Confusion About Operator Precedence - javascript

Im going through the 'Grammer' chapter in Kyle's You Dont Know Js.
As per this link at MDN, ...++ Postfix increment has a higher precedence over = & even ++... Prefix increment. Yet, in javascript, the following code seems to prove otherwise.
var a = 1;
var b = a++; // b = 1; a = 2;
var c = ++a; // c = 3; a = 3;
What am I getting wrong? Doesn't the above code show that = & ...++ Postfix increment have a higher precedence over = & ++...?

The order of evaluation is (from high precedence to low): postfix operator a++, prefix operator ++a, addition operator + (from left-to-right), and the assignment operator =, from MDN.
Take a look at the following:
var a = 1;
var b = a++ + ++a + a++;
// The order is:
// b = 1 + ++a + a++;
// b = 1 + ++a + 2;
// b = 1 + 4 + 2;
// b = 7; a = 4;
The order of evaluation is maintained, just that the postfix operator increments the value of a after the last operation has finished, i.e. the assignment operator.

Related

Why position of increment operator matters [duplicate]

In JavaScript you can use ++ operator before (pre-increment) or after the variable name (post-increment). What, if any, are the differences between these ways of incrementing a variable?
Same as in other languages:
++x (pre-increment) means "increment the variable; the value of the expression is the final value"
x++ (post-increment) means "remember the original value, then increment the variable; the value of the expression is the original value"
Now when used as a standalone statement, they mean the same thing:
x++;
++x;
The difference comes when you use the value of the expression elsewhere. For example:
x = 0;
y = array[x++]; // This will get array[0]
x = 0;
y = array[++x]; // This will get array[1]
++x increments the value, then evaluates and stores it.
x++ evaluates the value, then increments and stores it.
var n = 0, m = 0;
alert(n++); /* Shows 0, then stores n = 1 */
alert(++m); /* Shows 1, then stores m = 1 */
Note that there are slight performance benefits to using ++x where possible, because you read the variable, modify it, then evaluate and store it. Versus the x++ operator where you read the value, evaluate it, modify it, then store it.
As I understand them if you use them standalone they do the same thing. If you try to output the result of them as an expression then they may differ. Try alert(i++) as compared to alert(++i) to see the difference. i++ evaluates to i before the addition and ++i does the addition before evaluating.
See http://jsfiddle.net/xaDC4/ for an example.
I've an explanation of understanding post-increment and pre-increment. So I'm putting it here.
Lets assign 0 to x
let x = 0;
Lets start with post-increment
console.log(x++); // Outputs 0
Why?
Lets break the x++ expression down
x = x;
x = x + 1;
First statement returns the value of x which is 0
And later when you use x variable anywhere, then the second statement is executed
Second statement returns the value of this x + 1 expression which is (0 + 1) = 1
Keep in mind the value of x at this state which is 1
Now lets start with pre-increment
console.log(++x); // Outputs 2
Why?
Lets break the ++x expression down
x = x + 1;
x = x;
First statement returns the value of this x + 1 expression which is (1 + 1) = 2
Second statement returns the value of x which is 2 so x = 2 thus it returns 2
Hope this would help you understand what post-increment and pre-increment are!
var a = 1;
var b = ++a;
alert('a:' + a + ';b:' + b); //a:2;b:2
var c = 1;
var d = c++;
alert('c:' + c + ';d:' + d); //c:2;d:1
jsfiddle
var x = 0, y = 0;
//post-increment: i++ returns value then adds one to it
console.log('x++ will log: ', x++); //0
console.log('x after x++ : ', x); //1
//pre-increment: adds one to the value, then returns it
console.log('++y will log: ', ++y); //1
console.log('y after ++y : ', y); //1
It is clearer and faster to use ++i if possible :
++i guarantees that you are using a value of i that will remains the same unless you change i
i++ allows to use a value of i which will change in the "near future", it is not desirable if possible
Of course, it's not really much faster, only a little.

Incremental issue in JS recursion [duplicate]

In JavaScript you can use ++ operator before (pre-increment) or after the variable name (post-increment). What, if any, are the differences between these ways of incrementing a variable?
Same as in other languages:
++x (pre-increment) means "increment the variable; the value of the expression is the final value"
x++ (post-increment) means "remember the original value, then increment the variable; the value of the expression is the original value"
Now when used as a standalone statement, they mean the same thing:
x++;
++x;
The difference comes when you use the value of the expression elsewhere. For example:
x = 0;
y = array[x++]; // This will get array[0]
x = 0;
y = array[++x]; // This will get array[1]
++x increments the value, then evaluates and stores it.
x++ evaluates the value, then increments and stores it.
var n = 0, m = 0;
alert(n++); /* Shows 0, then stores n = 1 */
alert(++m); /* Shows 1, then stores m = 1 */
Note that there are slight performance benefits to using ++x where possible, because you read the variable, modify it, then evaluate and store it. Versus the x++ operator where you read the value, evaluate it, modify it, then store it.
As I understand them if you use them standalone they do the same thing. If you try to output the result of them as an expression then they may differ. Try alert(i++) as compared to alert(++i) to see the difference. i++ evaluates to i before the addition and ++i does the addition before evaluating.
See http://jsfiddle.net/xaDC4/ for an example.
I've an explanation of understanding post-increment and pre-increment. So I'm putting it here.
Lets assign 0 to x
let x = 0;
Lets start with post-increment
console.log(x++); // Outputs 0
Why?
Lets break the x++ expression down
x = x;
x = x + 1;
First statement returns the value of x which is 0
And later when you use x variable anywhere, then the second statement is executed
Second statement returns the value of this x + 1 expression which is (0 + 1) = 1
Keep in mind the value of x at this state which is 1
Now lets start with pre-increment
console.log(++x); // Outputs 2
Why?
Lets break the ++x expression down
x = x + 1;
x = x;
First statement returns the value of this x + 1 expression which is (1 + 1) = 2
Second statement returns the value of x which is 2 so x = 2 thus it returns 2
Hope this would help you understand what post-increment and pre-increment are!
var a = 1;
var b = ++a;
alert('a:' + a + ';b:' + b); //a:2;b:2
var c = 1;
var d = c++;
alert('c:' + c + ';d:' + d); //c:2;d:1
jsfiddle
var x = 0, y = 0;
//post-increment: i++ returns value then adds one to it
console.log('x++ will log: ', x++); //0
console.log('x after x++ : ', x); //1
//pre-increment: adds one to the value, then returns it
console.log('++y will log: ', ++y); //1
console.log('y after ++y : ', y); //1
It is clearer and faster to use ++i if possible :
++i guarantees that you are using a value of i that will remains the same unless you change i
i++ allows to use a value of i which will change in the "near future", it is not desirable if possible
Of course, it's not really much faster, only a little.

i-- in Javascript [duplicate]

In JavaScript you can use ++ operator before (pre-increment) or after the variable name (post-increment). What, if any, are the differences between these ways of incrementing a variable?
Same as in other languages:
++x (pre-increment) means "increment the variable; the value of the expression is the final value"
x++ (post-increment) means "remember the original value, then increment the variable; the value of the expression is the original value"
Now when used as a standalone statement, they mean the same thing:
x++;
++x;
The difference comes when you use the value of the expression elsewhere. For example:
x = 0;
y = array[x++]; // This will get array[0]
x = 0;
y = array[++x]; // This will get array[1]
++x increments the value, then evaluates and stores it.
x++ evaluates the value, then increments and stores it.
var n = 0, m = 0;
alert(n++); /* Shows 0, then stores n = 1 */
alert(++m); /* Shows 1, then stores m = 1 */
Note that there are slight performance benefits to using ++x where possible, because you read the variable, modify it, then evaluate and store it. Versus the x++ operator where you read the value, evaluate it, modify it, then store it.
As I understand them if you use them standalone they do the same thing. If you try to output the result of them as an expression then they may differ. Try alert(i++) as compared to alert(++i) to see the difference. i++ evaluates to i before the addition and ++i does the addition before evaluating.
See http://jsfiddle.net/xaDC4/ for an example.
I've an explanation of understanding post-increment and pre-increment. So I'm putting it here.
Lets assign 0 to x
let x = 0;
Lets start with post-increment
console.log(x++); // Outputs 0
Why?
Lets break the x++ expression down
x = x;
x = x + 1;
First statement returns the value of x which is 0
And later when you use x variable anywhere, then the second statement is executed
Second statement returns the value of this x + 1 expression which is (0 + 1) = 1
Keep in mind the value of x at this state which is 1
Now lets start with pre-increment
console.log(++x); // Outputs 2
Why?
Lets break the ++x expression down
x = x + 1;
x = x;
First statement returns the value of this x + 1 expression which is (1 + 1) = 2
Second statement returns the value of x which is 2 so x = 2 thus it returns 2
Hope this would help you understand what post-increment and pre-increment are!
var a = 1;
var b = ++a;
alert('a:' + a + ';b:' + b); //a:2;b:2
var c = 1;
var d = c++;
alert('c:' + c + ';d:' + d); //c:2;d:1
jsfiddle
var x = 0, y = 0;
//post-increment: i++ returns value then adds one to it
console.log('x++ will log: ', x++); //0
console.log('x after x++ : ', x); //1
//pre-increment: adds one to the value, then returns it
console.log('++y will log: ', ++y); //1
console.log('y after ++y : ', y); //1
It is clearer and faster to use ++i if possible :
++i guarantees that you are using a value of i that will remains the same unless you change i
i++ allows to use a value of i which will change in the "near future", it is not desirable if possible
Of course, it's not really much faster, only a little.

Javascript operator precedence question: i = i— + ++i

Please consider this snippet of code:
var i = 1;
i = i-- + ++i;
My understanding of the order in which the operators & operands are processed is as follows:
i is incremented by 1 (pre-fix increment)
i is added to i( addition )
i is decremented by 1(post-fix decrement)
The value of the right hand side is assigned to i (assignment operation)
If my understanding is correct, i should end up having a value of 3. However, I printed out the result using some online javascript interpreter, and the end value of i is 2.
Where did I get wrong?
var i = 1;
i = i-- + ++i;
this is how the compiler will go about working through this code
create a variable called i
set the value of i to 1
(rhs first element) take value of i (1) decrement value (i is now 0)
(rhs second element) increment value of i (i is now 1)
set the value of i to rhs (2)
JavaScript always evaluates subexpressions in a left-to-right order, and then applies the operator:
// parentheses added for clarity
i = (i--) + (++i); // i = 1
i = 1 + (++i); // i = 0 after i--
i = 1 + 1 ; // i = 1 after ++i
i = 2 ;
Understanding the logic with precedence values:
var i = 1;
i = i-- + ++i;
prefix increment(++i) precedence = 17
postfix decrement(i--) precedence = 16
addition(+) precedence = 14
i = 1 + 1
i = 2
More precedence related info can be found in,
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence

JavaScript ++ operator not working correctly

Why is it that when I run the JavaScript code below, it alerts 10? I would expect it to alert 11. I tried this in multiple browsers.
var t=5;
t+=t++;
alert(t);
Let's rewrite it a couple times to expand out each step, assuming t = 5
t += t++;
// same as
t = t + t++;
// same as
t = 5 + t++;
// same as
t = 5 + (t = t + 1, 5); // the second 5 here is the old `t` value
// same as
t = 5 + 5; // the `t = t + 1` becomes obsoleted by the other `t =`
// same as
t = 10;
So what have we learnt? Write it longhand,
t = t + t + 1;
// or
t = 2 * t + 1;
// or if you really like +=
t += t + 1;
If you're wondering why t++ is the same as (t = t + 1, 5), it is because of how foo++ is defined, it means
Remember the value of foo, lets call this old_foo
Increment foo by 1
Return old_foo
If we were to write it as a function, pseudocode
function (foo) { // passing foo by reference
var old_foo = foo;
foo = foo + 1; // imaging this is a reference set
return old_foo;
}
Or, using the comma operator,
foo = foo + 1, old_foo;
// i.e. if `foo` was `5`
foo = foo + 1, 5;
It's because you used t++ instead of ++t
The first one evaluates the number first then increments, whereas the second does the opposite.
t = 5; t += ++t // => 11
You seem to assume that given left += right, right is evaluated first and then added to left. However, that is not the case.
From the spec:
12.14.4 Runtime Semantics: Evaluation
AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression
Let lref be the result of evaluating LeftHandSideExpression.
Let lval be GetValue(lref).
...
As you can see, the left side is evaluated before the right side, i.e. t is evaluated before t++, and at that point t is still 5.

Categories