Flaw in iOS WebGL texture rendering - javascript

This simple test of WebGL texture rendering using the three.js library:
// Canvas dimensions
canvasW = Math.floor(0.9*window.innerWidth);
canvasH = Math.floor(0.75*canvasW);
cAR = canvasW / canvasH;
canvasWrapper = document.getElementById('canvasWrapper');
canvasWrapper.style.width=canvasW+'px';
canvasWrapper.style.height=canvasH+'px';
// Renderer
renderer = new THREE.WebGLRenderer({antialias: true});
renderer.setPixelRatio(window.devicePixelRatio);
console.log("Renderer pixel ratio = "+window.devicePixelRatio);
renderer.setSize(canvasW, canvasH);
canvas = renderer.domElement;
canvasWrapper.appendChild(canvas);
// Set up camera
cameraDist = 24;
camera = new THREE.PerspectiveCamera(25, cAR, 0.01, 1000);
cameraAngle = 0;
camera.position.x = cameraDist*Math.sin(cameraAngle);
camera.position.y = 0.3*cameraDist;
camera.position.z = cameraDist*Math.cos(cameraAngle);
camera.lookAt(new THREE.Vector3(0,0,0));
// Set up scene, consisting of texture-tiled ground
scene = new THREE.Scene();
groundWidth = 1000;
groundMaterial = null;
groundGeom = new THREE.PlaneGeometry(groundWidth,groundWidth);
groundGeom.rotateX(-Math.PI/2);
groundMesh = new THREE.Mesh(groundGeom, groundMaterial || new THREE.MeshBasicMaterial());
scene.add(groundMesh);
//window.requestAnimationFrame(draw);
// Insert texture once it has loaded
function setGroundTexture(texture)
{
groundTexture = texture;
groundTexture.wrapS = THREE.RepeatWrapping;
groundTexture.wrapT = THREE.RepeatWrapping;
groundTexture.repeat.set(groundWidth, groundWidth);
groundTexture.anisotropy = renderer.getMaxAnisotropy();
console.log("Texture anisotropy = "+groundTexture.anisotropy);
groundMaterial = new THREE.MeshBasicMaterial({map: groundTexture});
if (groundMesh)
{
groundMesh.material = groundMaterial;
window.requestAnimationFrame(draw);
};
}
// Start texture loading
//new THREE.TextureLoader().load("Texture.png", setGroundTexture, function (xhr) {}, function (xhr) {});
setGroundTexture(makeTexture());
// Render a frame
function draw()
{
renderer.render(scene, camera);
}
// -------
function makeTexture() {
var ctx = document.createElement("canvas").getContext("2d");
ctx.canvas.width = 256;
ctx.canvas.height = 256;
ctx.fillStyle = "rgb(238, 238, 238)";
ctx.fillRect(0, 0, 256, 256);
ctx.fillStyle = "rgb(208, 208, 208)";
ctx.fillRect(0, 0, 128, 128);
ctx.fillRect(128, 128, 128, 128);
for (var y = 0; y < 2; ++y) {
for (var x = 0; x < 2; ++x) {
ctx.save();
ctx.translate(x * 128 + 64, y * 128 + 64);
ctx.lineWidth = 3;
ctx.beginPath();
var radius = 50;
ctx.moveTo(radius, 0);
for (var i = 0; i <= 6; ++i) {
var a = i / 3 * Math.PI;
ctx.lineTo(Math.cos(a) * radius, Math.sin(a) * radius);
}
ctx.stroke();
ctx.restore();
}
}
var tex = new THREE.Texture(ctx.canvas);
tex.needsUpdate = true;
return tex;
}
canvas, #canvasWrapper {margin-left: auto; margin-right: auto;}
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/r78/three.js"></script>
<div id="canvasWrapper"></div>
renders perfectly on the desktop browsers I've tried, but is badly blurred when rendered on an iPad, as shown by the screenshot further down the page.
Desktop
iPad
In both cases, the texture is rendered with an anisotropy of 16 (the maximum supported by the renderer). The image used for the texture has dimensions 256 × 256 (a power of 2, which is necessary for repeated textures), and making it larger or smaller doesn't fix the problem.
texture:
I'm setting the renderer's pixel ratio to match the browser window, which means it is 1 for desktop systems and 2 for the iPad's retina display. This approach generally gives the best results for other aspects of rendering, and in any case setting the pixel ratio to 1 on the iPad, instead of 2, doesn't improve the appearance of the texture.
So my question is: is this a bug in iOS WebGL that I'll just have to live with, or is there something I can tweak in my own code to get better results on iOS devices?
Edit: This three.js demo page also renders much less clearly on the iPad than on desktop browsers, and the source for the demo uses the same general approach as my own code, which suggests that whatever trick I'm missing, it's not something simple and obvious.

I can't fully explain the source of the problem, but I've found a work-around that suggests that the cause is some kind of degradation of numerical precision, I guess in the GPU, that doesn't occur with every iPad graphics card.
The work-around involves splitting the plane geometry for the ground, which was originally just a single square (which three.js presumably divides into 2 triangles), into a grid of multiple squares. Presumably this changes something in the way the (u,v) coordinates on the object and the texture coordinates run up against the limits of floating point precision in the GPU. Also, reducing the size of the ground from 1000 to 200 helps.
The annoying thing is the overhead from having all those extra faces in the plane geometry, even though they're completely redundant in specifying the shape.
In any case, the result looks exactly the same on my desktop browsers, but vastly better on my iPad 4.
Edit: After more careful testing, I don't think subdividing the THREE.PlaneGeometry is making any difference, it's only reducing the overall size of the tiled plane that helps. And in fact, by making the size of the tiled plane large enough, whatever limit is being hit on the iPad 4 when the size is just 1000 can be reached on my iMac when the size is 80,000, as the second version of the code snippet shows. (The texture starts to degrade around 50,000, but 80,000 makes the distortion unmissable.) Obviously there are no real applications where you need to tile a surface with 50,000 x 50,000 copies of a texture, but a few hundred in each direction, which is where the iPad 4 starts to have problems, isn't extravagant.
First version of the code snippet, which fixes the problem on an iPad 4:
// Canvas dimensions
canvasW = Math.floor(0.9*window.innerWidth);
canvasH = Math.floor(0.75*canvasW);
cAR = canvasW / canvasH;
canvasWrapper = document.getElementById('canvasWrapper');
canvasWrapper.style.width=canvasW+'px';
canvasWrapper.style.height=canvasH+'px';
// Renderer
renderer = new THREE.WebGLRenderer({antialias: true});
renderer.setPixelRatio(window.devicePixelRatio);
console.log("Renderer pixel ratio = "+window.devicePixelRatio);
renderer.setSize(canvasW, canvasH);
canvas = renderer.domElement;
canvasWrapper.appendChild(canvas);
// Set up camera
cameraDist = 24;
camera = new THREE.PerspectiveCamera(25, cAR, 0.01, 1000);
cameraAngle = 0;
camera.position.x = cameraDist*Math.sin(cameraAngle);
camera.position.y = 0.3*cameraDist;
camera.position.z = cameraDist*Math.cos(cameraAngle);
camera.lookAt(new THREE.Vector3(0,0,0));
// Set up scene, consisting of texture-tiled ground
scene = new THREE.Scene();
// groundWidth = 1000;
// Reduce overall size of ground
groundWidth = 200;
groundMaterial = null;
// groundGeom = new THREE.PlaneGeometry(groundWidth,groundWidth);
// Split plane geometry into a grid of smaller squares
groundGeom = new THREE.PlaneGeometry(groundWidth,groundWidth,20,20);
groundGeom.rotateX(-Math.PI/2);
groundMesh = new THREE.Mesh(groundGeom, groundMaterial || new THREE.MeshBasicMaterial());
scene.add(groundMesh);
//window.requestAnimationFrame(draw);
// Insert texture once it has loaded
function setGroundTexture(texture)
{
groundTexture = texture;
groundTexture.wrapS = THREE.RepeatWrapping;
groundTexture.wrapT = THREE.RepeatWrapping;
groundTexture.repeat.set(groundWidth, groundWidth);
groundTexture.anisotropy = renderer.getMaxAnisotropy();
console.log("Texture anisotropy = "+groundTexture.anisotropy);
groundMaterial = new THREE.MeshBasicMaterial({map: groundTexture});
if (groundMesh)
{
groundMesh.material = groundMaterial;
window.requestAnimationFrame(draw);
};
}
// Start texture loading
//new THREE.TextureLoader().load("Texture.png", setGroundTexture, function (xhr) {}, function (xhr) {});
setGroundTexture(makeTexture());
// Render a frame
function draw()
{
renderer.render(scene, camera);
}
// -------
function makeTexture() {
var ctx = document.createElement("canvas").getContext("2d");
ctx.canvas.width = 256;
ctx.canvas.height = 256;
ctx.fillStyle = "rgb(238, 238, 238)";
ctx.fillRect(0, 0, 256, 256);
ctx.fillStyle = "rgb(208, 208, 208)";
ctx.fillRect(0, 0, 128, 128);
ctx.fillRect(128, 128, 128, 128);
for (var y = 0; y < 2; ++y) {
for (var x = 0; x < 2; ++x) {
ctx.save();
ctx.translate(x * 128 + 64, y * 128 + 64);
ctx.lineWidth = 3;
ctx.beginPath();
var radius = 50;
ctx.moveTo(radius, 0);
for (var i = 0; i <= 6; ++i) {
var a = i / 3 * Math.PI;
ctx.lineTo(Math.cos(a) * radius, Math.sin(a) * radius);
}
ctx.stroke();
ctx.restore();
}
}
var tex = new THREE.Texture(ctx.canvas);
tex.needsUpdate = true;
return tex;
}
canvas, #canvasWrapper {margin-left: auto; margin-right: auto;}
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/r78/three.js"></script>
<div id="canvasWrapper"></div>
Second version of the code snippet, which breaks the texture on a 2007 iMac:
// Canvas dimensions
canvasW = Math.floor(0.9*window.innerWidth);
canvasH = Math.floor(0.75*canvasW);
cAR = canvasW / canvasH;
canvasWrapper = document.getElementById('canvasWrapper');
canvasWrapper.style.width=canvasW+'px';
canvasWrapper.style.height=canvasH+'px';
// Renderer
renderer = new THREE.WebGLRenderer({antialias: true});
renderer.setPixelRatio(window.devicePixelRatio);
console.log("Renderer pixel ratio = "+window.devicePixelRatio);
renderer.setSize(canvasW, canvasH);
canvas = renderer.domElement;
canvasWrapper.appendChild(canvas);
// Set up camera
cameraDist = 24;
camera = new THREE.PerspectiveCamera(25, cAR, 0.01, 1000);
cameraAngle = 0;
camera.position.x = cameraDist*Math.sin(cameraAngle);
camera.position.y = 0.3*cameraDist;
camera.position.z = cameraDist*Math.cos(cameraAngle);
camera.lookAt(new THREE.Vector3(0,0,0));
// Set up scene, consisting of texture-tiled ground
scene = new THREE.Scene();
// groundWidth = 1000;
// Increase the size of the plane to trigger the problem
groundWidth = 80000;
groundMaterial = null;
groundGeom = new THREE.PlaneGeometry(groundWidth,groundWidth);
groundGeom.rotateX(-Math.PI/2);
groundMesh = new THREE.Mesh(groundGeom, groundMaterial || new THREE.MeshBasicMaterial());
scene.add(groundMesh);
//window.requestAnimationFrame(draw);
// Insert texture once it has loaded
function setGroundTexture(texture)
{
groundTexture = texture;
groundTexture.wrapS = THREE.RepeatWrapping;
groundTexture.wrapT = THREE.RepeatWrapping;
groundTexture.repeat.set(groundWidth, groundWidth);
groundTexture.anisotropy = renderer.getMaxAnisotropy();
console.log("Texture anisotropy = "+groundTexture.anisotropy);
groundMaterial = new THREE.MeshBasicMaterial({map: groundTexture});
if (groundMesh)
{
groundMesh.material = groundMaterial;
window.requestAnimationFrame(draw);
};
}
// Start texture loading
//new THREE.TextureLoader().load("Texture.png", setGroundTexture, function (xhr) {}, function (xhr) {});
setGroundTexture(makeTexture());
// Render a frame
function draw()
{
renderer.render(scene, camera);
}
// -------
function makeTexture() {
var ctx = document.createElement("canvas").getContext("2d");
ctx.canvas.width = 256;
ctx.canvas.height = 256;
ctx.fillStyle = "rgb(238, 238, 238)";
ctx.fillRect(0, 0, 256, 256);
ctx.fillStyle = "rgb(208, 208, 208)";
ctx.fillRect(0, 0, 128, 128);
ctx.fillRect(128, 128, 128, 128);
for (var y = 0; y < 2; ++y) {
for (var x = 0; x < 2; ++x) {
ctx.save();
ctx.translate(x * 128 + 64, y * 128 + 64);
ctx.lineWidth = 3;
ctx.beginPath();
var radius = 50;
ctx.moveTo(radius, 0);
for (var i = 0; i <= 6; ++i) {
var a = i / 3 * Math.PI;
ctx.lineTo(Math.cos(a) * radius, Math.sin(a) * radius);
}
ctx.stroke();
ctx.restore();
}
}
var tex = new THREE.Texture(ctx.canvas);
tex.needsUpdate = true;
return tex;
}
canvas, #canvasWrapper {margin-left: auto; margin-right: auto;}
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/r78/three.js"></script>
<div id="canvasWrapper"></div>

Greg Egan's observation makes a lot of sense. If you not only subdivide the plane but tile the UV coords so they repeat instead of using large numbers that might fix it.
// Canvas dimensions
canvasW = Math.floor(0.9*window.innerWidth);
canvasH = Math.floor(0.75*canvasW);
cAR = canvasW / canvasH;
canvasWrapper = document.getElementById('canvasWrapper');
canvasWrapper.style.width=canvasW+'px';
canvasWrapper.style.height=canvasH+'px';
// Renderer
renderer = new THREE.WebGLRenderer({antialias: true});
renderer.setPixelRatio(window.devicePixelRatio);
console.log("Renderer pixel ratio = "+window.devicePixelRatio);
renderer.setSize(canvasW, canvasH);
canvas = renderer.domElement;
canvasWrapper.appendChild(canvas);
// Set up camera
cameraDist = 24;
camera = new THREE.PerspectiveCamera(25, cAR, 0.01, 1000);
cameraAngle = 0;
camera.position.x = cameraDist*Math.sin(cameraAngle);
camera.position.y = 0.3*cameraDist;
camera.position.z = cameraDist*Math.cos(cameraAngle);
camera.lookAt(new THREE.Vector3(0,0,0));
// Set up scene, consisting of texture-tiled ground
scene = new THREE.Scene();
// groundWidth = 1000;
// Reduce overall size of ground
groundWidth = 200;
groundMaterial = null;
// groundGeom = new THREE.PlaneGeometry(groundWidth,groundWidth);
// Split plane geometry into a grid of smaller squares
//groundGeom = new THREE.PlaneGeometry(groundWidth,groundWidth,20,20);
var groundGeom = new THREE.BufferGeometry();
var quads = groundWidth * groundWidth;
var positions = new Float32Array( quads * 6 * 3 );
var normals = new Float32Array( quads * 6 * 3 );
var texcoords = new Float32Array( quads * 6 * 2 );
for (var yy = 0; yy < groundWidth; ++yy) {
for (var xx = 0; xx < groundWidth; ++xx) {
var qoff = (yy * groundWidth + xx) * 6;
var poff = qoff * 3;
var x = xx - groundWidth / 2;
var y = yy - groundWidth / 2;
positions[poff + 0] = x;
positions[poff + 1] = y;
positions[poff + 2] = 0;
positions[poff + 3] = x + 1;
positions[poff + 4] = y;
positions[poff + 5] = 0;
positions[poff + 6] = x;
positions[poff + 7] = y + 1;
positions[poff + 8] = 0;
positions[poff + 9] = x;
positions[poff + 10] = y + 1;
positions[poff + 11] = 0;
positions[poff + 12] = x + 1;
positions[poff + 13] = y;
positions[poff + 14] = 0;
positions[poff + 15] = x + 1;
positions[poff + 16] = y + 1;
positions[poff + 17] = 0;
normals[poff + 0] = 0;
normals[poff + 1] = 1;
normals[poff + 2] = 0;
normals[poff + 3] = 0;
normals[poff + 4] = 1;
normals[poff + 5] = 0;
normals[poff + 6] = 0;
normals[poff + 7] = 1;
normals[poff + 8] = 0;
normals[poff + 9] = 0;
normals[poff + 10] = 1;
normals[poff + 11] = 0;
normals[poff + 12] = 0;
normals[poff + 13] = 1;
normals[poff + 14] = 0;
normals[poff + 15] = 0;
normals[poff + 16] = 1;
normals[poff + 17] = 0;
var toff = qoff * 2;
texcoords[toff + 0] = 0;
texcoords[toff + 1] = 0;
texcoords[toff + 2] = 1;
texcoords[toff + 3] = 0;
texcoords[toff + 4] = 0;
texcoords[toff + 5] = 1;
texcoords[toff + 6] = 0;
texcoords[toff + 7] = 1;
texcoords[toff + 8] = 1;
texcoords[toff + 9] = 0;
texcoords[toff + 10] = 1;
texcoords[toff + 11] = 1;
}
}
groundGeom.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ) );
groundGeom.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) );
groundGeom.addAttribute( 'uv', new THREE.BufferAttribute( texcoords, 2 ) );
groundGeom.computeBoundingSphere();
groundGeom.rotateX(-Math.PI/2);
groundMesh = new THREE.Mesh(groundGeom, groundMaterial || new THREE.MeshBasicMaterial());
scene.add(groundMesh);
//window.requestAnimationFrame(draw);
// Insert texture once it has loaded
function setGroundTexture(texture)
{
groundTexture = texture;
groundTexture.wrapS = THREE.RepeatWrapping;
groundTexture.wrapT = THREE.RepeatWrapping;
groundTexture.repeat.set(1, 1);
groundTexture.anisotropy = renderer.getMaxAnisotropy();
console.log("Texture anisotropy = "+groundTexture.anisotropy);
groundMaterial = new THREE.MeshBasicMaterial({map: groundTexture});
if (groundMesh)
{
groundMesh.material = groundMaterial;
window.requestAnimationFrame(draw);
};
}
// Start texture loading
//new THREE.TextureLoader().load("Texture.png", setGroundTexture, function (xhr) {}, function (xhr) {});
setGroundTexture(makeTexture());
// Render a frame
function draw()
{
renderer.render(scene, camera);
}
// -------
function makeTexture() {
var ctx = document.createElement("canvas").getContext("2d");
ctx.canvas.width = 256;
ctx.canvas.height = 256;
ctx.fillStyle = "rgb(238, 238, 238)";
ctx.fillRect(0, 0, 256, 256);
ctx.fillStyle = "rgb(208, 208, 208)";
ctx.fillRect(0, 0, 128, 128);
ctx.fillRect(128, 128, 128, 128);
for (var y = 0; y < 2; ++y) {
for (var x = 0; x < 2; ++x) {
ctx.save();
ctx.translate(x * 128 + 64, y * 128 + 64);
ctx.lineWidth = 3;
ctx.beginPath();
var radius = 50;
ctx.moveTo(radius, 0);
for (var i = 0; i <= 6; ++i) {
var a = i / 3 * Math.PI;
ctx.lineTo(Math.cos(a) * radius, Math.sin(a) * radius);
}
ctx.stroke();
ctx.restore();
}
}
var tex = new THREE.Texture(ctx.canvas);
tex.needsUpdate = true;
return tex;
}
canvas, #canvasWrapper {margin-left: auto; margin-right: auto;}
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/r78/three.js"></script>
<div id="canvasWrapper"></div>

Related

Raycaster malfunctioning in three.js

I am creating a game where players can move around from first-person perspective, where the ground is generated with Perlin noise and therefore uneven. I would like to simulate gravity in the game. Hence, a raycasting thing has been implemented, which is supposed to find the player's distance from the ground and stop them from falling when they hit the ground. Here is my code (if the snipper is unclear visit https://3d.211368e.repl.co):
const scene = new THREE.Scene(), camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 1, 10000000000000), renderer = new THREE.WebGLRenderer(), canvas = renderer.domElement;
camera.rotation.order = "YXZ";
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.shadowMap.enabled = true;
renderer.shadowMapType = THREE.PCFSoftShadowMap;
document.body.appendChild(canvas);
const light = new THREE.DirectionalLight( 0xffffff, 1);
light.position.set(0, 10000, 0);
light.castShadow = true;
light.shadow.camera.top = 10000;
light.shadow.camera.right = 10000;
light.shadow.camera.bottom = -10000;
light.shadow.camera.left = -10000;
light.shadow.camera.far = 100000;
wwwww
scene.add(light);
var sky = new THREE.Mesh(new THREE.SphereGeometry(100000, 3, 3, 0, Math.PI, 0, Math.PI), new THREE.MeshBasicMaterial({color: 0x579ebb}));
sky.material.side = THREE.BackSide;
sky.rotateX(-Math.PI / 2);
scene.add(sky);
class Vector2{
constructor(x, y){
this.x = x;
this.y = y;
}
dot(other){
return this.x * other.x + this.y * other.y;
}
}
function Shuffle(tab){
for(let e = tab.length-1; e > 0; e--){
let index = Math.round(Math.random() * (e-1)),
temp = tab[e];
tab[e] = tab[index];
tab[index] = temp;
}
}
function MakePermutation(){
let P = [];
for(let i = 0; i < 256; i++){
P.push(i);
}
Shuffle(P);
for(let i = 0; i < 256; i++){
P.push(P[i]);
}
return P;
}
let P = MakePermutation();
function GetConstantVector(v){
let h = v & 3;
if(h == 0) return new Vector2(1.0, 1.0);
if(h == 1) return new Vector2(-1.0, 1.0);
if(h == 2) return new Vector2(-1.0, -1.0);
return new Vector2(1.0, -1.0);
}
function Fade(t){
return ((6 * t - 15) * t + 10) * t ** 3;
}
function Lerp(t, a1, a2){
return a1 + t*(a2-a1);
}
function Noise2D(x, y){
let X = Math.floor(x) & 255;
let Y = Math.floor(y) & 255;
let xf = x - Math.floor(x);
let yf = y - Math.floor(y);
let topRight = new Vector2(xf - 1, yf - 1);
let topLeft = new Vector2(xf, yf - 1);
let bottomRight = new Vector2(xf - 1, yf);
let bottomLeft = new Vector2(xf, yf);
let valueTopRight = P[P[X+1]+Y+1];
let valueTopLeft = P[P[X]+Y+1];
let valueBottomRight = P[P[X+1]+Y];
let valueBottomLeft = P[P[X]+Y];
let dotTopRight = topRight.dot(GetConstantVector(valueTopRight));
let dotTopLeft = topLeft.dot(GetConstantVector(valueTopLeft));
let dotBottomRight = bottomRight.dot(GetConstantVector(valueBottomRight));
let dotBottomLeft = bottomLeft.dot(GetConstantVector(valueBottomLeft));
let u = Fade(xf);
let v = Fade(yf);
return Lerp(u, Lerp(v, dotBottomLeft, dotTopLeft), Lerp(v, dotBottomRight, dotTopRight));
}
const plane = new THREE.Mesh(new THREE.PlaneGeometry(10000, 10000, 500, 500), new THREE.MeshPhongMaterial({color: 0x00aa00}));
plane.rotateX(-Math.PI / 2 + 0.00001);
plane.receiveShadow = true;
for (let y = 0, i = 0; y < 501; y++){
for(let x = 0; x < 501; x++, i++){
let n = 0.0, a = 1.0, f = 0.005;
for (let o = 0; o < 3; o++){
let v = a*Noise2D(x*f, y*f);
n += v;
a *= 0.5;
f *= 2.0;
}
n += 1;
n /= 2;
plane.geometry.vertices[i].z = n * 1000;
}
}
scene.add(plane);
const point = plane.geometry.vertices[Math.floor(Math.random() * 1000)];
camera.position.set(point.x, point.z + 2, point.y);
const geo = new THREE.Mesh(new THREE.BoxGeometry(10, 10, 10), new THREE.MeshBasicMaterial({color: 0xff0000}));
geo.castShadow = true;
scene.add(geo);
const render = () => {
requestAnimationFrame(render);
const below = new THREE.Vector3(camera.position.x, -1000000, camera.position.y), cast = new THREE.Raycaster(camera.position, below), intersect = cast.intersectObject(plane);
if (intersect.length > 0){
if (intersect[0].distance < 3) camera.translateY(-1);
}else{
camera.translateY(-1);
}
renderer.render(scene, camera);
}
render();
onmousemove = () => {
if (camera.rotation._x > -0.8 || camera.rotation._y > -0.8){
camera.rotateX(-Math.atan(event.movementY / 300));
camera.rotateY(-Math.atan(event.movementX / 300));
}else{
if (Math.atan(event.movementY / 300) < 0) camera.rotateX(-Math.atan(event.movementY / 300));
if (Math.atan(event.movementX / 300) < 0) camera.rotateY(-Math.atan(event.movementX / 300));
}
camera.rotation.z = 0;
}
onresize = () => {
renderer.setSize(window.innerWidth, window.innerHeight);
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
camera.aspect = canvas.clientWidth / canvas.clientHeight;
camera.updateProjectionMatrix();
}
onkeydown = (event) => {
if (event.key == "w") camera.translateZ(-10);
if (event.key == "a") camera.translateX(-1);
if (event.key == "s") camera.translateZ(1);
if (event.key == "d") camera.translateX(1);
if (event.key == "ArrowUp") camera.translateY(1);
if (event.key == "ArrowDown") camera.translateY(-1);
}
body{
margin: 0;
background-color: black;
overflow: hidden;
}
canvas{
border: none;
}
<meta name="viewport" content="width=device-width">
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/94/three.min.js"></script>
<script src="https://cdn.rawgit.com/mrdoob/three.js/0949e59f/examples/js/controls/OrbitControls.js"></script>
<script src="https://cdn.rawgit.com/mrdoob/three.js/0949e59f/examples/js/utils/SceneUtils.js"></script>
<script src="https://cdn.rawgit.com/mrdoob/three.js/0949e59f/examples/js/libs/dat.gui.min.js"></script>
If the ground is not detected at least 3 units below the camera, the player will continue falling. However, sometimes nothing is spotted below the camera, while the player is clearly hovering over the ground. This is extremely frustrating. Is there any reliable alternative method to solve this problem, such as using something other than raycasting? Or is there a bug in the code? TIA
See the Raycaster documentation. The constructor takes the origin, the direction and near and far parameters. So you could do:
const gravityDirection = new THREE.Vector3(0, -1, 0);
cast = new THREE.Raycaster(camera.position, gravityDirection, 0, 3);
and this also makes the distance check redundant, as the far parameter already filters out hits further away than 3 units.

Redraw three js element

I looked at this example with three js to draw particles with images and works perfectly but i want to change the image with a switch when click a button (calls this function):
const changeImg = function(num) {
switch (num)
{
case 0:
imgData ="....";
break;
case 1:
imgData = "..."
break;
}
img.src = imgData;
}
And works but when you click multiple times website becomes slow.
How can I update just the image without slowing down the website?
EDIT 1
I change the code like this:
var renderer, scene, camera, ww, wh, particles, mw, mh, mz, numState;
numState = 0;
mz = 6; // Matrerial size
ww = document.getElementById('map-container').offsetWidth,
wh = 450;
mw = ww * 2;
mh = wh * 2;
var centerVector = new THREE.Vector3(0, 0, 0);
var previousTime = 0
speed = 10
isMouseDown = false;
// Render
renderer = new THREE.WebGLRenderer({
canvas: document.getElementById("map"),
antialias: true
});
renderer.setSize(mw, mh);
renderer.setClearColor(0x12347C);
// Scence
scene = new THREE.Scene();
// Camera
camera = new THREE.OrthographicCamera( ww / - 2, ww / 2, wh / 2, wh / - 2, 1, 1000 );
camera.position.set(7, 0, 4);
camera.lookAt(centerVector);
scene.add(camera);
camera.zoom = 4;
camera.updateProjectionMatrix();
// Geometry
var geometry = new THREE.Geometry();
var material = new THREE.PointsMaterial({
size: mz,
color: 0xFFFFFF,
sizeAttenuation: false
});
// Particle
particles = new THREE.Points();
var getImageData = function(image) {
var canvas = document.createElement("canvas");
canvas.width = image.width;
canvas.height = image.height;
var ctx = canvas.getContext("2d");
ctx.drawImage(image, 0, 0);
return ctx.getImageData(0, 0, image.width, image.height);
}
var drawTheMap = function() {
geometry.dispose();
particles.material.dispose();
particles.geometry.dispose();
for (var y = 0, y2 = imagedata.height; y < y2; y += 2) {
for (var x = 0, x2 = imagedata.width; x < x2; x += 2) {
if (imagedata.data[(x * 4 + y * 4 * imagedata.width)] < 128) {
var vertex = new THREE.Vector3();
vertex.x = x - imagedata.width / 2;
vertex.y = -y + imagedata.height / 2;
vertex.z = -Math.random()*500;
vertex.speed = Math.random() / speed + 0.015;
geometry.vertices.push(vertex);
}
}
}
particles.material = material;
particles.geometry = geometry;
scene.add(particles);
requestAnimationFrame(render);
};
var init = function() {
imagedata = getImageData(image);
drawTheMap();
onResize();
window.addEventListener('mousemove', onMousemove, false);
window.addEventListener('mousedown', onMousedown, false);
window.addEventListener('mouseup', onMouseup, false);
window.addEventListener('resize', onResize, false);
};
var onResize = function(){
var mov1, mov2;
ww = document.getElementById('map-container').offsetWidth;
wh = 450;
if (window.innerWidth > 850) {
mw = ww * 2;
mh = wh * 2;
mz = 6;
mov1 = 2.2;
mov2 = 1.9;
particles.material.size = mz;
} else {
mw = ww;
mh = wh;
mz = 3;
mov1 = 2;
mov2 = 2;
particles.material.size = mz;
}
renderer.setSize(mw, mh);
camera.left = ww / - mov1;
camera.right = ww / 2;
camera.top = wh / mov2;
camera.bottom = wh / - 2;
camera.updateProjectionMatrix();
};
var onMouseup = function(){
isMouseDown = false;
}
var onMousedown = function(e){
isMouseDown = true;
lastMousePos = {x:e.clientX, y:e.clientY};
};
var onMousemove = function(e){
if(isMouseDown){
camera.position.x += (e.clientX-lastMousePos.x)/100;
camera.position.y -= (e.clientY-lastMousePos.y)/100;
camera.lookAt(centerVector);
lastMousePos = {x:e.clientX, y:e.clientY};
}
};
var render = function(a) {
requestAnimationFrame(render);
particles.geometry.verticesNeedUpdate = true;
if(!isMouseDown){
camera.position.x += (0-camera.position.x)*0.06;
camera.position.y += (0-camera.position.y)*0.06;
camera.lookAt(centerVector);
}
renderer.render(scene, camera);
};
var imgData;
var image;
imgData ="...";
const changeState = function(state, num) {
document.getElementById('dropbox-choose').innerHTML = state;
numState = num;
switch (numState)
{
case 0:
imgData ="...";
break;
case 1:
imgData = "..."
break;
}
image.src = imgData;
}
image = document.createElement("img");
image.onload = init;
image.src = imgData;
And the THREE.WebGLRenderer is only applied once but when I click to change the image, it does not update and also I still have the problem that the website slows down
it's my first time using three js and i don't know if i'm applying well what it says in the documentation
EDIT 2
var renderer, scene, camera, ww, wh, particles, mw, mh, mz, numState;
numState = 0;
mz = 6;
ww = document.getElementById('map-container').offsetWidth,
wh = 450;
mw = ww * 2;
mh = wh * 2;
var centerVector = new THREE.Vector3(0, 0, 0);
var previousTime = 0
speed = 10
isMouseDown = false;
// Render
renderer = new THREE.WebGLRenderer({
canvas: document.getElementById("map"),
antialias: true
});
renderer.setSize(mw, mh);
renderer.setClearColor(0x12347C);
// Scence
scene = new THREE.Scene();
// Camera
camera = new THREE.OrthographicCamera( ww / - 2, ww / 2, wh / 2, wh / - 2, 1, 1000 );
camera.position.set(7, 0, 4);
camera.lookAt(centerVector);
scene.add(camera);
camera.zoom = 4;
camera.updateProjectionMatrix();
// Geometry
//var geometry = new THREE.Geometry();
var material = new THREE.PointsMaterial({
size: mz,
color: 0xFFFFFF,
sizeAttenuation: false
});
// Particle
particles = new THREE.Points();
particles.material = material
scene.add(particles);
var getImageData = function(image) {
var canvas = document.createElement("canvas");
canvas.width = image.width;
canvas.height = image.height;
var ctx = canvas.getContext("2d");
ctx.drawImage(image, 0, 0);
return ctx.getImageData(0, 0, image.width, image.height);
}
var drawTheMap = function() {
let vertices = particles.geometry; // this acts as a REFERENCE!
vertices.length = 0; // clears the vertices array
for (var y = 0, y2 = imagedata.height; y < y2; y += 2) {
for (var x = 0, x2 = imagedata.width; x < x2; x += 2) {
if (imagedata.data[(x * 4 + y * 4 * imagedata.width)] < 128) {
var vertex = new THREE.Vector3();
vertex.x = x - imagedata.width / 2;
vertex.y = -y + imagedata.height / 2;
vertex.z = -Math.random()*500;
vertex.speed = Math.random() / speed + 0.015;
vertices.vertices.push(vertex);
}
}
}
particles.geometry.verticesNeedUpdate = true; // Inform three.js of the update
requestAnimationFrame(render);
};
var init = function() {
imagedata = getImageData(image);
drawTheMap();
onResize();
window.addEventListener('mousemove', onMousemove, false);
window.addEventListener('mousedown', onMousedown, false);
window.addEventListener('mouseup', onMouseup, false);
window.addEventListener('resize', onResize, false);
};
var onResize = function(){
var mov1, mov2;
ww = document.getElementById('map-container').offsetWidth;
wh = 450;
if (window.innerWidth > 850) {
mw = ww * 2;
mh = wh * 2;
mz = 6;
mov1 = 2.2;
mov2 = 1.9;
particles.material.size = mz;
} else {
mw = ww;
mh = wh;
mz = 3;
mov1 = 2;
mov2 = 2;
particles.material.size = mz;
}
renderer.setSize(mw, mh);
camera.left = ww / - mov1;
camera.right = ww / 2;
camera.top = wh / mov2;
camera.bottom = wh / - 2;
camera.updateProjectionMatrix();
};
var onMouseup = function(){
isMouseDown = false;
}
var onMousedown = function(e){
isMouseDown = true;
lastMousePos = {x:e.clientX, y:e.clientY};
};
var onMousemove = function(e){
if(isMouseDown){
camera.position.x += (e.clientX-lastMousePos.x)/100;
camera.position.y -= (e.clientY-lastMousePos.y)/100;
camera.lookAt(centerVector);
lastMousePos = {x:e.clientX, y:e.clientY};
}
};
var render = function(a) {
requestAnimationFrame(render);
particles.geometry.verticesNeedUpdate = true;
if(!isMouseDown){
camera.position.x += (0-camera.position.x)*0.06;
camera.position.y += (0-camera.position.y)*0.06;
camera.lookAt(centerVector);
}
renderer.render(scene, camera);
};
var imgData;
var image;
imgData ="...";
const changeState = function(state, num) {
document.getElementById('dropbox-choose').innerHTML = state;
numState = num;
switch (numState)
{
case 0:
imgData ="...";
break;
case 1:
imgData = "..."
break;
}
image.src = imgData;
}
image = document.createElement("img");
image.onload = init;
image.src = imgData;
When I click to change the image, it does not update and also I still have the problem that the website slows down. I cahaged vertcies.push to vertices.vertices.push()
I know I mentioned disposal in a previous version of my answer, but let's instead consider re-using all of your objects.
particles - Add it to the scene immediately after creation.
material - Assign it to particles immediately; No need to re-assign it every time.
geometry - Don't create it globally, we'll let it work from within particles.
Now what we're going to do is replace the vertices and tell three.js that there are new vertices to upload to the GPU.
var drawTheMap = function() {
let vertices = particles.geometry; // this acts as a REFERENCE!
vertices.length = 0; // clears the vertices array
for (var y = 0, y2 = imagedata.height; y < y2; y += 2) {
for (var x = 0, x2 = imagedata.width; x < x2; x += 2) {
if (imagedata.data[(x * 4 + y * 4 * imagedata.width)] < 128) {
var vertex = new THREE.Vector3();
vertex.x = x - imagedata.width / 2;
vertex.y = -y + imagedata.height / 2;
vertex.z = -Math.random()*500;
vertex.speed = Math.random() / speed + 0.015;
vertices.push(vertex);
}
}
}
particles.geometry.verticesNeedUpdate = true; // Inform three.js of the update
requestAnimationFrame(render);
};
The important part here (other than replacing the contents of the vertices array) is setting particles.geometry.verticesNeedUpdate = true;. This is what triggers three.js to replace the vertices on the GPU. Everything else is re-used, not recreated, so it should run fairly smooth.
The solution is change THREE.geometry to THREE.BufferGeometry
var drawTheMap = function() {
particles.geometry = new THREE.BufferGeometry();
var positions = [];
for (var y = 0, y2 = imagedata.height; y < y2; y += 2) {
for (var x = 0, x2 = imagedata.width; x < x2; x += 2) {
if (imagedata.data[(x * 4 + y * 4 * imagedata.width)] < 128) {
positions.push(x - imagedata.width / 2);
positions.push(-y + imagedata.height / 2);
positions.push(-Math.random()*500);
particles.geometry.setAttribute( 'position', new THREE.Float32BufferAttribute( positions, 3 ) );
}
}
}
particles.geometry.verticesNeedUpdate = true;
requestAnimationFrame(render);
};

How can I achieve an even distribution of sprites across the surface of a sphere in THREE.js?

I'm trying to make a database of words where the most important words are closer to the top of the sphere and the less important are further away. So I created a sphere with enough vertices for each word, created a list of those vertices in order of distance from the top of the sphere, and placed the text sprites at the positions of the vertices in order of that sorted list.
Video version: https://i.gyazo.com/aabaf0b4a26f4413dc6a0ebafab2b4bd.mp4
Sounded like a good plan in my head, but clearly the geometry of a sphere causes the words to be further spread out the further away from the top they are. I need a result that looks like a somewhat even distribution across the surface. It doesn't have to be perfect, just visually closer than this.
How can I achieve the desired effect?
Here are the relevant methods:
positionDb(db) {
console.log("mostRelated", db.mostRelated);
console.log("depthList", this.depthList);
let mostRelated = db.mostRelated;
let depthList = this.depthList;
for (let i = 0; i < mostRelated.length; i++) {
this.addTextNode(mostRelated[i].data, this.depthList[i].vertice, this.depthList[i].depth);
}
}
addTextNode(text, vert, distance) {
let fontSize = 0.5 * (600 / distance);
let sprite = new THREE.TextSprite({
fillStyle: '#000000',
fontFamily: '"Arial", san-serif',
fontSize: fontSize,
fontWeight: 'bold',
text: text
});
this.scene.add(sprite);
sprite.position.set(vert.x, vert.y, vert.z);
setTimeout(() => {
sprite.fontFamily = '"Roboto", san-serif';
}, 1000)
}
this.scene = scene;
this.geometry = new THREE.SphereGeometry(420, 50, 550);
var material = new THREE.MeshBasicMaterial({
color: 0x0011ff
});
var sphere = new THREE.Mesh(this.geometry, wireframe);
var wireframe = new THREE.WireframeGeometry(this.geometry);
let frontVert = {
x: 0,
y: 100,
z: 0
}
let depthList = [];
this.geometry.vertices.forEach(vertice => {
let depth = getDistance(frontVert, vertice);
if (depthList.length === 0) {
depthList.push({
depth,
vertice
});
} else {
let flag = false;
for (let i = 0; i < depthList.length; i++) {
let item = depthList[i];
if (depth < item.depth) {
flag = true;
depthList.splice(i, 0, {
depth,
vertice
});
break;
}
}
if (!flag) depthList.push({
depth,
vertice
});
}
});
Maybe a fibonacci sphere
function fibonacciSphere(numPoints, point) {
const rnd = 1;
const offset = 2 / numPoints;
const increment = Math.PI * (3 - Math.sqrt(5));
const y = ((point * offset) - 1) + (offset / 2);
const r = Math.sqrt(1 - Math.pow(y, 2));
const phi = (point + rnd) % numPoints * increment;
const x = Math.cos(phi) * r;
const z = Math.sin(phi) * r;
return new THREE.Vector3(x, y, z);
}
Example:
function fibonacciSphere(numPoints, point) {
const rnd = 1;
const offset = 2 / numPoints;
const increment = Math.PI * (3 - Math.sqrt(5));
const y = ((point * offset) - 1) + (offset / 2);
const r = Math.sqrt(1 - Math.pow(y, 2));
const phi = (point + rnd) % numPoints * increment;
const x = Math.cos(phi) * r;
const z = Math.sin(phi) * r;
return new THREE.Vector3(x, y, z);
}
function main() {
const fov = 75;
const aspect = 2; // the canvas default
const near = 0.1;
const far = 5;
const camera = new THREE.PerspectiveCamera(fov, aspect, near, far);
camera.position.z = 2;
const scene = new THREE.Scene();
function addTextNode(text, vert) {
const div = document.createElement('div');
div.className = 'label';
div.textContent = text;
div.style.marginTop = '-1em';
const label = new THREE.CSS2DObject(div);
label.position.copy(vert);
scene.add(label);
}
const renderer = new THREE.CSS2DRenderer();
const container = document.querySelector('#c');
container.appendChild(renderer.domElement);
const controls = new THREE.OrbitControls(camera, renderer.domElement);
const numPoints = 50;
for (let i = 0; i < numPoints; ++i) {
addTextNode(`p${i}`, fibonacciSphere(numPoints, i));
}
function render(time) {
time *= 0.001;
// three's poor choice of how to hanlde size strikes again :(
renderer.setSize(container.clientWidth, container.clientHeight);
const canvas = renderer.domElement;
camera.aspect = canvas.clientWidth / canvas.clientHeight;
camera.updateProjectionMatrix();
renderer.render(scene, camera);
requestAnimationFrame(render);
}
requestAnimationFrame(render);
}
main();
body {
margin: 0;
overflow: hidden;
}
#c {
width: 100vw;
height: 100vh;
display: block;
}
.label {
color: red;
}
<script src="https://threejsfundamentals.org/threejs/resources/threejs/r113/build/three.min.js"></script>
<script src="https://threejsfundamentals.org/threejs/resources/threejs/r113/examples/js/controls/OrbitControls.js"></script>
<script src="https://threejsfundamentals.org/threejs/resources/threejs/r113/examples/js/renderers/CSS2DRenderer.js"></script>
<div id="c"></div>

how to import a height map in WebGL

I know that in theory you have to first find the coordinates on the height map like (x = width HM / width Terrain * x Terrain) and y coordinate (y = height HM / height Terrain * y Terrain) and after getting the location on the height map, we get the actual height by min_height + (colorVal / (max_color - min_color) * *max_height - min_height) thus returning a Z value for a particular segment.
But how can i actually import the height map and take its parameters? I'm writing in javascript with no additional libraries (three,babylon).
edit
Currently i'm hardcoding the z values based on x and y ranges:
Plane.prototype.modifyGeometry=function(x,y){
if((x>=0&&x<100)&&(y>=0&&y<100)){
return 25;
}
else if((x>=100&&x<150)&&(y>=100&&y<150)){
return 20;
}
else if((x>=150&&x<200)&&(y>=150&&y<200)){
return 15;
}
else if((x>=200&&x<250)&&(y>=200&&y<250)){
return 10;
}
else if((x>=250&&x<300)&&(y>=250&&y<300)){
return 5;
}
else{
return 0;
}
** edit **
i can get a flat grid (or with randomly generated heights), but as soon as i add the image data, i get a blank screen(no errors though). Here is the code (i changed it up a bit):
var gl;
var canvas;
var img = new Image();
// img.onload = run;
img.crossOrigin = 'anonymous';
img.src = 'https://threejsfundamentals.org/threejs/resources/images/heightmap-96x64.png';
var gridWidth;
var gridDepth;
var gridPoints = [];
var gridIndices = [];
var rowOff = 0;
var rowStride = gridWidth + 1;
var numVertices = (gridWidth * 2 * (gridDepth + 1)) + (gridDepth * 2 * (gridWidth + 1));
//creating plane
function generateHeightPoints() {
var ctx = document.createElement("canvas").getContext("2d"); //using 2d canvas to read image
ctx.canvas.width = img.width;
ctx.canvas.height = img.height;
ctx.drawImage(img, 0, 0);
var imgData = ctx.getImageData(0, 0, ctx.canvas.width, ctx.canvas.height);
gridWidth = imgData.width - 1;
gridDepth = imgData.height - 1;
for (var z = 0; z <= gridDepth; ++z) {
for (var x = 0; x <= gridWidth; ++x) {
var offset = (z * imgData.width + x) * 4;
var height = imgData.data[offset] * 10 / 255;
gridPoints.push(x, height, z);
}
}
}
function generateIndices() {
for (var z = 0; z<=gridDepth; ++z) {
rowOff = z*rowStride;
for(var x = 0; x<gridWidth; ++x) {
gridIndices.push(rowOff+x,rowOff+x+1);
}
}
for (var x = 0; x<=gridWidth; ++x) {
for(var z = 0; z<gridDepth; ++z) {
rowOff = z * rowStride;
gridIndices.push(rowOff+x,rowOff+x+rowStride);
}
}
}
//init
//program init
window.onload = function init()
{
canvas = document.getElementById( "gl-canvas" );
gl = WebGLUtils.setupWebGL( canvas );
if ( !gl ) { alert( "WebGL isn't available" ); }
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
var program = initShaders( gl, "vertex-shader", "fragment-shader" );
gl.useProgram( program );
generateHeightPoints();
generateIndices();
var positionBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(gridPoints),
gl.STATIC_DRAW);
var indexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(gridIndices),
gl.STATIC_DRAW);
var vPosition = gl.getAttribLocation( program, "vPosition" );
gl.vertexAttribPointer( vPosition, 3, gl.FLOAT, false, 0, 0 );
gl.enableVertexAttribArray( vPosition );
var matrixLoc = gl.getUniformLocation(program, 'matrix');
var m4 = twgl.m4;
var projection = m4.perspective(60 * Math.PI / 180, gl.canvas.clientWidth /
gl.canvas.clientHeight, 0.1, 100);
var cameraPosition = [-18, 15, -10];
var target = [gridWidth / 2, -10, gridDepth / 2];
var up = [0, 1, 0];
var camera = m4.lookAt(cameraPosition, target, up);
var view = m4.inverse(camera);
var mat = m4.multiply(projection, view);
gl.uniformMatrix4fv(matrixLoc, false, mat);
render();
}
function render() {
gl.drawElements(gl.LINES, numVertices, gl.UNSIGNED_SHORT, 0);
gl.drawElements(gl.LINES,numVertices,gl.UNSIGNED_SHORT,0);
requestAnimFrame(render);
}
You basically just make a grid of points and change the Z values.
First a flat grid
const gl = document.querySelector('canvas').getContext('webgl');
const vs = `
attribute vec4 position;
uniform mat4 matrix;
void main() {
gl_Position = matrix * position;
}
`;
const fs = `
precision highp float;
void main() {
gl_FragColor = vec4(0, 1, 0, 1);
}
`;
const program = twgl.createProgram(gl, [vs, fs]);
const positionLoc = gl.getAttribLocation(program, 'position');
const matrixLoc = gl.getUniformLocation(program, 'matrix');
const gridWidth = 40;
const gridDepth = 40;
const gridPoints = [];
for (let z = 0; z <= gridDepth; ++z) {
for (let x = 0; x <= gridWidth; ++x) {
gridPoints.push(x, 0, z);
}
}
const gridIndices = [];
const rowStride = gridWidth + 1;
// x lines
for (let z = 0; z <= gridDepth; ++z) {
const rowOff = z * rowStride;
for (let x = 0; x < gridWidth; ++x) {
gridIndices.push(rowOff + x, rowOff + x + 1);
}
}
// z lines
for (let x = 0; x <= gridWidth; ++x) {
for (let z = 0; z < gridDepth; ++z) {
const rowOff = z * rowStride;
gridIndices.push(rowOff + x, rowOff + x + rowStride);
}
}
const positionBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(gridPoints), gl.STATIC_DRAW);
const indexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(gridIndices), gl.STATIC_DRAW);
twgl.resizeCanvasToDisplaySize(gl.canvas);
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
const m4 = twgl.m4;
const projection = m4.perspective(
60 * Math.PI / 180, // field of view
gl.canvas.clientWidth / gl.canvas.clientHeight, // aspect
0.1, // near
100, // far
);
const cameraPosition = [-gridWidth / 8, 10, -gridDepth / 8];
const target = [gridWidth / 2, -10, gridDepth / 2];
const up = [0, 1, 0];
const camera = m4.lookAt(cameraPosition, target, up);
const view = m4.inverse(camera);
const mat = m4.multiply(projection, view);
gl.enableVertexAttribArray(positionLoc);
gl.vertexAttribPointer(
positionLoc, // location
3, // size
gl.FLOAT, // type
false, // normalize
0, // stride
0, // offset
);
gl.useProgram(program);
gl.uniformMatrix4fv(matrixLoc, false, mat);
const numVertices = (gridWidth * 2 * (gridDepth + 1)) +
(gridDepth * 2 * (gridWidth + 1));
gl.drawElements(
gl.LINES, // primitive type
numVertices, //
gl.UNSIGNED_SHORT, // type of indices
0, // offset
);
body { margin: 0; }
canvas { width: 100vw; height: 100vh; display: block; }
<script src="https://twgljs.org/dist/4.x/twgl-full.min.js"></script>
<canvas></canvas>
Grid with height map.
Here's a gray scale image we can use as a height map
Read it by loading a img, drawing to a 2D canvas, calling getImageData. Then just read the red values for height.
const img = new Image();
img.onload = run;
img.crossOrigin = 'anonymous';
img.src = 'https://threejsfundamentals.org/threejs/resources/images/heightmap-96x64.png';
function run() {
const gl = document.querySelector('canvas').getContext('webgl');
const vs = `
attribute vec4 position;
uniform mat4 matrix;
void main() {
gl_Position = matrix * position;
}
`;
const fs = `
precision highp float;
void main() {
gl_FragColor = vec4(0, 1, 0, 1);
}
`;
const program = twgl.createProgram(gl, [vs, fs]);
const positionLoc = gl.getAttribLocation(program, 'position');
const matrixLoc = gl.getUniformLocation(program, 'matrix');
// use a canvas 2D to read the image
const ctx = document.createElement('canvas').getContext('2d');
ctx.canvas.width = img.width;
ctx.canvas.height = img.height;
ctx.drawImage(img, 0, 0);
const imgData = ctx.getImageData(0, 0, ctx.canvas.width, ctx.canvas.height);
const gridWidth = imgData.width - 1;
const gridDepth = imgData.height - 1;
const gridPoints = [];
for (let z = 0; z <= gridDepth; ++z) {
for (let x = 0; x <= gridWidth; ++x) {
const offset = (z * imgData.width + x) * 4;
// height 0 to 10
const height = imgData.data[offset] * 10 / 255;
gridPoints.push(x, height, z);
}
}
const gridIndices = [];
const rowStride = gridWidth + 1;
// x lines
for (let z = 0; z <= gridDepth; ++z) {
const rowOff = z * rowStride;
for (let x = 0; x < gridWidth; ++x) {
gridIndices.push(rowOff + x, rowOff + x + 1);
}
}
// z lines
for (let x = 0; x <= gridWidth; ++x) {
for (let z = 0; z < gridDepth; ++z) {
const rowOff = z * rowStride;
gridIndices.push(rowOff + x, rowOff + x + rowStride);
}
}
const positionBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(gridPoints), gl.STATIC_DRAW);
const indexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(gridIndices), gl.STATIC_DRAW);
twgl.resizeCanvasToDisplaySize(gl.canvas);
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
const m4 = twgl.m4;
const projection = m4.perspective(
60 * Math.PI / 180, // field of view
gl.canvas.clientWidth / gl.canvas.clientHeight, // aspect
0.1, // near
100, // far
);
const cameraPosition = [-10, 10, -10];
const target = [gridWidth / 2, -10, gridDepth / 2];
const up = [0, 1, 0];
const camera = m4.lookAt(cameraPosition, target, up);
const view = m4.inverse(camera);
const mat = m4.multiply(projection, view);
gl.enableVertexAttribArray(positionLoc);
gl.vertexAttribPointer(
positionLoc, // location
3, // size
gl.FLOAT, // type
false, // normalize
0, // stride
0, // offset
);
gl.useProgram(program);
gl.uniformMatrix4fv(matrixLoc, false, mat);
const numVertices = (gridWidth * 2 * (gridDepth + 1)) +
(gridDepth * 2 * (gridWidth + 1));
gl.drawElements(
gl.LINES, // primitive type
numVertices, //
gl.UNSIGNED_SHORT, // type of indices
0, // offset
);
}
body { margin: 0; }
canvas { width: 100vw; height: 100vh; display: block; }
<script src="https://twgljs.org/dist/4.x/twgl-full.min.js"></script>
<canvas></canvas>
Then instead of making a grid of lines make a grid of triangles. There's lots of ways to do that. You could put 2 triangle per grid square. This code put's 4. You also need to generate normals. I copied the code to generate normals from this article which is fairly generic normal generating code. Being a grid you could make a grid specific normal generator which would be faster since being a grid you know which vertices are shared.
This code is also using twgl because WebGL is too verbose but it should be clear how to do it in plain WebGL from reading the names of the twgl functions.
'use strict';
/* global twgl, m4, requestAnimationFrame, document */
const img = new Image();
img.onload = run;
img.crossOrigin = 'anonymous';
img.src = 'https://threejsfundamentals.org/threejs/resources/images/heightmap-96x64.png';
function run() {
// use a canvas 2D to read the image
const ctx = document.createElement('canvas').getContext('2d');
ctx.canvas.width = img.width;
ctx.canvas.height = img.height;
ctx.drawImage(img, 0, 0);
const imgData = ctx.getImageData(0, 0, ctx.canvas.width, ctx.canvas.height);
function getHeight(offset) {
const v = imgData.data[offset * 4]; // x4 because RGBA
return v * 10 / 255; // 0 to 10
}
// first generate a grid of triangles, at least 2 or 4 for each cell
//
// 2 4
// +----+ +----+
// | /| |\ /|
// | / | | \/ |
// | / | | /\ |
// |/ | |/ \|
// +----+ +----+
//
const positions = [];
const texcoords = [];
const indices = [];
const cellsAcross = imgData.width - 1;
const cellsDeep = imgData.height - 1;
for (let z = 0; z < cellsDeep; ++z) {
for (let x = 0; x < cellsAcross; ++x) {
const base0 = z * imgData.width + x;
const base1 = base0 + imgData.width;
const h00 = getHeight(base0); const h01 = getHeight(base0 + 1);
const h10 = getHeight(base1);
const h11 = getHeight(base1 + 1);
const hm = (h00 + h01 + h10 + h11) / 4;
const x0 = x;
const x1 = x + 1;
const z0 = z;
const z1 = z + 1;
const ndx = positions.length / 3;
positions.push(
x0, h00, z0,
x1, h01, z0,
x0, h10, z1,
x1, h11, z1,
(x0 + x1) / 2, hm, (z0 + z1) / 2,
);
const u0 = x / cellsAcross;
const v0 = z / cellsDeep;
const u1 = (x + 1) / cellsAcross;
const v1 = (z + 1) / cellsDeep;
texcoords.push(
u0, v0,
u1, v0,
u0, v1,
u1, v1,
(u0 + u1) / 2, (v0 + v1) / 2,
);
//
// 0----1
// |\ /|
// | \/4|
// | /\ |
// |/ \|
// 2----3
indices.push(
ndx, ndx + 4, ndx + 1,
ndx, ndx + 2, ndx + 4,
ndx + 2, ndx + 3, ndx + 4,
ndx + 1, ndx + 4, ndx + 3,
);
}
}
const maxAngle = 2 * Math.PI / 180; // make them facetted
const arrays = generateNormals({
position: positions,
texcoord: texcoords,
indices,
}, maxAngle);
const gl = document.querySelector('canvas').getContext('webgl');
const vs = `
attribute vec4 position;
attribute vec3 normal;
attribute vec2 texcoord;
uniform mat4 projection;
uniform mat4 modelView;
varying vec3 v_normal;
varying vec2 v_texcoord;
void main() {
gl_Position = projection * modelView * position;
v_normal = mat3(modelView) * normal;
v_texcoord = texcoord;
}
`;
const fs = `
precision highp float;
varying vec3 v_normal;
varying vec2 v_texcoord;
varying float v_modelId;
void main() {
vec3 lightDirection = normalize(vec3(1, 2, -3)); // arbitrary light direction
float l = dot(lightDirection, normalize(v_normal)) * .5 + .5;
gl_FragColor = vec4(vec3(0,1,0) * l, 1);
}
`;
// compile shader, link, look up locations
const programInfo = twgl.createProgramInfo(gl, [vs, fs]);
// make some vertex data
// calls gl.createBuffer, gl.bindBuffer, gl.bufferData for each array
const bufferInfo = twgl.createBufferInfoFromArrays(gl, arrays);
function render(time) {
time *= 0.001; // seconds
twgl.resizeCanvasToDisplaySize(gl.canvas);
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
gl.enable(gl.DEPTH_TEST);
gl.enable(gl.CULL_FACE);
const fov = Math.PI * 0.25;
const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight;
const near = 0.1;
const far = 100;
const projection = m4.perspective(fov, aspect, near, far);
const eye = [0, 10, 25];
const target = [0, 0, 0];
const up = [0, 1, 0];
const camera = m4.lookAt(eye, target, up);
const view = m4.inverse(camera);
let modelView = m4.yRotate(view, time);
modelView = m4.translate(modelView, imgData.width / -2, 0, imgData.height / -2)
gl.useProgram(programInfo.program);
// calls gl.bindBuffer, gl.enableVertexAttribArray, gl.vertexAttribPointer
twgl.setBuffersAndAttributes(gl, programInfo, bufferInfo);
// calls gl.activeTexture, gl.bindTexture, gl.uniformXXX
twgl.setUniforms(programInfo, {
projection,
modelView,
});
// calls gl.drawArrays or gl.drawElements
twgl.drawBufferInfo(gl, bufferInfo);
requestAnimationFrame(render);
}
requestAnimationFrame(render);
function generateNormals(arrays, maxAngle) {
const positions = arrays.position;
const texcoords = arrays.texcoord;
// first compute the normal of each face
let getNextIndex = makeIndiceIterator(arrays);
const numFaceVerts = getNextIndex.numElements;
const numVerts = arrays.position.length;
const numFaces = numFaceVerts / 3;
const faceNormals = [];
// Compute the normal for every face.
// While doing that, create a new vertex for every face vertex
for (let i = 0; i < numFaces; ++i) {
const n1 = getNextIndex() * 3;
const n2 = getNextIndex() * 3;
const n3 = getNextIndex() * 3;
const v1 = positions.slice(n1, n1 + 3);
const v2 = positions.slice(n2, n2 + 3);
const v3 = positions.slice(n3, n3 + 3);
faceNormals.push(m4.normalize(m4.cross(m4.subtractVectors(v1, v2), m4.subtractVectors(v3, v2))));
}
let tempVerts = {};
let tempVertNdx = 0;
// this assumes vertex positions are an exact match
function getVertIndex(x, y, z) {
const vertId = x + "," + y + "," + z;
const ndx = tempVerts[vertId];
if (ndx !== undefined) {
return ndx;
}
const newNdx = tempVertNdx++;
tempVerts[vertId] = newNdx;
return newNdx;
}
// We need to figure out the shared vertices.
// It's not as simple as looking at the faces (triangles)
// because for example if we have a standard cylinder
//
//
// 3-4
// / \
// 2 5 Looking down a cylinder starting at S
// | | and going around to E, E and S are not
// 1 6 the same vertex in the data we have
// \ / as they don't share UV coords.
// S/E
//
// the vertices at the start and end do not share vertices
// since they have different UVs but if you don't consider
// them to share vertices they will get the wrong normals
const vertIndices = [];
for (let i = 0; i < numVerts; ++i) {
const offset = i * 3;
const vert = positions.slice(offset, offset + 3);
vertIndices.push(getVertIndex(vert));
}
// go through every vertex and record which faces it's on
const vertFaces = [];
getNextIndex.reset();
for (let i = 0; i < numFaces; ++i) {
for (let j = 0; j < 3; ++j) {
const ndx = getNextIndex();
const sharedNdx = vertIndices[ndx];
let faces = vertFaces[sharedNdx];
if (!faces) {
faces = [];
vertFaces[sharedNdx] = faces;
}
faces.push(i);
}
}
// now go through every face and compute the normals for each
// vertex of the face. Only include faces that aren't more than
// maxAngle different. Add the result to arrays of newPositions,
// newTexcoords and newNormals, discarding any vertices that
// are the same.
tempVerts = {};
tempVertNdx = 0;
const newPositions = [];
const newTexcoords = [];
const newNormals = [];
function getNewVertIndex(x, y, z, nx, ny, nz, u, v) {
const vertId =
x + "," + y + "," + z + "," +
nx + "," + ny + "," + nz + "," +
u + "," + v;
const ndx = tempVerts[vertId];
if (ndx !== undefined) {
return ndx;
}
const newNdx = tempVertNdx++;
tempVerts[vertId] = newNdx;
newPositions.push(x, y, z);
newNormals.push(nx, ny, nz);
newTexcoords.push(u, v);
return newNdx;
}
const newVertIndices = [];
getNextIndex.reset();
const maxAngleCos = Math.cos(maxAngle);
// for each face
for (let i = 0; i < numFaces; ++i) {
// get the normal for this face
const thisFaceNormal = faceNormals[i];
// for each vertex on the face
for (let j = 0; j < 3; ++j) {
const ndx = getNextIndex();
const sharedNdx = vertIndices[ndx];
const faces = vertFaces[sharedNdx];
const norm = [0, 0, 0];
faces.forEach(faceNdx => {
// is this face facing the same way
const otherFaceNormal = faceNormals[faceNdx];
const dot = m4.dot(thisFaceNormal, otherFaceNormal);
if (dot > maxAngleCos) {
m4.addVectors(norm, otherFaceNormal, norm);
}
});
m4.normalize(norm, norm);
const poffset = ndx * 3;
const toffset = ndx * 2;
newVertIndices.push(getNewVertIndex(
positions[poffset + 0], positions[poffset + 1], positions[poffset + 2],
norm[0], norm[1], norm[2],
texcoords[toffset + 0], texcoords[toffset + 1]));
}
}
return {
position: newPositions,
texcoord: newTexcoords,
normal: newNormals,
indices: newVertIndices,
};
}
function makeIndexedIndicesFn(arrays) {
const indices = arrays.indices;
let ndx = 0;
const fn = function() {
return indices[ndx++];
};
fn.reset = function() {
ndx = 0;
};
fn.numElements = indices.length;
return fn;
}
function makeUnindexedIndicesFn(arrays) {
let ndx = 0;
const fn = function() {
return ndx++;
};
fn.reset = function() {
ndx = 0;
}
fn.numElements = arrays.positions.length / 3;
return fn;
}
function makeIndiceIterator(arrays) {
return arrays.indices
? makeIndexedIndicesFn(arrays)
: makeUnindexedIndicesFn(arrays);
}
}
body { margin: 0; }
canvas { width: 100vw; height: 100vh; display: block; }
<script src="https://twgljs.org/dist/4.x/twgl-full.min.js"></script>
<script src="https://webglfundamentals.org/webgl/resources/3d-math.js"></script>
<canvas></canvas>

THREE.js - shooting a ball with a curve ( X / Z axis)

I'm new to THREE.js and with a very poor knowledge in physics but still I want to make a football manager game (played from top view) and I need to know that the kick of the ball is realistic as possible.
I was able to make the ball move and rotate in the correct direction while changing the position of the movement when the ball hits its boundaries.
now I need to deal with a issue of the curve of the ball and how do I make it so the ball with move in an arc to the top and to the sides (X / Y) depending of the angle of the foot hitting the ball
lets just say, I need to know how to handle two scenarios:
1) when kick start from the near bottom axis of the ball
2) when kick start from the near right axis of the ball
your help is highly appropriated. Thank you!
**
- I've added a code showing what i have so far
- I've added an image illustrating my goal (or this person scoring a goal)
/*
*
* SET UP MOTION PARAMS
*
*/
var boundries = [40, 24] //indicate where the ball needs to move in mirror position
var completeFieldDistance = boundries[0] * 2;
var fullPower = 1.8; //the power needed to move the ball the enitre field in one kick
var power = null; //will be set when the kick set in depending on the distance
var isKickStop = false; //indicate the renderer weather to stop the kick
var velocityX = null;
var velocityY = null;
//*** this is where i need help! ***
//how can I make the ball move in the Z axis with a nice curv up depending on a given angle
var curv = 15;
var peak = curv;
var velocityZ = 0;
var friction = 0.98;
var gravity = 0.5;
var bounciness = 0.8;
var minVelocity = 0.035; //for when it need to stop the kick rendering
var ballRadius = 3;
var ballCircumference = Math.PI * ballRadius * 2;
var ballVelocity = new THREE.Vector3();
var ballRotationAxis = new THREE.Vector3(0, 1, 0);
//world meshes
var ball = {};
var field = {};
/*
*
* THE KICK HANDLERS
*
*/
function onKick(angleDeg, distance) {
isKickStop = true;
peak = curv;
power = (distance / completeFieldDistance) * fullPower;
velocityX = Math.cos(angleDeg) * power;
velocityY = Math.sin(angleDeg) * power;
velocityZ = peak / (distance / 2);
requestAnimationFrame(function (params) {
isKickStop = false;
animateKick();
})
}
//** THIS IS WHERE I NEED HELP - how do I make the ball move
// render the movements of the ball
var animateKick = function (params) {
if (isKickStop) { return; }
ball.position.x += velocityX;
ball.position.z += velocityZ;
ball.position.y += velocityY;
if (Math.abs(velocityX) < minVelocity && Math.abs(velocityY) < minVelocity) {
ball.position.z = ball.bottom;
isKickStop = true;
console.log("DONE!");
return;
}
if (ball.position.z >= peak) {
ball.position.z = peak;
velocityZ *= -1;
}
if (ball.position.z < ball.bottom) {
peak *= gravity;
velocityZ *= -1;
ball.position.z = ball.bottom;
}
// Figure out the rotation based on the velocity and radius of the ball...
ballVelocity.set(velocityX, velocityY, 0);
ballRotationAxis.set(0, 0, 1).cross(ballVelocity).normalize();
var velocityMag = ballVelocity.length();
var rotationAmount = velocityMag * (Math.PI * 2) / ballCircumference;
ball.rotateOnWorldAxis(ballRotationAxis, rotationAmount);
//reduce velocity due to friction
velocityX *= friction;
velocityY *= friction;
//making sure ball is not outside of its boundries
if (Math.abs(ball.position.x) > boundries[0]) {
velocityX *= -1;
ball.position.x = (ball.position.x < 0) ? boundries[0] * -1 : boundries[0];
}
if (Math.abs(ball.position.y) > boundries[1]) {
velocityY *= -1;
ball.position.y = (ball.position.y < 0) ? boundries[1] * -1 : boundries[1];
}
}
window.onload = (function (params) {
/*
*
* SET UP THE WORLD
*
*/
//set up the ratio
var gWidth = window.innerWidth;
var gHeight = window.innerHeight;
var ratio = gWidth / gHeight;
//set the scene
scene = new THREE.Scene();
scene.background = new THREE.Color(0xeaeaea);
//set the camera
var camera = new THREE.PerspectiveCamera(35, ratio, 0.1, 1000);
camera.position.z = 120;
//set the light
var light = new THREE.SpotLight(0xffffff, 1);
light.castShadow = true;
light.position.set(0, 0, 35);
scene.add(light);
// set the renderer
var renderer = new THREE.WebGLRenderer();
//properties for casting shadow
renderer.shadowMap.enabled = true;
renderer.shadowMap.type = THREE.PCFSoftShadowMap;
renderer.setSize(gWidth, gHeight);
document.body.appendChild(renderer.domElement);
/*
*
* ADD MESH TO SCENE
*
*/
// create and add the ball
var geometry = new THREE.SphereGeometry(ballRadius, 8, 8);
//make a checkerboard texture for the ball...
var canv = document.createElement('canvas')
canv.width = canv.height = 256;
var ctx = canv.getContext('2d')
ctx.fillStyle = 'white';
ctx.fillRect(0, 0, 256, 256);
ctx.fillStyle = 'black';
for (var y = 0; y < 16; y++)
for (var x = 0; x < 16; x++)
if ((x & 1) != (y & 1)) ctx.fillRect(x * 16, y * 16, 16, 16);
var ballTex = new THREE.Texture(canv);
ballTex.needsUpdate = true;
var material = new THREE.MeshLambertMaterial({
map: ballTex
});
ball = new THREE.Mesh(geometry, material);
ball.castShadow = true;
ball.receiveShadow = false;
ball.bottom = ballRadius / 2;
scene.add(ball);
// create and add the field
var margin = 20;
var fieldRatio = 105 / 68;
var width = 90;
var height = width / fieldRatio;
var material = new THREE.MeshLambertMaterial({ color: 'green' });
var geometry = new THREE.BoxGeometry(width, height, 1);
field = new THREE.Mesh(geometry, material);
field.receiveShadow = true;
field.position.z = -1;
scene.add(field);
/*
*
* HANDLING EVENTS
*
*/
var domEvents = new THREEx.DomEvents(camera, renderer.domElement);
domEvents.addEventListener(field, 'click', function (e) {
//set points 1 and 2
var p1 = { x: e.intersect.point.x, y: e.intersect.point.y };
var p2 = { x: ball.position.x, y: ball.position.y };
var angleDeg = Math.atan2(p1.y - p2.y, p1.x - p2.x);
var a = p1.x - p2.x;
var b = p1.y - p2.y;
var distance = Math.sqrt(a * a + b * b);
window.onKick(angleDeg, distance);
}, false);
/*
*
* ANIMATION STEP
*
*/
var render = function (params) {
//render kick if it is on the go
if(!isKickStop){
animateKick();
}
//render the page
renderer.render(scene, camera);
requestAnimationFrame(render);
}
render();
})()
body {
padding: 0;
margin: 0;
}
<html>
<head>
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/96/three.min.js"></script>
<script src="https://www.klika.co.il/scripts/three.events.js"></script>
</head>
<body>
</body>
</html>
I build a model to mock this, the model accept several parameters, initial velocity and angular velocity, there are three force on the ball, gravity, air resistance force and Magnus force.
v0_x = 0; //initial velocity
v0_y = 4;
v0_z = 1;
w_x = 0 * Math.PI; // initial angular velocity
w_y = 2 * Math.PI;
w_z = 0 * Math.PI;
m = 2; //weight
rho = 1.2; // air density
g = 9.8; // gravity
f = 10; //frequency of the rotation of the ball
cl = 1.23; //horizontal tension coefficient
cd = 0.5; //air resistance coefficient
D = 0.22; // diameter of the ball
A = Math.PI * Math.pow((0.5 * D), 2); //cross-sectional area of the ball
t_step = 1 / 60;
b = (1 / 2) * cd * rho * A; //for convenience
c = cl * rho * Math.pow(D, 3) * f; // for convenience
vt_x = v0_x
vt_y = v0_y
vt_z = v0_z
animateKick = function() {
if (ball.position.y < 0) {
return;
}
tmp_1 = c * Math.pow(Math.pow(vt_x, 2) + Math.pow(vt_z, 2) + Math.pow(vt_y, 2), 2)
tmp_2 = (Math.sqrt(Math.pow(w_z * vt_y - w_y * vt_z, 2) + Math.pow(w_y * vt_x - w_x * vt_y, 2) + Math.pow(w_x * vt_z - w_z * vt_x, 2)))
tmp = tmp_1 / tmp_2
Fl_x = tmp * (w_z * vt_y - w_y * vt_z)
Fl_z = tmp * (w_y * vt_x - w_x * vt_y)
Fl_y = tmp * (w_x * vt_z - w_z * vt_y)
//Motion differential equation
a_x = -(b / m) * Math.sqrt((Math.pow(vt_z, 2) + Math.pow(vt_y, 2) + Math.pow(vt_x, 2))) * vt_x + (Fl_x / m)
a_z = -(b / m) * Math.sqrt((Math.pow(vt_z, 2) + Math.pow(vt_y, 2) + Math.pow(vt_x, 2))) * vt_z + (Fl_z / m)
a_y = -g - (b / m) * Math.sqrt((Math.pow(vt_z, 2) + Math.pow(vt_y, 2) + Math.pow(vt_x, 2))) * vt_y + (Fl_y / m)
//use formula : s_t = s_0 + v_0 * t to update the position
ball.position.x = ball.position.x + vt_x * t_step
ball.position.z = ball.position.z + vt_z * t_step
ball.position.y = ball.position.y + vt_y * t_step
//use formula : v_t = a * t to update the velocity
vt_x = vt_x + a_x * t_step
vt_z = vt_z + a_z * t_step
vt_y = vt_y + a_y * t_step
}
window.onload = (function() {
gWidth = window.innerWidth;
gHeight = window.innerHeight;
ratio = gWidth / gHeight;
scene = new THREE.Scene();
scene.background = new THREE.Color(0xeaeaea);
camera = new THREE.PerspectiveCamera(35, ratio, 0.1, 1000);
camera.position.z = -15;
light = new THREE.SpotLight(0xffffff, 1);
light.castShadow = true;
light.position.set(0, 5, -10);
scene.add(light);
renderer = new THREE.WebGLRenderer();
//properties for casting shadow
renderer.shadowMap.enabled = true;
renderer.shadowMap.type = THREE.PCFSoftShadowMap;
renderer.setSize(gWidth, gHeight);
document.body.appendChild(renderer.domElement);
geometry = new THREE.SphereGeometry(D, 8, 8);
//make a checkerboard texture for the ball...
canv = document.createElement('canvas')
canv.width = canv.height = 256;
ctx = canv.getContext('2d')
ctx.fillStyle = 'white';
ctx.fillRect(0, 0, 256, 256);
ctx.fillStyle = 'black';
for (y = 0; y < 16; y++)
for (x = 0; x < 16; x++)
if ((x & 1) != (y & 1)) ctx.fillRect(x * 16, y * 16, 16, 16);
ballTex = new THREE.Texture(canv);
ballTex.needsUpdate = true;
material = new THREE.MeshLambertMaterial({
map: ballTex
});
ball = new THREE.Mesh(geometry, material);
ball.castShadow = true;
ball.receiveShadow = false;
ball.bottom = D / 2;
scene.add(ball);
camera.lookAt(ball.position);
plane_geometry = new THREE.PlaneGeometry(20, 100, 32);
plane_material = new THREE.MeshBasicMaterial({
color: 'green',
side: THREE.DoubleSide
});
ground_plane = new THREE.Mesh(plane_geometry, plane_material);
ground_plane.rotation.x = 0.5 * Math.PI
ground_plane.position.y = -1
ground_plane.position.z = 20
scene.add(ground_plane);
render = function(params) {
animateKick();
renderer.render(scene, camera);
requestAnimationFrame(render);
};
render();
})
body {
padding: 0;
margin: 0;
}
<html>
<head>
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/96/three.min.js"></script>
<script src="https://www.klika.co.il/scripts/three.events.js"></script>
</head>
<body>
</body>
</html>

Categories