This question already has answers here:
How to sort an array of objects with with values that contain numbers and string [closed]
(2 answers)
Closed 15 days ago.
I'm trying to sort my array one of two ways, first by overhead Ascending and then by amount Ascending.
The following code works fine for the overhead which is text but replacing a.overhead with a.amount doesn't work correctly. It displays a 1,11,15,2,22,24,3,33,35 etc where as it should be 1,2,3,11,15,22,24 etc.
sortedArray = [...amendedArray].sort((a,b)=>(a.Overhead.toLowerCase() > b.Overhead.toLowerCase()) ? 1 : ((b.Overhead.toLowerCase() > a.Overhead.toLowerCase()) ? -1 : 0));
I believe I need to use function for numbers but I got help with the above code and I can't seem to convert it to make it work in my scenario.
sortedArray = [...amendedArray].sort(function(a, b){ return a.Amount - b.Amount });
You can use a collator that can handle comparison of both strings and numbers
const collator = new Intl.Collator("en", {
sensitivity: 'base', // ignore case and accents
numeric: true // treat numeric strings as numbers, "1" < "2" < "10"
});
sortedArray = [...amendedArray].sort((a, b) => {
return collator.compare(a.Overhead, b.Overhead) || collator.compare(a.Amount, b.Amount)
})
You can read more about the Intl.Collator and the options
I have little problem with 'reduce' function.
let array = [
0: "720"
1: "1080"
]
array.reduce((a,b) => a + b)
There is problem, this return me 7201080, but i need 1800
You need convert string in number array.reduce((a,b) => +a + +b)
Provide initial value 0 for reduce callback function and convert string to number using Number()
let array = [
"720",
"1080"
]
console.log(array.reduce((a,b) => a + Number(b),0))
You say that your problem is (bold emphasis mine):
The numbers are joined instead of adding up
But that is not actually true, and it is not actually your problem.
The real problem is that there are no numbers in your code. There are only strings, and the binary infix + operator for strings is defined to perform string-concatenation: "A" + "b" === "Ab" // not 21.
The "best" way to fix your problem would be to fix it at the source, so that you have numbers instead of strings in the first place:
const array = [
720,
1080
];
console.log(array.reduce((a, b) => a + b));
// 1800
If that is not possible, e.g. because the code that generates this value is third-party code outside of your control, you should sanitize and adapt the data as soon as it enters your system, e.g. using Array.prototype.map and parseInt like this:
const thirdPartyArray = [
"720",
"1080"
];
const myArray = thirdPartyArray.map(str => parseInt(str, 10));
console.log(myArray.reduce((a, b) => a + b));
// 1800
I have a list of objects I wish to sort based on a field attr of type string. I tried using -
list.sort(function (a, b) {
return a.attr - b.attr
})
but found that - doesn't appear to work with strings in JavaScript. How can I sort a list of objects based on an attribute with type string?
Use String.prototype.localeCompare as per your example:
list.sort(function (a, b) {
return ('' + a.attr).localeCompare(b.attr);
})
We force a.attr to be a string to avoid exceptions. localeCompare has been supported since Internet Explorer 6 and Firefox 1. You may also see the following code used that doesn't respect a locale:
if (item1.attr < item2.attr)
return -1;
if ( item1.attr > item2.attr)
return 1;
return 0;
An updated answer (October 2014)
I was really annoyed about this string natural sorting order so I took quite some time to investigate this issue.
Long story short
localeCompare() character support is badass, just use it.
As pointed out by Shog9, the answer to your question is:
return item1.attr.localeCompare(item2.attr);
Bugs found in all the custom JavaScript "natural string sort order" implementations
There are quite a bunch of custom implementations out there, trying to do string comparison more precisely called "natural string sort order"
When "playing" with these implementations, I always noticed some strange "natural sorting order" choice, or rather mistakes (or omissions in the best cases).
Typically, special characters (space, dash, ampersand, brackets, and so on) are not processed correctly.
You will then find them appearing mixed up in different places, typically that could be:
some will be between the uppercase 'Z' and the lowercase 'a'
some will be between the '9' and the uppercase 'A'
some will be after lowercase 'z'
When one would have expected special characters to all be "grouped" together in one place, except for the space special character maybe (which would always be the first character). That is, either all before numbers, or all between numbers and letters (lowercase & uppercase being "together" one after another), or all after letters.
My conclusion is that they all fail to provide a consistent order when I start adding barely unusual characters (i.e., characters with diacritics or characters such as dash, exclamation mark and so on).
Research on the custom implementations:
Natural Compare Lite https://github.com/litejs/natural-compare-lite : Fails at sorting consistently https://github.com/litejs/natural-compare-lite/issues/1 and http://jsbin.com/bevututodavi/1/edit?js,console, basic Latin characters sorting http://jsbin.com/bevututodavi/5/edit?js,console
Natural Sort https://github.com/javve/natural-sort : Fails at sorting consistently, see issue https://github.com/javve/natural-sort/issues/7 and see basic Latin characters sorting http://jsbin.com/cipimosedoqe/3/edit?js,console
JavaScript Natural Sort https://github.com/overset/javascript-natural-sort: seems rather neglected since February 2012, Fails at sorting consistently, see issue https://github.com/overset/javascript-natural-sort/issues/16
Alphanum http://www.davekoelle.com/files/alphanum.js , Fails at sorting consistently, see http://jsbin.com/tuminoxifuyo/1/edit?js,console
Browsers' native "natural string sort order" implementations via localeCompare()
localeCompare() oldest implementation (without the locales and options arguments) is supported by Internet Explorer 6 and later, see http://msdn.microsoft.com/en-us/library/ie/s4esdbwz(v=vs.94).aspx (scroll down to localeCompare() method).
The built-in localeCompare() method does a much better job at sorting, even international & special characters.
The only problem using the localeCompare() method is that "the locale and sort order used are entirely implementation dependent". In other words, when using localeCompare such as stringOne.localeCompare(stringTwo): Firefox, Safari, Chrome, and Internet Explorer have a different sort order for Strings.
Research on the browser-native implementations:
http://jsbin.com/beboroyifomu/1/edit?js,console - basic Latin characters comparison with localeCompare()
http://jsbin.com/viyucavudela/2/ - basic Latin characters comparison with localeCompare() for testing on Internet Explorer 8
http://jsbin.com/beboroyifomu/2/edit?js,console - basic Latin characters in string comparison : consistency check in string vs when a character is alone
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare - Internet Explorer 11 and later supports the new locales & options arguments
Difficulty of "string natural sorting order"
Implementing a solid algorithm (meaning: consistent but also covering a wide range of characters) is a very tough task. UTF-8 contains more than 2000 characters and covers more than 120 scripts (languages).
Finally, there are some specification for this tasks, it is called the "Unicode Collation Algorithm", which can be found at http://www.unicode.org/reports/tr10/. You can find more information about this on this question I posted https://softwareengineering.stackexchange.com/questions/257286/is-there-any-language-agnostic-specification-for-string-natural-sorting-order
Final conclusion
So considering the current level of support provided by the JavaScript custom implementations I came across, we will probably never see anything getting any close to supporting all this characters and scripts (languages). Hence I would rather use the browsers' native localeCompare() method. Yes, it does have the downside of being non-consistent across browsers but basic testing shows it covers a much wider range of characters, allowing solid & meaningful sort orders.
So as pointed out by Shog9, the answer to your question is:
return item1.attr.localeCompare(item2.attr);
Further reading:
https://softwareengineering.stackexchange.com/questions/257286/is-there-any-language-agnostic-specification-for-string-natural-sorting-order
How to sort strings in JavaScript
Natural sort of alphanumerical strings in JavaScript
Sort Array of numeric & alphabetical elements (Natural Sort)
Sort mixed alpha/numeric array
https://web.archive.org/web/20130929122019/http://my.opera.com/GreyWyvern/blog/show.dml/1671288
https://web.archive.org/web/20131005224909/http://www.davekoelle.com/alphanum.html
http://snipplr.com/view/36012/javascript-natural-sort/
http://blog.codinghorror.com/sorting-for-humans-natural-sort-order/
Thanks to Shog9's nice answer, which put me in the "right" direction I believe.
Answer (in Modern ECMAScript)
list.sort((a, b) => (a.attr > b.attr) - (a.attr < b.attr))
Or
list.sort((a, b) => +(a.attr > b.attr) || -(a.attr < b.attr))
Description
Casting a boolean value to a number yields the following:
true -> 1
false -> 0
Consider three possible patterns:
x is larger than y: (x > y) - (y < x) -> 1 - 0 -> 1
x is equal to y: (x > y) - (y < x) -> 0 - 0 -> 0
x is smaller than y: (x > y) - (y < x) -> 0 - 1 -> -1
(Alternative)
x is larger than y: +(x > y) || -(x < y) -> 1 || 0 -> 1
x is equal to y: +(x > y) || -(x < y) -> 0 || 0 -> 0
x is smaller than y: +(x > y) || -(x < y) -> 0 || -1 -> -1
So these logics are equivalent to typical sort comparator functions.
if (x == y) {
return 0;
}
return x > y ? 1 : -1;
Since strings can be compared directly in JavaScript, this will do the job:
list.sort(function (a, b) {
return a.attr < b.attr ? -1: 1;
})
This is a little bit more efficient than using
return a.attr > b.attr ? 1: -1;
because in case of elements with same attr (a.attr == b.attr), the sort function will swap the two for no reason.
For example
var so1 = function (a, b) { return a.atr > b.atr ? 1: -1; };
var so2 = function (a, b) { return a.atr < b.atr ? -1: 1; }; // Better
var m1 = [ { atr: 40, s: "FIRST" }, { atr: 100, s: "LAST" }, { atr: 40, s: "SECOND" } ].sort (so1);
var m2 = [ { atr: 40, s: "FIRST" }, { atr: 100, s: "LAST" }, { atr: 40, s: "SECOND" } ].sort (so2);
// m1 sorted but ...: 40 SECOND 40 FIRST 100 LAST
// m2 more efficient: 40 FIRST 40 SECOND 100 LAST
You should use > or < and == here. So the solution would be:
list.sort(function(item1, item2) {
var val1 = item1.attr,
val2 = item2.attr;
if (val1 == val2) return 0;
if (val1 > val2) return 1;
if (val1 < val2) return -1;
});
Nested ternary arrow function
(a,b) => (a < b ? -1 : a > b ? 1 : 0)
I had been bothered about this for long, so I finally researched this and give you this long winded reason for why things are the way they are.
From the spec:
Section 11.9.4 The Strict Equals Operator ( === )
The production EqualityExpression : EqualityExpression === RelationalExpression
is evaluated as follows:
- Let lref be the result of evaluating EqualityExpression.
- Let lval be GetValue(lref).
- Let rref be the result of evaluating RelationalExpression.
- Let rval be GetValue(rref).
- Return the result of performing the strict equality comparison
rval === lval. (See 11.9.6)
So now we go to 11.9.6
11.9.6 The Strict Equality Comparison Algorithm
The comparison x === y, where x and y are values, produces true or false.
Such a comparison is performed as follows:
- If Type(x) is different from Type(y), return false.
- If Type(x) is Undefined, return true.
- If Type(x) is Null, return true.
- If Type(x) is Number, then
...
- If Type(x) is String, then return true if x and y are exactly the
same sequence of characters (same length and same characters in
corresponding positions); otherwise, return false.
That's it. The triple equals operator applied to strings returns true iff the arguments are exactly the same strings (same length and same characters in corresponding positions).
So === will work in the cases when we're trying to compare strings which might have arrived from different sources, but which we know will eventually have the same values - a common enough scenario for inline strings in our code. For example, if we have a variable named connection_state, and we wish to know which one of the following states ['connecting', 'connected', 'disconnecting', 'disconnected'] is it in right now, we can directly use the ===.
But there's more. Just above 11.9.4, there is a short note:
NOTE 4
Comparison of Strings uses a simple equality test on sequences of code
unit values. There is no attempt to use the more complex, semantically oriented
definitions of character or string equality and collating order defined in the
Unicode specification. Therefore Strings values that are canonically equal
according to the Unicode standard could test as unequal. In effect this
algorithm assumes that both Strings are already in normalized form.
Hmm. What now? Externally obtained strings can, and most likely will, be weird unicodey, and our gentle === won't do them justice. In comes localeCompare to the rescue:
15.5.4.9 String.prototype.localeCompare (that)
...
The actual return values are implementation-defined to permit implementers
to encode additional information in the value, but the function is required
to define a total ordering on all Strings and to return 0 when comparing
Strings that are considered canonically equivalent by the Unicode standard.
We can go home now.
tl;dr;
To compare strings in javascript, use localeCompare; if you know that the strings have no non-ASCII components because they are, for example, internal program constants, then === also works.
An explanation of why the approach in the question doesn't work:
let products = [
{ name: "laptop", price: 800 },
{ name: "phone", price:200},
{ name: "tv", price: 1200}
];
products.sort( (a, b) => {
{let value= a.name - b.name; console.log(value); return value}
});
> 2 NaN
Subtraction between strings returns NaN.
Echoing Alejadro's answer, the right approach is:
products.sort( (a,b) => a.name > b.name ? 1 : -1 )
A typescript sorting method modifier using a custom function to return a sorted string in either ascending or descending order
const data = ["jane", "mike", "salome", "ababus", "buisa", "dennis"];
const sortStringArray = (stringArray: string[], mode?: 'desc' | 'asc') => {
if (!mode || mode === 'asc') {
return stringArray.sort((a, b) => a.localeCompare(b))
}
return stringArray.sort((a, b) => b.localeCompare(a))
}
console.log(sortStringArray(data, 'desc'));// [ 'salome', 'mike', 'jane', 'dennis', 'buisa', 'ababus' ]
console.log(sortStringArray(data, 'asc')); // [ 'ababus', 'buisa', 'dennis', 'jane', 'mike', 'salome' ]
There should be ascending and descending orders functions
if (order === 'asc') {
return a.localeCompare(b);
}
return b.localeCompare(a);
If you want to control locales (or case or accent), then use Intl.collator:
const collator = new Intl.Collator();
list.sort((a, b) => collator.compare(a.attr, b.attr));
You can construct a collator like:
new Intl.Collator("en");
new Intl.Collator("en", {sensitivity: "case"});
...
See the above link for documentation.
Note: unlike some other solutions, it handles null, undefined the JavaScript way, i.e., moves them to the end.
Use sort() straightforward without any - or <
const areas = ['hill', 'beach', 'desert', 'mountain']
console.log(areas.sort())
// To print in descending way
console.log(areas.sort().reverse())
In your operation in your initial question, you are performing the following operation:
item1.attr - item2.attr
So, assuming those are numbers (i.e. item1.attr = "1", item2.attr = "2") You still may use the "===" operator (or other strict evaluators) provided that you ensure type. The following should work:
return parseInt(item1.attr) - parseInt(item2.attr);
If they are alphaNumeric, then do use localCompare().
list.sort(function(item1, item2){
return +(item1.attr > item2.attr) || +(item1.attr === item2.attr) - 1;
})
How they work samples:
+('aaa'>'bbb')||+('aaa'==='bbb')-1
+(false)||+(false)-1
0||0-1
-1
+('bbb'>'aaa')||+('bbb'==='aaa')-1
+(true)||+(false)-1
1||0-1
1
+('aaa'>'aaa')||+('aaa'==='aaa')-1
+(false)||+(true)-1
0||1-1
0
var str = ['v','a','da','c','k','l']
var b = str.join('').split('').sort().reverse().join('')
console.log(b)
<!doctype html>
<html>
<body>
<p id = "myString">zyxtspqnmdba</p>
<p id = "orderedString"></p>
<script>
var myString = document.getElementById("myString").innerHTML;
orderString(myString);
function orderString(str) {
var i = 0;
var myArray = str.split("");
while (i < str.length){
var j = i + 1;
while (j < str.length) {
if (myArray[j] < myArray[i]){
var temp = myArray[i];
myArray[i] = myArray[j];
myArray[j] = temp;
}
j++;
}
i++;
}
var newString = myArray.join("");
document.getElementById("orderedString").innerHTML = newString;
}
</script>
</body>
</html>
I'm trying to sort a bunch of alphanumeric characters that look like this:
[AD850X, MP342X, OP452X, ZC234X, ZC540X]
The sorting should be based off only numbers, so I have to remove all alpha characters from this code and then I want to add those characters back after I sort them for the purposes of my code as they were before. For example, the above string should first look like this:
[850, 342, 452, 234, 540]
Then this,
[234, 342, 452, 540, 850]
And then finally this,
[ZC234X, MP342X, OP452X, ZC540X, AD850X]
I've been thinking about how to do this and I'm not sure how I would get the same two letters in the front to reattach to the numeric code after sorting (the last character, in this case "X,"would always be the same and I would concatenate this value after adding the first two alpha characters as they were before.
If anyone could help me out with this I would greatly appreciate it.
Thanks!
EDIT: One other question, once this runs, I want to only output the low and high value of the array (which can have different number of elements). I tried using .min and .max but not sure how to do that with the array that logs after you sort. So in the case above I would just need "ZC234X" and "AD850X".
You can use object as hash table to store element and its number and then sort by values form that object.
var data = ['AD850X', 'MP342X', 'OP452X', 'ZC234X', 'ZC540X'];
var obj = {}
data.forEach(e => obj[e] = e.match(/\d+/)[0])
var result = data.sort((a, b) => obj[a] - obj[b]);
console.log(result)
Instead of complicating it by removing the two first letters and then sorting, you could just sort the array comparing only the matched numbers inside each element.
var arr = ['AD850X', 'MP342X', 'OP452X', 'ZC234X', 'ZC540X'],
res = arr.sort((a,b) => a.match(/\d+/)[0] - b.match(/\d+/)[0]),
min = res[0],
max = res[res.length-1];
console.log("min value: " + min + " | max value: " + max);
You could use just the matched nummerical values for sorting. Array#sort works in situ.
This proposal uses a default value, if the regular expression does not match a number.
var array = ['AD850X', 'MP342X', 'OP452X', 'ZC234X', 'ZC540X'];
array.sort((a, b) => (a.match(/\d+/) || 0) - (b.match(/\d+/) || 0));
console.log('min value', array[0]);
console.log('max value', array[array.length - 1]);
console.log(array);
.as-console-wrapper { max-height: 100% !important; top: 0; }