Meteor how to wait on callback before dispatching Redux action - javascript

Meteor uses callbacks, but it seems like there is no 'wait' for them with Redux actions. So, if using something like Redux and having an action something like this:
export function loginWithPassword(email, password) {
return dispatch => {
Meteor.loginWithPassword(email, password, error => {
if (error) {
return dispatch({type: ASYNC_ERROR, data: error.reason})
});
}
}
... the action will complete and return before Meteor's call does (thus not re-rendering the UI if needed). I have scoured for hours trying to find the best way to deal with this to no avail. Based on what I have been able to find, it would seem the options are Meteor Futures or Promises, however I cannot find anything indicating which might be better or why.
I believe that Futures can only be server side and are less widely used than Promises, so Promises may be the better options based on that. I am not even sure if Futures is an option since actions are client side. But I am also not sure if Meteor will play nice with Promises given it's general sync nature.
Promises I believe could be either client or server. Assuming they were client, would it be better to put them in the actions or in the UI code dispatching the actions - or does it really matter?
Does anyone have any thoughts or insight into how best to handle something like this? A working example of one or the other (or both) would be great because I sure couldn't find one after hours of searching. Specifically it would be great to see an example of a simple Meteor login with password dispatched via Redux that displays a 'User not found" or some other 'async' error in the UI login form (the FIRST time).
The action above actually works, but it returns before Meteor is done returning the error, so the error is not displayed in the UI the initial time.
TIA!
P.S. There are a couple of examples out there that display the error in an alert window or console.log it - but that is not the same thing as updating/displaying it as a prop in the UI that dispatched the action. There are no prop re-renders tied to an alert or console.log. The whole idea is to show the error in the form the user is currently on (login form in this example case)

Using redux-thunk, you could write something like below. I think the trick here is knowing the status of the user object once it's logged in. One way of doing this is to use store.dispatch inside a Tracker.autorun:
// whenever the reactive data changes, we will dispatch the appropriate action
Tracker.autorun(() => {
if (Meteor.loggingIn()) {
return store.dispatch({
type: LOGGING_IN,
});
}
const user = Meteor.user();
store.dispatch({
type: SET_USER,
user,
}
});
export const login = ({ email, password }) => (dispatch) => {
Meteor.loginWithPassword(email, password, (error) => {
if (error) {
return dispatch({
type: LOGIN_ERROR,
error,
});
}
return dispatch({
type: LOGIN_SUCCESS,
});
});
};
You could imagine a user reducer that has a state like {user: {loggingIn: Boolean, authError: SomeErrorModel}}} or something like that
You could clear the authError on LOGGING_IN, and add it on LOGIN_ERROR
For any UI changes based on this reducer, just connect your react component with react-redux's connect()

Related

Is there a well-established way to update local state immediately without waiting for an API response in React/Redux?

TL;DR: Is there some well-known solution out there using React/Redux for being able to offer a snappy and immediately responsive UI, while keeping an API/database up to date with changes that can gracefully handle failed API requests?
I'm looking to implement an application with a "card view" using https://github.com/atlassian/react-beautiful-dnd where a user can drag and drop cards to create groups. As a user creates, modifies, or breaks up groups, I'd like to make sure the API is kept up to date with the user's actions.
HOWEVER, I don't want to have to wait for an API response to set the state before updating the UI.
I've searched far and wide, but keep coming upon things such as https://redux.js.org/tutorials/fundamentals/part-6-async-logic which suggests that the response from the API should update the state.
For example:
export default function todosReducer(state = initialState, action) {
switch (action.type) {
case 'todos/todoAdded': {
// Return a new todos state array with the new todo item at the end
return [...state, action.payload]
}
// omit other cases
default:
return state
}
}
As a general concept, this has always seemed odd to me, since it's the local application telling the API what needs to change; we obviously already have the data before the server even responds. This may not always be the case, such as creating a new object and wanting the server to dictate a new "unique id" of some sort, but it seems like there might be a way to just "fill in the blanks" once the server does response with any missing data. In the case of an UPDATE vs CREATE, there's nothing the server is telling us that we don't already know.
This may work fine for a small and lightweight application, but if I'm looking at API responses in the range of 500-750ms on average, the user experience is going to just be absolute garbage.
It's simple enough to create two actions, one that will handle updating the state and another to trigger the API call, but what happens if the API returns an error or a network request fails and we need to revert?
I tested how Trello implements this sort of thing by cutting my network connection and creating a new card. It eagerly creates the card immediately upon submission, and then removes the card once it realizes that it cannot update the server. This is the sort of behavior I'm looking for.
I looked into https://redux.js.org/recipes/implementing-undo-history, which offers a way to "rewind" state, but being able to implement this for my purposes would need to assume that subsequent API calls all resolve in the same order that they were called - which obviously may not be the case.
As of now, I'm resigning myself to the fact that I may need to just follow the established limited pattern, and lock the UI until the API request completes, but would love a better option if it exists within the world of React/Redux.
The approach you're talking about is called "optimistic" network handling -- assuming that the server will receive and accept what the client is doing. This works in cases where you don't need server-side validation to determine if you can, say, create or update an object. It's also equally easy to implement using React and Redux.
Normally, with React and Redux, the update flow is as follows:
The component dispatches an async action creator
The async action creator runs its side-effect (calling the server), and waits for the response.
The async action creator, with the result of the side-effect, dispatches an action to call the reducer
The reducer updates the state, and the component is re-rendered.
Some example code to illustrate (I'm pretending we're using redux-thunk here):
// ... in my-component.js:
export default () => {
const dispatch = useDispatch();
useEffect(() => {
dispatch(MyActions.UpdateData(someDataFromSomewhere));
});
return (<div />);
};
// ... in actions.js
export const UpdateData = async (data) => (dispatch, getStore) => {
const results = await myApi.postData(data);
dispatch(UpdateMyStore(results));
};
However, you can easily flip the order your asynchronous code runs in by simply not waiting for your asynchronous side effect to resolve. In practical terms, this means you don't wait for your API response. For example:
// ... in my-component.js:
export default () => {
const dispatch = useDispatch();
useEffect(() => {
dispatch(MyActions.UpdateData(someDataFromSomewhere));
});
return (<div />);
};
// ... in actions.js
export const UpdateData = async (data) => (dispatch, getStore) => {
// we're not waiting for the api response anymore,
// we just dispatch whatever data we want to our reducer
dispatch(UpdateMyStore(data));
myApi.postData(data);
};
One last thing though -- doing things this way, you will want to put some reconciliation mechanic in place, to make sure the client does know if the server calls fail, and that it retries or notifies the user, etc.
The key phrase here is "optimistic updates", which is a general pattern for updating the "local" state on the client immediately with a given change under the assumption that any API request will succeed. This pattern can be implemented regardless of what actual tool you're using to manage state on the client side.
It's up to you to define and implement what appropriate changes would be if the network request fails.

Handling errors in redux-thunks to do more than notify the user

I've seen numerous articles and live examples of handling errors occurring in redux-thunks by adding ACTION_FAIL/ACTION_SUCCESS and sometimes ACTION_ATTEMPT/ACTION_START. This is great and all, although, all cases I've seen seem to give the user a simple notification like "Oops, this went wrong. Try again!" and go home early.
The case I'm looking for is having a seamless dispatch-error-retry-success transition or at least a better (more maintainable) solution than adding additional action dispatches to every thunk.
An example would be a token expiration.
If the token is about to expire or the fail occurred because of an expired token (and logging out is not a good option) then refreshing the token and retrying the request could be a solution without making the user scratch his head.
I'd love to hear:
How you tackle redux-thunk fails?
Did you try other alternative solutions before the current one?
If yes, why did you switch?
If you can handle a failure automatically (like in the refresh token example you mentioned), you don't need to dispatch an extra action at all. You can simply retry within the thunk, then dispatch the success action if you recovered successfully.
function doRequest() {
return dispatch => {
makeRequest()
.catch(error => {
if (isUnauthorizedError(error)) {
return refreshToken().then(makeRequest);
}
throw error;
})
.then(
doRequestSuccess,
doRequestFailure
);
}
}
The only reason to dispatch an extra "retry" action would be if you would want to communicate the temporary failure in the user interface.

redux error handling for fetchs

I'm working on error handling w/ fetch's in redux. Do people typically write reducers/actions error handlers for every single request like the videos from redux.js.org? I was thinking about dispatching the same action w/ an error flag to handle errors, but I don't know if that's the right way to go about it.
In my experience, yes. I ordinarily have actions like GET_THINGS, GET_THINGS_SUCCESS, and GET_THINGS_ERROR, and then have a case statement in the reducer to handle each action. Most React devs I know do it the same well. In general, I would suggest following that pattern. That said, it does result in you having to handle a lot of GET actions and ERROR actions basically the same way, since you'll likely just be adding something like { Loading: true } or { Error: true } to the state...
For error handling and posting / putting data I use a generic way of raising a dialog for the user to indicate success or failure.
e.g. have a NoificationsAction
const NotificationAction = (open = false, message = '', status = 'success') => ({type: NOTIFICATION, payload: {open, message, status}})
and some dilaog component which raises a dialog or snackBar to display a message
Dispatch this when your request fails
myRequest()
.then((response) => {
if (response.status === 200) {
dispatch(projectsSuccess(response.data))
}
})
.catch((error) => {
dispatch(NotificationAction(true, `My Error Text : ${error}`, 'error'))
})
This way you reduce your boiler plate code in reducers

Idiomatic way to await background tasks with redux + redux thunk

In my application, we have a somewhat long-running "provisioning" task that asynchronously completes that we essentially have to use polling to detect that it has finished. So that a user isn't blocked from using the app while this takes place, we kick that off at the beginning of the user interaction flow. However, at the end of the interaction flow, the user takes an action that needs to await that provisioning task if it hasn't completed. Here's a sort of sequence diagram to illustrate.
[provisioning start][poll for completion....]
[user interactions] [blocked action....][post provisioning task]
The problem I'm having is figuring out an idiomatic way to do this properly in Redux. Here are some things I've considered doing:
Have a "requests" reducer, where I'd store the Promise for that long-running provisioning task, then when [blocked action] executes, it simply awaits the promise. The problem with this is that Redux specifically requests that all store state is serializable, so it seems that things like Promises are not welcome there.
Subscribe to the store in the [blocked action] action creator and look for data that signals the provisioning has completed. Unfortunately, redux-thunk, which I'm pretty fond of, doesn't contain a reference to the store, just its dispatch and getState methods.
Having my React component wait for the provisioning to complete before executing [blocked action]. I don't like this because it adds too much action sequencing logic awareness to my view layer.
Since none of these seem like great options, I'm currently going with:
Store the provisioning Promise in a module property and essentially do option #1 without getting the Promise from the store. I'm not wild about this, since it moves state outside of the redux loop, but it seems like the easiest option.
Is there a more idiomatic way to achieve this with redux-thunk? If there's another asynchronous middleware that makes this cleaner, I'm willing to consider, though I'm already quite invested in redux-thunk.
There are several redux-promise-middleware options that let you dispatch promise actions and have the middleware consume them and emit PENDING,RESOLVED|REJECTED actions as the promise state changes. If you are working with promises and Redux, you might want to look at one of them. However they won't help you with this specific problem.
I think redux-saga is a middleware well suited to help you with this scenario. I've not yet used it personally so I can't provide an example.
Another, perhaps simpler, option is redux-tap. Use tap to expose the stream of actions that your app can subscribe to. Have a blocked action creator thunk subscribe to that stream and await the action that signals that the promise has completed (it should of course first check the contents of the store via getState to see if the promise completed before this blocked action was dispatched). Something like this:
// ========= configureStore.js
import ee from 'event-emitter';
// ...
export const actionStream = ee();
// ...
const emitActions = tap(({type} => type, (type, action) => actionStream.emit(type, action);
// install emitActions middleware to run *after* thunk (so that it does not see thunk actions but only primitive actions)
// =========== your action module.js
import {actionStream} from './configureStore';
export function blockedAction(arg) {
return (dispatch, getState) => {
if (getState().initDone) {
return dispatch({type: "blockedAction", payload: arg});
}
// wait for init action
actionStream.once("initAction", initAction => dispatch({type: "blockedAction", payload: arg}));
};
}
Keep in mind that it is not a binary "either thunk or xxx middleware" choice. You can load thunk as well as many other middlewares. In one app, I use:
thunk
a promise middleware
console logging middleware
custom middleware for batching updates
custom middleware for persisting actions to IndexedDB
custom middleware for pausing the action stream
middleware to prevent recursive store notifications
Without any middleware other than thunk, here is another option:
Option 5 - combine your option 2 with your option 4: Store the promise somewhere globally. Have the blocked action creator thunk await the promise before dispatching the raw action. To minimize the "state outside of the store", you can also have the promise action emit actions into the store to keep the store updated (possibly using a promise middleware)
I think this is simpler—unless I'm missing something—if we're more rigorous in thinking about the UI as a function of state. At every point in your interaction flow there are a few things that are either true or false:
Provisioning has started/not started
Provisioning has finished/not finished
User action is pending/is not pending
These three facts are enough to tell us what the user should be seeing on their screen at a given moment, so our state should include these three facts:
const initialState = {
provisioningStarted: false,
provisioningDone: false,
laterActionIsPending: false,
// ...
};
Using redux-thunk we can handle the provisioning action:
function startProvisioning() {
return dispatch => {
dispatch({ type: START_PROVISIONING });
pollProvisioning().then(postSetupInfo => {
dispatch({ type: DONE_PROVISIONING, postSetupInfo });
});
};
}
...and in our reducer:
function appReducer(state, action) {
// ...
switch (action.type) {
case START_PROVISIONING:
return { ...state, provisioningStarted: true };
case DONE_PROVISIONING:
return { ...state, provisioningDone: true, postSetupInfo: action.postSetupInfo };
case LATER_ACTION_PENDING:
return { ...state, laterActionIsPending: true };
// ...
}
}
As I said, this should be enough to tell us what the user should be seeing:
const Provisioner = ({provisioningStarted, provisioningDone, /* ... */}) => {
if (provisioningStarted) {
if (laterActionIsPending) {
if (provisioningDone) {
return <p>Finished! Here's your info: {postSetupInfo}</p>;
}
return <p>Provisioning...</p>;
}
return <button type="button" onClick={doAction}>Do action</button>;
}
return <button type="button" onClick={startProvisioning}>Start provisioning</button>;
};
export default connect(mapStateToProps, mapDispatchToProps)(Provisioner);
Not exactly redux-thunk but functionally equivalent is using
redux-background. A package I created to make the process easier.
It goes something like this:
import { startJob } from 'redux-background';
import store from './store';
store.dispatch(startJob('provision', function(job, dispatch, getState) {
const { progress, data } = job;
return new Promise((resolve, reject) => {
// Do some async stuff
// Report progress
progress(10);
// Return value
return 10;
})
}, { data: '...' } );
On your state when it ends you should have something like this
{
background: {
provision: {
active: true,
running: false,
value: 10,
error: null,
/* and lot of more metadata */
....
},
}
}

Why should I use redux async actions? [duplicate]

According to the docs, "Without middleware, Redux store only supports synchronous data flow". I don't understand why this is the case. Why can't the container component call the async API, and then dispatch the actions?
For example, imagine a simple UI: a field and a button. When user pushes the button, the field gets populated with data from a remote server.
import * as React from 'react';
import * as Redux from 'redux';
import { Provider, connect } from 'react-redux';
const ActionTypes = {
STARTED_UPDATING: 'STARTED_UPDATING',
UPDATED: 'UPDATED'
};
class AsyncApi {
static getFieldValue() {
const promise = new Promise((resolve) => {
setTimeout(() => {
resolve(Math.floor(Math.random() * 100));
}, 1000);
});
return promise;
}
}
class App extends React.Component {
render() {
return (
<div>
<input value={this.props.field}/>
<button disabled={this.props.isWaiting} onClick={this.props.update}>Fetch</button>
{this.props.isWaiting && <div>Waiting...</div>}
</div>
);
}
}
App.propTypes = {
dispatch: React.PropTypes.func,
field: React.PropTypes.any,
isWaiting: React.PropTypes.bool
};
const reducer = (state = { field: 'No data', isWaiting: false }, action) => {
switch (action.type) {
case ActionTypes.STARTED_UPDATING:
return { ...state, isWaiting: true };
case ActionTypes.UPDATED:
return { ...state, isWaiting: false, field: action.payload };
default:
return state;
}
};
const store = Redux.createStore(reducer);
const ConnectedApp = connect(
(state) => {
return { ...state };
},
(dispatch) => {
return {
update: () => {
dispatch({
type: ActionTypes.STARTED_UPDATING
});
AsyncApi.getFieldValue()
.then(result => dispatch({
type: ActionTypes.UPDATED,
payload: result
}));
}
};
})(App);
export default class extends React.Component {
render() {
return <Provider store={store}><ConnectedApp/></Provider>;
}
}
When the exported component is rendered, I can click the button and the input is updated correctly.
Note the update function in the connect call. It dispatches an action that tells the App that it is updating, and then performs an async call. After the call finishes, the provided value is dispatched as a payload of another action.
What is wrong with this approach? Why would I want to use Redux Thunk or Redux Promise, as the documentation suggests?
EDIT: I searched the Redux repo for clues, and found that Action Creators were required to be pure functions in the past. For example, here's a user trying to provide a better explanation for async data flow:
The action creator itself is still a pure function, but the thunk function it returns doesn't need to be, and it can do our async calls
Action creators are no longer required to be pure. So, thunk/promise middleware was definitely required in the past, but it seems that this is no longer the case?
What is wrong with this approach? Why would I want to use Redux Thunk or Redux Promise, as the documentation suggests?
There is nothing wrong with this approach. It’s just inconvenient in a large application because you’ll have different components performing the same actions, you might want to debounce some actions, or keep some local state like auto-incrementing IDs close to action creators, etc. So it is just easier from the maintenance point of view to extract action creators into separate functions.
You can read my answer to “How to dispatch a Redux action with a timeout” for a more detailed walkthrough.
Middleware like Redux Thunk or Redux Promise just gives you “syntax sugar” for dispatching thunks or promises, but you don’t have to use it.
So, without any middleware, your action creator might look like
// action creator
function loadData(dispatch, userId) { // needs to dispatch, so it is first argument
return fetch(`http://data.com/${userId}`)
.then(res => res.json())
.then(
data => dispatch({ type: 'LOAD_DATA_SUCCESS', data }),
err => dispatch({ type: 'LOAD_DATA_FAILURE', err })
);
}
// component
componentWillMount() {
loadData(this.props.dispatch, this.props.userId); // don't forget to pass dispatch
}
But with Thunk Middleware you can write it like this:
// action creator
function loadData(userId) {
return dispatch => fetch(`http://data.com/${userId}`) // Redux Thunk handles these
.then(res => res.json())
.then(
data => dispatch({ type: 'LOAD_DATA_SUCCESS', data }),
err => dispatch({ type: 'LOAD_DATA_FAILURE', err })
);
}
// component
componentWillMount() {
this.props.dispatch(loadData(this.props.userId)); // dispatch like you usually do
}
So there is no huge difference. One thing I like about the latter approach is that the component doesn’t care that the action creator is async. It just calls dispatch normally, it can also use mapDispatchToProps to bind such action creator with a short syntax, etc. The components don’t know how action creators are implemented, and you can switch between different async approaches (Redux Thunk, Redux Promise, Redux Saga) without changing the components. On the other hand, with the former, explicit approach, your components know exactly that a specific call is async, and needs dispatch to be passed by some convention (for example, as a sync parameter).
Also think about how this code will change. Say we want to have a second data loading function, and to combine them in a single action creator.
With the first approach we need to be mindful of what kind of action creator we are calling:
// action creators
function loadSomeData(dispatch, userId) {
return fetch(`http://data.com/${userId}`)
.then(res => res.json())
.then(
data => dispatch({ type: 'LOAD_SOME_DATA_SUCCESS', data }),
err => dispatch({ type: 'LOAD_SOME_DATA_FAILURE', err })
);
}
function loadOtherData(dispatch, userId) {
return fetch(`http://data.com/${userId}`)
.then(res => res.json())
.then(
data => dispatch({ type: 'LOAD_OTHER_DATA_SUCCESS', data }),
err => dispatch({ type: 'LOAD_OTHER_DATA_FAILURE', err })
);
}
function loadAllData(dispatch, userId) {
return Promise.all(
loadSomeData(dispatch, userId), // pass dispatch first: it's async
loadOtherData(dispatch, userId) // pass dispatch first: it's async
);
}
// component
componentWillMount() {
loadAllData(this.props.dispatch, this.props.userId); // pass dispatch first
}
With Redux Thunk action creators can dispatch the result of other action creators and not even think whether those are synchronous or asynchronous:
// action creators
function loadSomeData(userId) {
return dispatch => fetch(`http://data.com/${userId}`)
.then(res => res.json())
.then(
data => dispatch({ type: 'LOAD_SOME_DATA_SUCCESS', data }),
err => dispatch({ type: 'LOAD_SOME_DATA_FAILURE', err })
);
}
function loadOtherData(userId) {
return dispatch => fetch(`http://data.com/${userId}`)
.then(res => res.json())
.then(
data => dispatch({ type: 'LOAD_OTHER_DATA_SUCCESS', data }),
err => dispatch({ type: 'LOAD_OTHER_DATA_FAILURE', err })
);
}
function loadAllData(userId) {
return dispatch => Promise.all(
dispatch(loadSomeData(userId)), // just dispatch normally!
dispatch(loadOtherData(userId)) // just dispatch normally!
);
}
// component
componentWillMount() {
this.props.dispatch(loadAllData(this.props.userId)); // just dispatch normally!
}
With this approach, if you later want your action creators to look into current Redux state, you can just use the second getState argument passed to the thunks without modifying the calling code at all:
function loadSomeData(userId) {
// Thanks to Redux Thunk I can use getState() here without changing callers
return (dispatch, getState) => {
if (getState().data[userId].isLoaded) {
return Promise.resolve();
}
fetch(`http://data.com/${userId}`)
.then(res => res.json())
.then(
data => dispatch({ type: 'LOAD_SOME_DATA_SUCCESS', data }),
err => dispatch({ type: 'LOAD_SOME_DATA_FAILURE', err })
);
}
}
If you need to change it to be synchronous, you can also do this without changing any calling code:
// I can change it to be a regular action creator without touching callers
function loadSomeData(userId) {
return {
type: 'LOAD_SOME_DATA_SUCCESS',
data: localStorage.getItem('my-data')
}
}
So the benefit of using middleware like Redux Thunk or Redux Promise is that components aren’t aware of how action creators are implemented, and whether they care about Redux state, whether they are synchronous or asynchronous, and whether or not they call other action creators. The downside is a little bit of indirection, but we believe it’s worth it in real applications.
Finally, Redux Thunk and friends is just one possible approach to asynchronous requests in Redux apps. Another interesting approach is Redux Saga which lets you define long-running daemons (“sagas”) that take actions as they come, and transform or perform requests before outputting actions. This moves the logic from action creators into sagas. You might want to check it out, and later pick what suits you the most.
I searched the Redux repo for clues, and found that Action Creators were required to be pure functions in the past.
This is incorrect. The docs said this, but the docs were wrong.
Action creators were never required to be pure functions.
We fixed the docs to reflect that.
You don't.
But... you should use redux-saga :)
Dan Abramov's answer is right about redux-thunk but I will talk a bit more about redux-saga that is quite similar but more powerful.
Imperative VS declarative
DOM: jQuery is imperative / React is declarative
Monads: IO is imperative / Free is declarative
Redux effects: redux-thunk is imperative / redux-saga is declarative
When you have a thunk in your hands, like an IO monad or a promise, you can't easily know what it will do once you execute. The only way to test a thunk is to execute it, and mock the dispatcher (or the whole outside world if it interacts with more stuff...).
If you are using mocks, then you are not doing functional programming.
Seen through the lens of side-effects, mocks are a flag that your code is impure, and in the functional programmer's eye, proof that something is wrong. Instead of downloading a library to help us check the iceberg is intact, we should be sailing around it.
A hardcore TDD/Java guy once asked me how you do mocking in Clojure. The answer is, we usually don't. We usually see it as a sign we need to refactor our code.
Source
The sagas (as they got implemented in redux-saga) are declarative and like the Free monad or React components, they are much easier to test without any mock.
See also this article:
in modern FP, we shouldn’t write programs — we should write descriptions of programs, which we can then introspect, transform, and interpret at will.
(Actually, Redux-saga is like a hybrid: the flow is imperative but the effects are declarative)
Confusion: actions/events/commands...
There is a lot of confusion in the frontend world on how some backend concepts like CQRS / EventSourcing and Flux / Redux may be related, mostly because in Flux we use the term "action" which can sometimes represent both imperative code (LOAD_USER) and events (USER_LOADED). I believe that like event-sourcing, you should only dispatch events.
Using sagas in practice
Imagine an app with a link to a user profile. The idiomatic way to handle this with each middleware would be:
redux-thunk
<div onClick={e => dispatch(actions.loadUserProfile(123)}>Robert</div>
function loadUserProfile(userId) {
return dispatch => fetch(`http://data.com/${userId}`)
.then(res => res.json())
.then(
data => dispatch({ type: 'USER_PROFILE_LOADED', data }),
err => dispatch({ type: 'USER_PROFILE_LOAD_FAILED', err })
);
}
redux-saga
<div onClick={e => dispatch({ type: 'USER_NAME_CLICKED', payload: 123 })}>Robert</div>
function* loadUserProfileOnNameClick() {
yield* takeLatest("USER_NAME_CLICKED", fetchUser);
}
function* fetchUser(action) {
try {
const userProfile = yield fetch(`http://data.com/${action.payload.userId }`)
yield put({ type: 'USER_PROFILE_LOADED', userProfile })
}
catch(err) {
yield put({ type: 'USER_PROFILE_LOAD_FAILED', err })
}
}
This saga translates to:
every time a username gets clicked, fetch the user profile and then dispatch an event with the loaded profile.
As you can see, there are some advantages of redux-saga.
The usage of takeLatest permits to express that you are only interested to get the data of the last username clicked (handle concurrency problems in case the user click very fast on a lot of usernames). This kind of stuff is hard with thunks. You could have used takeEvery if you don't want this behavior.
You keep action creators pure. Note it's still useful to keep actionCreators (in sagas put and components dispatch), as it might help you to add action validation (assertions/flow/typescript) in the future.
Your code becomes much more testable as the effects are declarative
You don't need anymore to trigger rpc-like calls like actions.loadUser(). Your UI just needs to dispatch what HAS HAPPENED. We only fire events (always in the past tense!) and not actions anymore. This means that you can create decoupled "ducks" or Bounded Contexts and that the saga can act as the coupling point between these modular components.
This means that your views are more easy to manage because they don't need anymore to contain that translation layer between what has happened and what should happen as an effect
For example imagine an infinite scroll view. CONTAINER_SCROLLED can lead to NEXT_PAGE_LOADED, but is it really the responsibility of the scrollable container to decide whether or not we should load another page? Then he has to be aware of more complicated stuff like whether or not the last page was loaded successfully or if there is already a page that tries to load, or if there is no more items left to load? I don't think so: for maximum reusability the scrollable container should just describe that it has been scrolled. The loading of a page is a "business effect" of that scroll
Some might argue that generators can inherently hide state outside of redux store with local variables, but if you start to orchestrate complex things inside thunks by starting timers etc you would have the same problem anyway. And there's a select effect that now permits to get some state from your Redux store.
Sagas can be time-traveled and also enables complex flow logging and dev-tools that are currently being worked on. Here is some simple async flow logging that is already implemented:
Decoupling
Sagas are not only replacing redux thunks. They come from backend / distributed systems / event-sourcing.
It is a very common misconception that sagas are just here to replace your redux thunks with better testability. Actually this is just an implementation detail of redux-saga. Using declarative effects is better than thunks for testability, but the saga pattern can be implemented on top of imperative or declarative code.
In the first place, the saga is a piece of software that permits to coordinate long running transactions (eventual consistency), and transactions across different bounded contexts (domain driven design jargon).
To simplify this for frontend world, imagine there is widget1 and widget2. When some button on widget1 is clicked, then it should have an effect on widget2. Instead of coupling the 2 widgets together (ie widget1 dispatch an action that targets widget2), widget1 only dispatch that its button was clicked. Then the saga listen for this button click and then update widget2 by dispaching a new event that widget2 is aware of.
This adds a level of indirection that is unnecessary for simple apps, but make it more easy to scale complex applications. You can now publish widget1 and widget2 to different npm repositories so that they never have to know about each others, without having them to share a global registry of actions. The 2 widgets are now bounded contexts that can live separately. They do not need each others to be consistent and can be reused in other apps as well. The saga is the coupling point between the two widgets that coordinate them in a meaningful way for your business.
Some nice articles on how to structure your Redux app, on which you can use Redux-saga for decoupling reasons:
http://jaysoo.ca/2016/02/28/organizing-redux-application/
http://marmelab.com/blog/2015/12/17/react-directory-structure.html
https://github.com/slorber/scalable-frontend-with-elm-or-redux
A concrete usecase: notification system
I want my components to be able to trigger the display of in-app notifications. But I don't want my components to be highly coupled to the notification system that has its own business rules (max 3 notifications displayed at the same time, notification queueing, 4 seconds display-time etc...).
I don't want my JSX components to decide when a notification will show/hide. I just give it the ability to request a notification, and leave the complex rules inside the saga. This kind of stuff is quite hard to implement with thunks or promises.
I've described here how this can be done with saga
Why is it called a Saga?
The term saga comes from the backend world. I initially introduced Yassine (the author of Redux-saga) to that term in a long discussion.
Initially, that term was introduced with a paper, the saga pattern was supposed to be used to handle eventual consistency in distributed transactions, but its usage has been extended to a broader definition by backend developers so that it now also covers the "process manager" pattern (somehow the original saga pattern is a specialized form of process manager).
Today, the term "saga" is confusing as it can describe 2 different things. As it is used in redux-saga, it does not describe a way to handle distributed transactions but rather a way to coordinate actions in your app. redux-saga could also have been called redux-process-manager.
See also:
Interview of Yassine about Redux-saga history
Kella Byte: Claryfing the Saga pattern
Microsoft CQRS Journey: A Saga on Sagas
Medium response of Yassine
Alternatives
If you don't like the idea of using generators but you are interested by the saga pattern and its decoupling properties, you can also achieve the same with redux-observable which uses the name epic to describe the exact same pattern, but with RxJS. If you're already familiar with Rx, you'll feel right at home.
const loadUserProfileOnNameClickEpic = action$ =>
action$.ofType('USER_NAME_CLICKED')
.switchMap(action =>
Observable.ajax(`http://data.com/${action.payload.userId}`)
.map(userProfile => ({
type: 'USER_PROFILE_LOADED',
userProfile
}))
.catch(err => Observable.of({
type: 'USER_PROFILE_LOAD_FAILED',
err
}))
);
Some redux-saga useful resources
Redux-saga vs Redux-thunk with async/await
Managing processes in Redux Saga
From actionsCreators to Sagas
Snake game implemented with Redux-saga
2017 advises
Don't overuse Redux-saga just for the sake of using it. Testable API calls only are not worth it.
Don't remove thunks from your project for most simple cases.
Don't hesitate to dispatch thunks in yield put(someActionThunk) if it makes sense.
If you are frightened of using Redux-saga (or Redux-observable) but just need the decoupling pattern, check redux-dispatch-subscribe: it permits to listen to dispatches and trigger new dispatches in listener.
const unsubscribe = store.addDispatchListener(action => {
if (action.type === 'ping') {
store.dispatch({ type: 'pong' });
}
});
The short answer: seems like a totally reasonable approach to the asynchrony problem to me. With a couple caveats.
I had a very similar line of thought when working on a new project we just started at my job. I was a big fan of vanilla Redux's elegant system for updating the store and rerendering components in a way that stays out of the guts of a React component tree. It seemed weird to me to hook into that elegant dispatch mechanism to handle asynchrony.
I ended up going with a really similar approach to what you have there in a library I factored out of our project, which we called react-redux-controller.
I ended up not going with the exact approach you have above for a couple reasons:
The way you have it written, those dispatching functions don't have access to the store. You can somewhat get around that by having your UI components pass in all of the info the dispatching function needs. But I'd argue that this couples those UI components to the dispatching logic unnecessarily. And more problematically, there's no obvious way for the dispatching function to access updated state in async continuations.
The dispatching functions have access to dispatch itself via lexical scope. This limits the options for refactoring once that connect statement gets out of hand -- and it's looking pretty unwieldy with just that one update method. So you need some system for letting you compose those dispatcher functions if you break them up into separate modules.
Take together, you have to rig up some system to allow dispatch and the store to be injected into your dispatching functions, along with the parameters of the event. I know of three reasonable approaches to this dependency injection:
redux-thunk does this in a functional way, by passing them into your thunks (making them not exactly thunks at all, by dome definitions). I haven't worked with the other dispatch middleware approaches, but I assume they're basically the same.
react-redux-controller does this with a coroutine. As a bonus, it also gives you access to the "selectors", which are the functions you may have passed in as the first argument to connect, rather than having to work directly with the raw, normalized store.
You could also do it the object-oriented way by injecting them into the this context, through a variety of possible mechanisms.
Update
It occurs to me that part of this conundrum is a limitation of react-redux. The first argument to connect gets a state snapshot, but not dispatch. The second argument gets dispatch but not the state. Neither argument gets a thunk that closes over the current state, for being able to see updated state at the time of a continuation/callback.
Abramov's goal - and everyone's ideally - is simply to encapsulate complexity (and async calls) in the place where it's most appropriate and reusable.
Where's the best place to do that in the standard Redux dataflow? How about:
Reducers? No way. They should be pure functions with no side-effects. Updating the store is serious, complicated business. Don't contaminate it.
Dumb View Components? Definitely No. They have one concern: presentation and user-interaction, and should be as simple as possible.
Container Components? Possible, but sub-optimal. It makes sense in that the container is a place where we encapsulate some view related complexity and interact with the store, but:
Containers do need to be more complex than dumb components, but it's still a single responsibility: providing bindings between view and state/store. Your async logic is a whole separate concern from that.
By placing it in a container, you'd be locking your async logic into a single context, coupled to one or more views/routes. Bad idea. Ideally it's all reusable, and totally decoupled from the views.
(Like all rules, there could be an exception if you have stateful binding logic that happens to be reusable across multiple contexts, or if you can somehow generalize all of your state into something like an integrated GraphQL schema. OK, fine, that could be cool. But... most of the time the bindings seem to end up pretty context/view specific.)
Some other Service Module? Bad idea: you'd need to inject access to the store, which is a maintainability/testability nightmare. Better to go with the grain of Redux and access the store only using the APIs/models provided.
Actions and the Middlewares that interpret them? Why not?! For starters, it's the only major option we have left. :-) More logically, the action system is decoupled execution logic that you can use from anywhere. It's got access to the store and can dispatch more actions. It has a single responsibility which is to organize the flow of control and data around the application, and most async fits right into that.
What about the Action Creators? Why not just do async in there, instead of in the actions themselves, and in Middleware?
First and most important, the creators don't have access to the store, as middleware does. That means you can't dispatch new contingent actions, can't read from the store to compose your async, etc.
So, keep complexity in a place that's complex of necessity, and keep everything else simple. The creators can then be simple, relatively pure functions that are easy to test.
To answer the question that is asked in the beginning:
Why can't the container component call the async API, and then dispatch the actions?
Keep in mind that those docs are for Redux, not Redux plus React. Redux stores hooked up to React components can do exactly what you say, but a Plain Jane Redux store with no middleware doesn't accept arguments to dispatch except plain ol' objects.
Without middleware you could of course still do
const store = createStore(reducer);
MyAPI.doThing().then(resp => store.dispatch(...));
But it's a similar case where the asynchrony is wrapped around Redux rather than handled by Redux. So, middleware allows for asynchrony by modifying what can be passed directly to dispatch.
That said, the spirit of your suggestion is, I think, valid. There are certainly other ways you could handle asynchrony in a Redux + React application.
One benefit of using middleware is that you can continue to use action creators as normal without worrying about exactly how they're hooked up. For example, using redux-thunk, the code you wrote would look a lot like
function updateThing() {
return dispatch => {
dispatch({
type: ActionTypes.STARTED_UPDATING
});
AsyncApi.getFieldValue()
.then(result => dispatch({
type: ActionTypes.UPDATED,
payload: result
}));
}
}
const ConnectedApp = connect(
(state) => { ...state },
{ update: updateThing }
)(App);
which doesn't look all that different from the original — it's just shuffled a bit — and connect doesn't know that updateThing is (or needs to be) asynchronous.
If you also wanted to support promises, observables, sagas, or crazy custom and highly declarative action creators, then Redux can do it just by changing what you pass to dispatch (aka, what you return from action creators). No mucking with the React components (or connect calls) necessary.
OK, let's start to see how middleware working first, that quite answer the question, this is the source code applyMiddleWare function in Redux:
function applyMiddleware() {
for (var _len = arguments.length, middlewares = Array(_len), _key = 0; _key < _len; _key++) {
middlewares[_key] = arguments[_key];
}
return function (createStore) {
return function (reducer, preloadedState, enhancer) {
var store = createStore(reducer, preloadedState, enhancer);
var _dispatch = store.dispatch;
var chain = [];
var middlewareAPI = {
getState: store.getState,
dispatch: function dispatch(action) {
return _dispatch(action);
}
};
chain = middlewares.map(function (middleware) {
return middleware(middlewareAPI);
});
_dispatch = compose.apply(undefined, chain)(store.dispatch);
return _extends({}, store, {
dispatch: _dispatch
});
};
};
}
Look at this part, see how our dispatch become a function.
...
getState: store.getState,
dispatch: function dispatch(action) {
return _dispatch(action);
}
Note that each middleware will be given the dispatch and getState functions as named arguments.
OK, this is how Redux-thunk as one of the most used middlewares for Redux introduce itself:
Redux Thunk middleware allows you to write action creators that return
a function instead of an action. The thunk can be used to delay the
dispatch of an action, or to dispatch only if a certain condition is
met. The inner function receives the store methods dispatch and
getState as parameters.
So as you see, it will return a function instead an action, means you can wait and call it anytime you want as it's a function...
So what the heck is thunk? That's how it's introduced in Wikipedia:
In computer programming, a thunk is a subroutine used to inject an
additional calculation into another subroutine. Thunks are primarily
used to delay a calculation until it is needed, or to insert
operations at the beginning or end of the other subroutine. They have
a variety of other applications to compiler code generation and in
modular programming.
The term originated as a jocular derivative of "think".
A thunk is a function that wraps an expression to delay its
evaluation.
//calculation of 1 + 2 is immediate
//x === 3
let x = 1 + 2;
//calculation of 1 + 2 is delayed
//foo can be called later to perform the calculation
//foo is a thunk!
let foo = () => 1 + 2;
So see how easy the concept is and how it can help you manage your async actions...
That's something you can live without it, but remember in programming there are always better, neater and proper ways to do things...
There are synchronous action creators and then there are asynchronous action creators.
A synchronous action creator is one that when we call it, it immediately returns an Action object with all the relevant data attached to that object and its ready to be processed by our reducers.
Asynchronous action creators is one in which it will require a little bit of time before it is ready to eventually dispatch an action.
By definition, anytime you have an action creator that makes a network request, it is always going to qualify as an async action creator.
If you want to have asynchronous action creators inside of a Redux application you have to install something called a middleware that is going to allow you to deal with those asynchronous action creators.
You can verify this in the error message that tells us use custom middleware for async actions.
So what is a middleware and why do we need it for async flow in Redux?
In the context of redux middleware such as redux-thunk, a middleware helps us deal with asynchronous action creators as that is something that Redux cannot handle out of the box.
With a middleware integrated into the Redux cycle, we are still calling action creators, that is going to return an action that will be dispatched but now when we dispatch an action, rather than sending it directly off to all of our reducers, we are going to say that an action will be sent through all the different middleware inside the application.
Inside of a single Redux app, we can have as many or as few middleware as we want. For the most part, in the projects we work on we will have one or two middleware hooked up to our Redux store.
A middleware is a plain JavaScript function that will be called with every single action that we dispatch. Inside of that function a middleware has the opportunity to stop an action from being dispatched to any of the reducers, it can modify an action or just mess around with an action in any way you which for example, we could create a middleware that console logs every action you dispatch just for your viewing pleasure.
There are a tremendous number of open source middleware you can install as dependencies into your project.
You are not limited to only making use of open source middleware or installing them as dependencies. You can write your own custom middleware and use it inside of your Redux store.
One of the more popular uses of middleware (and getting to your answer) is for dealing with asynchronous action creators, probably the most popular middleware out there is redux-thunk and it is about helping you deal with asynchronous action creators.
There are many other types of middleware that also help you in dealing with asynchronous action creators.
To use Redux-saga is the best middleware in React-redux implementation.
Ex:
store.js
import createSagaMiddleware from 'redux-saga';
import { createStore, applyMiddleware } from 'redux';
import allReducer from '../reducer/allReducer';
import rootSaga from '../saga';
const sagaMiddleware = createSagaMiddleware();
const store = createStore(
allReducer,
applyMiddleware(sagaMiddleware)
)
sagaMiddleware.run(rootSaga);
export default store;
And then saga.js
import {takeLatest,delay} from 'redux-saga';
import {call, put, take, select} from 'redux-saga/effects';
import { push } from 'react-router-redux';
import data from './data.json';
export function* updateLesson(){
try{
yield put({type:'INITIAL_DATA',payload:data}) // initial data from json
yield* takeLatest('UPDATE_DETAIL',updateDetail) // listen to your action.js
}
catch(e){
console.log("error",e)
}
}
export function* updateDetail(action) {
try{
//To write store update details
}
catch(e){
console.log("error",e)
}
}
export default function* rootSaga(){
yield [
updateLesson()
]
}
And then action.js
export default function updateFruit(props,fruit) {
return (
{
type:"UPDATE_DETAIL",
payload:fruit,
props:props
}
)
}
And then reducer.js
import {combineReducers} from 'redux';
const fetchInitialData = (state=[],action) => {
switch(action.type){
case "INITIAL_DATA":
return ({type:action.type, payload:action.payload});
break;
}
return state;
}
const updateDetailsData = (state=[],action) => {
switch(action.type){
case "INITIAL_DATA":
return ({type:action.type, payload:action.payload});
break;
}
return state;
}
const allReducers =combineReducers({
data:fetchInitialData,
updateDetailsData
})
export default allReducers;
And then main.js
import React from 'react';
import ReactDOM from 'react-dom';
import App from './app/components/App.jsx';
import {Provider} from 'react-redux';
import store from './app/store';
import createRoutes from './app/routes';
const initialState = {};
const store = configureStore(initialState, browserHistory);
ReactDOM.render(
<Provider store={store}>
<App /> /*is your Component*/
</Provider>,
document.getElementById('app'));
try this.. is working
To Answer the question:
Why can't the container component call the async API, and then
dispatch the actions?
I would say for at least two reasons:
The first reason is the separation of concerns, it's not the job of the action creator to call the api and get data back, you have to have to pass two argument to your action creator function, the action type and a payload.
The second reason is because the redux store is waiting for a plain object with mandatory action type and optionally a payload (but here you have to pass the payload too).
The action creator should be a plain object like below:
function addTodo(text) {
return {
type: ADD_TODO,
text
}
}
And the job of Redux-Thunk midleware to dispache the result of your api call to the appropriate action.
When working in an enterprise project, there are many requirements available in middle-ware such as (saga) not available in simple asynchronous flow, below are some:
Running request in parallel
Pulling future actions without the need to wait
Non-blocking calls Race effect, example pickup first
response to initiate the process Sequencing your tasks (first in first call)
Composing
Task cancellation Dynamically forking the task.
Support Concurrency Running Saga outside the redux middleware.
Using channels
The list is long just review the advanced section in saga documentation
Redux can't return a function instead of an action. It's just a fact. That's why people use Thunk. Read these 14 lines of code to see how it allows the async cycle to work with some added function layering:
function createThunkMiddleware(extraArgument) {
return ({ dispatch, getState }) => (next) => (action) => {
if (typeof action === 'function') {
return action(dispatch, getState, extraArgument);
}
return next(action);
};
}
const thunk = createThunkMiddleware();
thunk.withExtraArgument = createThunkMiddleware;
export default thunk;
https://github.com/reduxjs/redux-thunk
I would say for at least two reasons:
The first reason is the separation of concerns, it's not the job of the action creator to call the api and get data back, you have to have to pass two argument to your action creator function, the action type and a payload.
The second reason is because the redux store is waiting for a plain object with mandatory action type and optionally a payload (but here you have to pass the payload too).
The action creator should be a plain object like below:
function addTodo(text) {
return {
type: ADD_TODO,
text
}
}
And the job of Redux-Thunk midleware to dispache the result of your api call to the appropriate action.

Categories