), 3000);
});
const get = () => {
return fetchSomething().then(function(){
fetchSomethingElse()
});
}
// we don't when fetchSomethingElse is done
get().then(() => console.log("done"));
Also there's another option you might consider since the second promise doesn't depend on the output of the first. Call them in parallel:
const get = () => {
return Promise.all([fetchSomething(), fetchSomethingElse() ])
}
In this case one can start before the other is finished and the whole operation should be faster.
It's important to remember that in Promise-based patterns you're using functions that return Promises. Promises are passed in resolve and reject arguments (which are themselves functions). What you resolve with, is what gets exectuted in the .then() phase, and what you reject with gets exectuted in the .catch() phase.
To handle Promises in sequence, you're passing your values into the top-level function that wraps the Promise.
so...
const p1 = () => {
return new Promise((resolve,reject) => {
window.setTimeout(() => {
resolve('future value one');
},500);
});
};
const p2 = (v1) => {
return new Promise((resolve,reject) => {
window.setTimeout(() => {
const v2 = 'future value two';
resolve({v1,v2});
},500);
});
};
p1().then(p2).then(console.log);

How to make q.all execute in order like async.series [duplicate]

Consider the following code that reads an array of files in a serial/sequential manner. readFiles returns a promise, which is resolved only once all files have been read in sequence.
var readFile = function(file) {
... // Returns a promise.
};
var readFiles = function(files) {
return new Promise((resolve, reject) => {
var readSequential = function(index) {
if (index >= files.length) {
resolve();
} else {
readFile(files[index]).then(function() {
readSequential(index + 1);
}).catch(reject);
}
};
readSequential(0); // Start with the first file!
});
};
The above code works, but I don't like having to do recursion for things to occur sequentially. Is there a simpler way that this code can be re-written so that I don't have to use my weird readSequential function?
Originally I tried to use Promise.all, but that caused all of the readFile calls to happen concurrently, which is not what I want:
var readFiles = function(files) {
return Promise.all(files.map(function(file) {
return readFile(file);
}));
};
Update 2017: I would use an async function if the environment supports it:
async function readFiles(files) {
for(const file of files) {
await readFile(file);
}
};
If you'd like, you can defer reading the files until you need them using an async generator (if your environment supports it):
async function* readFiles(files) {
for(const file of files) {
yield await readFile(file);
}
};
Update: In second thought - I might use a for loop instead:
var readFiles = function(files) {
var p = Promise.resolve(); // Q() in q
files.forEach(file =>
p = p.then(() => readFile(file));
);
return p;
};
Or more compactly, with reduce:
var readFiles = function(files) {
return files.reduce((p, file) => {
return p.then(() => readFile(file));
}, Promise.resolve()); // initial
};
In other promise libraries (like when and Bluebird) you have utility methods for this.
For example, Bluebird would be:
var Promise = require("bluebird");
var fs = Promise.promisifyAll(require("fs"));
var readAll = Promise.resolve(files).map(fs.readFileAsync,{concurrency: 1 });
// if the order matters, you can use Promise.each instead and omit concurrency param
readAll.then(function(allFileContents){
// do stuff to read files.
});
Although there is really no reason not to use async await today.
Here is how I prefer to run tasks in series.
function runSerial() {
var that = this;
// task1 is a function that returns a promise (and immediately starts executing)
// task2 is a function that returns a promise (and immediately starts executing)
return Promise.resolve()
.then(function() {
return that.task1();
})
.then(function() {
return that.task2();
})
.then(function() {
console.log(" ---- done ----");
});
}
What about cases with more tasks? Like, 10?
function runSerial(tasks) {
var result = Promise.resolve();
tasks.forEach(task => {
result = result.then(() => task());
});
return result;
}
This question is old, but we live in a world of ES6 and functional JavaScript, so let's see how we can improve.
Because promises execute immediately, we can't just create an array of promises, they would all fire off in parallel.
Instead, we need to create an array of functions that returns a promise. Each function will then be executed sequentially, which then starts the promise inside.
We can solve this a few ways, but my favorite way is to use reduce.
It gets a little tricky using reduce in combination with promises, so I have broken down the one liner into some smaller digestible bites below.
The essence of this function is to use reduce starting with an initial value of Promise.resolve([]), or a promise containing an empty array.
This promise will then be passed into the reduce method as promise. This is the key to chaining each promise together sequentially. The next promise to execute is func and when the then fires, the results are concatenated and that promise is then returned, executing the reduce cycle with the next promise function.
Once all promises have executed, the returned promise will contain an array of all the results of each promise.
ES6 Example (one liner)
/*
* serial executes Promises sequentially.
* #param {funcs} An array of funcs that return promises.
* #example
* const urls = ['/url1', '/url2', '/url3']
* serial(urls.map(url => () => $.ajax(url)))
* .then(console.log.bind(console))
*/
const serial = funcs =>
funcs.reduce((promise, func) =>
promise.then(result => func().then(Array.prototype.concat.bind(result))), Promise.resolve([]))
ES6 Example (broken down)
// broken down to for easier understanding
const concat = list => Array.prototype.concat.bind(list)
const promiseConcat = f => x => f().then(concat(x))
const promiseReduce = (acc, x) => acc.then(promiseConcat(x))
/*
* serial executes Promises sequentially.
* #param {funcs} An array of funcs that return promises.
* #example
* const urls = ['/url1', '/url2', '/url3']
* serial(urls.map(url => () => $.ajax(url)))
* .then(console.log.bind(console))
*/
const serial = funcs => funcs.reduce(promiseReduce, Promise.resolve([]))
Usage:
// first take your work
const urls = ['/url1', '/url2', '/url3', '/url4']
// next convert each item to a function that returns a promise
const funcs = urls.map(url => () => $.ajax(url))
// execute them serially
serial(funcs)
.then(console.log.bind(console))
To do this simply in ES6:
function(files) {
// Create a new empty promise (don't do that with real people ;)
var sequence = Promise.resolve();
// Loop over each file, and add on a promise to the
// end of the 'sequence' promise.
files.forEach(file => {
// Chain one computation onto the sequence
sequence =
sequence
.then(() => performComputation(file))
.then(result => doSomething(result));
// Resolves for each file, one at a time.
})
// This will resolve after the entire chain is resolved
return sequence;
}
Addition example
const addTwo = async () => 2;
const addThree = async (inValue) => new Promise((resolve) => setTimeout(resolve(inValue + 3), 2000));
const addFour = (inValue) => new Promise((res) => setTimeout(res(inValue + 4), 1000));
const addFive = async (inValue) => inValue + 5;
// Function which handles promises from above
async function sequenceAddition() {
let sum = await [addTwo, addThree, addFour, addFive].reduce(
(promise, currPromise) => promise.then((val) => currPromise(val)),
Promise.resolve()
);
console.log('sum:', sum); // 2 + 3 + 4 + 5 = 14
}
// Run function. See console for result.
sequenceAddition();
General syntax to use reduce()
function sequence(tasks, fn) {
return tasks.reduce((promise, task) => promise.then(() => fn(task)), Promise.resolve());
}
UPDATE
items-promise is a ready to use NPM package doing the same.
I've had to run a lot of sequential tasks and used these answers to forge a function that would take care of handling any sequential task...
function one_by_one(objects_array, iterator, callback) {
var start_promise = objects_array.reduce(function (prom, object) {
return prom.then(function () {
return iterator(object);
});
}, Promise.resolve()); // initial
if(callback){
start_promise.then(callback);
}else{
return start_promise;
}
}
The function takes 2 arguments + 1 optional. First argument is the array on which we will be working. The second argument is the task itself, a function that returns a promise, the next task will be started only when this promise resolves. The third argument is a callback to run when all tasks have been done. If no callback is passed, then the function returns the promise it created so we can handle the end.
Here's an example of usage:
var filenames = ['1.jpg','2.jpg','3.jpg'];
var resize_task = function(filename){
//return promise of async resizing with filename
};
one_by_one(filenames,resize_task );
Hope it saves someone some time...
With Async/Await (if you have the support of ES7)
function downloadFile(fileUrl) { ... } // This function return a Promise
async function main()
{
var filesList = [...];
for (const file of filesList) {
await downloadFile(file);
}
}
(you must use for loop, and not forEach because async/await has problems running in forEach loop)
Without Async/Await (using Promise)
function downloadFile(fileUrl) { ... } // This function return a Promise
function downloadRecursion(filesList, index)
{
index = index || 0;
if (index < filesList.length)
{
downloadFile(filesList[index]).then(function()
{
index++;
downloadRecursion(filesList, index); // self invocation - recursion!
});
}
else
{
return Promise.resolve();
}
}
function main()
{
var filesList = [...];
downloadRecursion(filesList);
}
My preferred solution:
function processArray(arr, fn) {
return arr.reduce(
(p, v) => p.then((a) => fn(v).then(r => a.concat([r]))),
Promise.resolve([])
);
}
It's not fundamentally different from others published here but:
Applies the function to items in series
Resolves to an array of results
Doesn't require async/await (support is still quite limited, circa 2017)
Uses arrow functions; nice and concise
Example usage:
const numbers = [0, 4, 20, 100];
const multiplyBy3 = (x) => new Promise(res => res(x * 3));
// Prints [ 0, 12, 60, 300 ]
processArray(numbers, multiplyBy3).then(console.log);
Tested on reasonable current Chrome (v59) and NodeJS (v8.1.2).
First, you need to understand that a promise is executed at the time of creation.
So for example if you have a code:
["a","b","c"].map(x => returnsPromise(x))
You need to change it to:
["a","b","c"].map(x => () => returnsPromise(x))
Then we need to sequentially chain promises:
["a", "b", "c"].map(x => () => returnsPromise(x))
.reduce(
(before, after) => before.then(_ => after()),
Promise.resolve()
)
executing after(), will make sure that promise is created (and executed) only when its time comes.
Nicest solution that I was able to figure out was with bluebird promises. You can just do Promise.resolve(files).each(fs.readFileAsync); which guarantees that promises are resolved sequentially in order.
With async/await of ES2016 (and maybe some features of ES2018), this can be reduced to this form:
function readFile(file) {
... // Returns a promise.
}
async function readFiles(files) {
for (file in files) {
await readFile(file)
}
}
I haven't seen another answer express that simplicity. The OP said parallel execution of readFile was not desired. However, with IO like this it really makes sense to not be blocking on a single file read, while keeping the loop execution synchronous (you don't want to do the next step until all files have been read). Since I just learned about this and am a bit excited about it, I'll share that approach of parallel asynchronous execution of readFile with overall synchronous execution of readFiles.
async function readFiles(files) {
await Promise.all(files.map(readFile))
}
Isn't that a thing of beauty?
This is a slight variation of another answer above. Using native Promises:
function inSequence(tasks) {
return tasks.reduce((p, task) => p.then(task), Promise.resolve())
}
Explanation
If you have these tasks [t1, t2, t3], then the above is equivalent to Promise.resolve().then(t1).then(t2).then(t3). It's the behavior of reduce.
How to use
First You need to construct a list of tasks! A task is a function that accepts no argument. If you need to pass arguments to your function, then use bind or other methods to create a task. For example:
var tasks = files.map(file => processFile.bind(null, file))
inSequence(tasks).then(...)
I created this simple method on the Promise object:
Create and add a Promise.sequence method to the Promise object
Promise.sequence = function (chain) {
var results = [];
var entries = chain;
if (entries.entries) entries = entries.entries();
return new Promise(function (yes, no) {
var next = function () {
var entry = entries.next();
if(entry.done) yes(results);
else {
results.push(entry.value[1]().then(next, function() { no(results); } ));
}
};
next();
});
};
Usage:
var todo = [];
todo.push(firstPromise);
if (someCriterium) todo.push(optionalPromise);
todo.push(lastPromise);
// Invoking them
Promise.sequence(todo)
.then(function(results) {}, function(results) {});
The best thing about this extension to the Promise object, is that it is consistent with the style of promises. Promise.all and Promise.sequence is invoked the same way, but have different semantics.
Caution
Sequential running of promises is not usually a very good way to use promises. It's usually better to use Promise.all, and let the browser run the code as fast as possible. However, there are real use cases for it - for example when writing a mobile app using javascript.
My answer based on https://stackoverflow.com/a/31070150/7542429.
Promise.series = function series(arrayOfPromises) {
var results = [];
return arrayOfPromises.reduce(function(seriesPromise, promise) {
return seriesPromise.then(function() {
return promise
.then(function(result) {
results.push(result);
});
});
}, Promise.resolve())
.then(function() {
return results;
});
};
This solution returns the results as an array like Promise.all().
Usage:
Promise.series([array of promises])
.then(function(results) {
// do stuff with results here
});
Use Array.prototype.reduce, and remember to wrap your promises in a function otherwise they will already be running!
// array of Promise providers
const providers = [
function(){
return Promise.resolve(1);
},
function(){
return Promise.resolve(2);
},
function(){
return Promise.resolve(3);
}
]
const inSeries = function(providers){
const seed = Promise.resolve(null);
return providers.reduce(function(a,b){
return a.then(b);
}, seed);
};
nice and easy...
you should be able to re-use the same seed for performance, etc.
It's important to guard against empty arrays or arrays with only 1 element when using reduce, so this technique is your best bet:
const providers = [
function(v){
return Promise.resolve(v+1);
},
function(v){
return Promise.resolve(v+2);
},
function(v){
return Promise.resolve(v+3);
}
]
const inSeries = function(providers, initialVal){
if(providers.length < 1){
return Promise.resolve(null)
}
return providers.reduce((a,b) => a.then(b), providers.shift()(initialVal));
};
and then call it like:
inSeries(providers, 1).then(v => {
console.log(v); // 7
});
Using modern ES:
const series = async (tasks) => {
const results = [];
for (const task of tasks) {
const result = await task;
results.push(result);
}
return results;
};
//...
const readFiles = await series(files.map(readFile));
Most of the answers dont include the results of ALL promises individually, so in case someone is looking for this particular behaviour, this is a possible solution using recursion.
It follows the style of Promise.all:
Returns the array of results in the .then() callback.
If some promise fails, its returned immediately in the .catch() callback.
const promiseEach = (arrayOfTasks) => {
let results = []
return new Promise((resolve, reject) => {
const resolveNext = (arrayOfTasks) => {
// If all tasks are already resolved, return the final array of results
if (arrayOfTasks.length === 0) return resolve(results)
// Extract first promise and solve it
const first = arrayOfTasks.shift()
first().then((res) => {
results.push(res)
resolveNext(arrayOfTasks)
}).catch((err) => {
reject(err)
})
}
resolveNext(arrayOfTasks)
})
}
// Lets try it 😎
const promise = (time, shouldThrowError) => new Promise((resolve, reject) => {
const timeInMs = time * 1000
setTimeout(()=>{
console.log(`Waited ${time} secs`)
if (shouldThrowError) reject(new Error('Promise failed'))
resolve(time)
}, timeInMs)
})
const tasks = [() => promise(1), () => promise(2)]
promiseEach(tasks)
.then((res) => {
console.log(res) // [1, 2]
})
// Oops some promise failed
.catch((error) => {
console.log(error)
})
Note about the tasks array declaration:
In this case is not possible to use the following notation like Promise.all would use:
const tasks = [promise(1), promise(2)]
And we have to use:
const tasks = [() => promise(1), () => promise(2)]
The reason is that JavaScript starts executing the promise immediatelly after its declared. If we use methods like Promise.all, it just checks that the state of all of them is fulfilled or rejected, but doesnt start the exection itself. Using () => promise() we stop the execution until its called.
You can use this function that gets promiseFactories List:
function executeSequentially(promiseFactories) {
var result = Promise.resolve();
promiseFactories.forEach(function (promiseFactory) {
result = result.then(promiseFactory);
});
return result;
}
Promise Factory is just simple function that returns a Promise:
function myPromiseFactory() {
return somethingThatCreatesAPromise();
}
It works because a promise factory doesn't create the promise until it's asked to. It works the same way as a then function – in fact, it's the same thing!
You don't want to operate over an array of promises at all. Per the Promise spec, as soon as a promise is created, it begins executing. So what you really want is an array of promise factories...
If you want to learn more on Promises, you should check this link:
https://pouchdb.com/2015/05/18/we-have-a-problem-with-promises.html
If you want you can use reduce to make a sequential promise, for example:
[2,3,4,5,6,7,8,9].reduce((promises, page) => {
return promises.then((page) => {
console.log(page);
return Promise.resolve(page+1);
});
}, Promise.resolve(1));
it'll always works in sequential.
I really liked #joelnet's answer, but to me, that style of coding is a little bit tough to digest, so I spent a couple of days trying to figure out how I would express the same solution in a more readable manner and this is my take, just with a different syntax and some comments.
// first take your work
const urls = ['/url1', '/url2', '/url3', '/url4']
// next convert each item to a function that returns a promise
const functions = urls.map((url) => {
// For every url we return a new function
return () => {
return new Promise((resolve) => {
// random wait in milliseconds
const randomWait = parseInt((Math.random() * 1000),10)
console.log('waiting to resolve in ms', randomWait)
setTimeout(()=>resolve({randomWait, url}),randomWait)
})
}
})
const promiseReduce = (acc, next) => {
// we wait for the accumulator to resolve it's promise
return acc.then((accResult) => {
// and then we return a new promise that will become
// the new value for the accumulator
return next().then((nextResult) => {
// that eventually will resolve to a new array containing
// the value of the two promises
return accResult.concat(nextResult)
})
})
};
// the accumulator will always be a promise that resolves to an array
const accumulator = Promise.resolve([])
// we call reduce with the reduce function and the accumulator initial value
functions.reduce(promiseReduce, accumulator)
.then((result) => {
// let's display the final value here
console.log('=== The final result ===')
console.log(result)
})
As Bergi noticed, I think the best and clear solution is use BlueBird.each, code below:
const BlueBird = require('bluebird');
BlueBird.each(files, fs.readFileAsync);
I find myself coming back to this question many times and the answers aren't exactly giving me what I need, so putting this here for anyone that needs this too.
The code below does sequential promises execution (one after another), and each round consists of multiple callings:
async function sequence(list, cb) {
const result = [];
await list.reduce(async (promise, item) => promise
.then(() => cb(item))
.then((res) => result.push(res)
), Promise.resolve());
return result;
}
Showcase:
<script src="https://cdnjs.cloudflare.com/ajax/libs/axios/0.15.3/axios.min.js"></script>
<script src="https://unpkg.com/#babel/standalone#7/babel.min.js"></script>
<script type="text/babel">
function sleep(ms) {
return new Promise(resolve => setTimeout(resolve, ms));
}
async function readFile(url, index) {
console.log('Running index: ', index);
// First action
const firstTime = await axios.get(url);
console.log('First API response: ', firstTime.data.activity);
// Second action
await sleep(1000);
// Third action
const secondTime = await axios.get(url);
console.log('Second API response: ', secondTime.data.activity);
// Fourth action
await sleep(1000);
return secondTime.data;
}
async function sequence(urls, fn) {
const result = [];
await urls.reduce(async (promise, url, index) => promise.then(() => fn(url, index)).then((res) => result.push(res)), Promise.resolve());
return result;
}
const urls = [
'https://www.boredapi.com/api/activity',
'https://www.boredapi.com/api/activity',
'https://www.boredapi.com/api/activity',
];
(async function init() {
const result = await sequence(urls, readFile);
console.log('result', result);
})()
</script>
I use the following code to extend the Promise object. It handles rejection of the promises and returns an array of results
Code
/*
Runs tasks in sequence and resolves a promise upon finish
tasks: an array of functions that return a promise upon call.
parameters: an array of arrays corresponding to the parameters to be passed on each function call.
context: Object to use as context to call each function. (The 'this' keyword that may be used inside the function definition)
*/
Promise.sequence = function(tasks, parameters = [], context = null) {
return new Promise((resolve, reject)=>{
var nextTask = tasks.splice(0,1)[0].apply(context, parameters[0]); //Dequeue and call the first task
var output = new Array(tasks.length + 1);
var errorFlag = false;
tasks.forEach((task, index) => {
nextTask = nextTask.then(r => {
output[index] = r;
return task.apply(context, parameters[index+1]);
}, e=>{
output[index] = e;
errorFlag = true;
return task.apply(context, parameters[index+1]);
});
});
// Last task
nextTask.then(r=>{
output[output.length - 1] = r;
if (errorFlag) reject(output); else resolve(output);
})
.catch(e=>{
output[output.length - 1] = e;
reject(output);
});
});
};
Example
function functionThatReturnsAPromise(n) {
return new Promise((resolve, reject)=>{
//Emulating real life delays, like a web request
setTimeout(()=>{
resolve(n);
}, 1000);
});
}
var arrayOfArguments = [['a'],['b'],['c'],['d']];
var arrayOfFunctions = (new Array(4)).fill(functionThatReturnsAPromise);
Promise.sequence(arrayOfFunctions, arrayOfArguments)
.then(console.log)
.catch(console.error);
Your approach is not bad, but it does have two issues: it swallows errors and it employs the Explicit Promise Construction Antipattern.
You can solve both of these issues, and make the code cleaner, while still employing the same general strategy:
var Q = require("q");
var readFile = function(file) {
... // Returns a promise.
};
var readFiles = function(files) {
var readSequential = function(index) {
if (index < files.length) {
return readFile(files[index]).then(function() {
return readSequential(index + 1);
});
}
};
// using Promise.resolve() here in case files.length is 0
return Promise.resolve(readSequential(0)); // Start!
};
This is my sequentially implementation that I use in various projects:
const file = [file1, file2, file3];
const fileContents = sequentially(readFile, files);
// somewhere else in the code:
export const sequentially = async <T, P>(
toPromise: (element: T) => Promise<P>,
elements: T[]
): Promise<P[]> => {
const results: P[] = [];
await elements.reduce(async (sequence, element) => {
await sequence;
results.push(await toPromise(element));
}, Promise.resolve());
return results;
};
Here is my Angular/TypeScript approach, using RxJS:
Given an array of URL strings, convert it into an Observable using the from function.
Use pipe to wrap the Ajax request, immediate response logic, any desired delay, and error handling.
Inside of the pipe, use concatMap to serialize the requests. Otherwise, using Javascript forEach or map would make the requests at the same time.
Use RxJS ajax to make the call, and also to add any desired delay after each call returns.
Working example: https://stackblitz.com/edit/rxjs-bnrkix?file=index.ts
The code looks like this (I left in some extras so you can choose what to keep or discard):
import { ajax } from 'rxjs/ajax';
import { catchError, concatMap, delay, from, of, map, Observable } from 'rxjs';
const urls = [
'https://randomuser.me/api/',
'https://randomuser.me/api/',
'https://randomuser.me/api/',
];
const delayAfterCall = 500;
from(urls)
.pipe(
concatMap((url: string) => {
return ajax.getJSON(url).pipe(
map((response) => {
console.log('Done! Received:', response);
return response;
}),
catchError((error) => {
console.error('Error: ', error);
return of(error);
}),
delay(delayAfterCall)
);
})
)
.subscribe((response) => {
console.log('received email:', response.results[0].email);
});
On the basis of the question's title, "Resolve promises one after another (i.e. in sequence)?", we might understand that the OP is more interested in the sequential handling of promises on settlement than sequential calls per se.
This answer is offered :
to demonstrate that sequential calls are not necessary for sequential handling of responses.
to expose viable alternative patterns to this page's visitors - including the OP if he is still interested over a year later.
despite the OP's assertion that he does not want to make calls concurrently, which may genuinely be the case but equally may be an assumption based on the desire for sequential handling of responses as the title implies.
If concurrent calls are genuinely not wanted then see Benjamin Gruenbaum's answer which covers sequential calls (etc) comprehensively.
If however, you are interested (for improved performance) in patterns which allow concurrent calls followed by sequential handling of responses, then please read on.
It's tempting to think you have to use Promise.all(arr.map(fn)).then(fn) (as I have done many times) or a Promise lib's fancy sugar (notably Bluebird's), however (with credit to this article) an arr.map(fn).reduce(fn) pattern will do the job, with the advantages that it :
works with any promise lib - even pre-compliant versions of jQuery - only .then() is used.
affords the flexibility to skip-over-error or stop-on-error, whichever you want with a one line mod.
Here it is, written for Q.
var readFiles = function(files) {
return files.map(readFile) //Make calls in parallel.
.reduce(function(sequence, filePromise) {
return sequence.then(function() {
return filePromise;
}).then(function(file) {
//Do stuff with file ... in the correct sequence!
}, function(error) {
console.log(error); //optional
return sequence;//skip-over-error. To stop-on-error, `return error` (jQuery), or `throw error` (Promises/A+).
});
}, Q()).then(function() {
// all done.
});
};
Note: only that one fragment, Q(), is specific to Q. For jQuery you need to ensure that readFile() returns a jQuery promise. With A+ libs, foreign promises will be assimilated.
The key here is the reduction's sequence promise, which sequences the handling of the readFile promises but not their creation.
And once you have absorbed that, it's maybe slightly mind-blowing when you realise that the .map() stage isn't actually necessary! The whole job, parallel calls plus serial handling in the correct order, can be achieved with reduce() alone, plus the added advantage of further flexibility to :
convert from parallel async calls to serial async calls by simply moving one line - potentially useful during development.
Here it is, for Q again.
var readFiles = function(files) {
return files.reduce(function(sequence, f) {
var filePromise = readFile(f);//Make calls in parallel. To call sequentially, move this line down one.
return sequence.then(function() {
return filePromise;
}).then(function(file) {
//Do stuff with file ... in the correct sequence!
}, function(error) {
console.log(error); //optional
return sequence;//Skip over any errors. To stop-on-error, `return error` (jQuery), or `throw error` (Promises/A+).
});
}, Q()).then(function() {
// all done.
});
};
That's the basic pattern. If you wanted also to deliver data (eg the files or some transform of them) to the caller, you would need a mild variant.
If someone else needs a guaranteed way of STRICTLY sequential way of resolving Promises when performing CRUD operations you also can use the following code as a basis.
As long as you add 'return' before calling each function, describing a Promise, and use this example as a basis the next .then() function call will CONSISTENTLY start after the completion of the previous one:
getRidOfOlderShoutsPromise = () => {
return readShoutsPromise('BEFORE')
.then(() => {
return deleteOlderShoutsPromise();
})
.then(() => {
return readShoutsPromise('AFTER')
})
.catch(err => console.log(err.message));
}
deleteOlderShoutsPromise = () => {
return new Promise ( (resolve, reject) => {
console.log("in deleteOlderShouts");
let d = new Date();
let TwoMinuteAgo = d - 1000 * 90 ;
All_Shouts.deleteMany({ dateTime: {$lt: TwoMinuteAgo}}, function(err) {
if (err) reject();
console.log("DELETED OLDs at "+d);
resolve();
});
});
}
readShoutsPromise = (tex) => {
return new Promise( (resolve, reject) => {
console.log("in readShoutsPromise -"+tex);
All_Shouts
.find({})
.sort([['dateTime', 'ascending']])
.exec(function (err, data){
if (err) reject();
let d = new Date();
console.log("shouts "+tex+" delete PROMISE = "+data.length +"; date ="+d);
resolve(data);
});
});
}
Array push and pop method can be used for sequence of promises. You can also push new promises when you need additional data. This is the code, I will use in React Infinite loader to load sequence of pages.
var promises = [Promise.resolve()];
function methodThatReturnsAPromise(page) {
return new Promise((resolve, reject) => {
setTimeout(() => {
console.log(`Resolve-${page}! ${new Date()} `);
resolve();
}, 1000);
});
}
function pushPromise(page) {
promises.push(promises.pop().then(function () {
return methodThatReturnsAPromise(page)
}));
}
pushPromise(1);
pushPromise(2);
pushPromise(3);
(function() {
function sleep(ms) {
return new Promise(function(resolve) {
setTimeout(function() {
return resolve();
}, ms);
});
}
function serial(arr, index, results) {
if (index == arr.length) {
return Promise.resolve(results);
}
return new Promise(function(resolve, reject) {
if (!index) {
index = 0;
results = [];
}
return arr[index]()
.then(function(d) {
return resolve(d);
})
.catch(function(err) {
return reject(err);
});
})
.then(function(result) {
console.log("here");
results.push(result);
return serial(arr, index + 1, results);
})
.catch(function(err) {
throw err;
});
}
const a = [5000, 5000, 5000];
serial(a.map(x => () => sleep(x)));
})();
Here the key is how you call the sleep function. You need to pass an array of functions which itself returns a promise instead of an array of promises.

Categories