Line of sight from point - javascript

Need to create simple line of sight from point. Length of this line would be adapt to the size of canvas. If line directed to any object (circle, rectangle etc) it must be interrupted after this. I don't know exactly how to describe this, but behavior should be something like this. It's like laser aim in video-games.
Demo jsfiddle. Target line has red color. I think that line must have dynamic length depending on where I will direct it.
var canvas = document.querySelector("canvas");
canvas.width = 500;
canvas.height = 300;
var ctx = canvas.getContext("2d"),
line = {
x1: 190, y1: 170,
x2: 0, y2: 0,
x3: 0, y3: 0
};
var length = 100;
var circle = {
x: 400,
y: 70
};
window.onmousemove = function(e) {
//get correct mouse pos
var rect = ctx.canvas.getBoundingClientRect(),
x = e.clientX - rect.left,
y = e.clientY - rect.top;
// calc line angle
var dx = x - line.x1,
dy = y - line.y1,
angle = Math.atan2(dy, dx);
//Then render the line using 100 pixel radius:
line.x2 = line.x1 - length * Math.cos(angle);
line.y2 = line.y1 - length * Math.sin(angle);
line.x3 = line.x1 + canvas.width * Math.cos(angle);
line.y3 = line.y1 + canvas.width * Math.sin(angle);
// render
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.beginPath();
ctx.moveTo(line.x1, line.y1);
ctx.lineTo(line.x2, line.y2);
ctx.strokeStyle = '#333';
ctx.stroke();
ctx.beginPath();
ctx.moveTo(line.x1, line.y1);
ctx.lineTo(line.x3, line.y3);
ctx.strokeStyle = 'red';
ctx.stroke();
ctx.beginPath();
ctx.arc(circle.x, circle.y, 20, 0, Math.PI * 2, true);
ctx.fillStyle = '#333';
ctx.fill();
}
<canvas></canvas>

Ray casting
The given answer is a good answer but this problem is better suited to a ray casting like solution where we are only interested in the distance to an intercept rather than the actual point of interception. We only need one point per cast ray so not calculating points will reduce the math and hence the CPU load giving more rays and objects per second.
A ray is a point that defines the start and a normalised vector that represents the direction of the ray. Because the ray uses a normalised vector that is a unit length many calculations are simplified because 1 * anything changes nothing.
Also the problem is about looking for the closest intercept so the intercept functions return a distance from the ray's origin. If no intercept is found then Infinity is returned to allow a valid distance comparison to be made. Every number is less than Infinity.
A nice feature of JavaScript is that it allows divide by zero and returns Infinity if that happens, this further reduces the complexity of the solution. Also if the intercept finds a negative intercept that means the object is behind that raycast origin and thus will return infinity as well.
So first let's define our objects by creating functions to make them. They are all ad hoc objects.
The Ray
// Ad Hoc method for ray to set the direction vector
var updateRayDir = function(dir){
this.nx = Math.cos(dir);
this.ny = Math.sin(dir);
return this;
}
// Creates a ray objects from
// x,y start location
// dir the direction in radians
// len the rays length
var createRay = function(x,y,dir,len){
return ({
x : x,
y : y,
len : len,
setDir : updateRayDir, // add function to set direction
}).setDir(dir);
}
A circle
// returns a circle object
// x,y is the center
// radius is the you know what..
// Note r2 is radius squared if you change the radius remember to set r2 as well
var createCircle = function(x , y, radius){
return {
x : x,
y : y,
rayDist : rayDist2Circle, // add ray cast method
radius : radius,
r2 : radius * radius, // ray caster needs square of radius may as well do it here
};
}
A wall
Note I changed the wall code in the demo
// Ad Hoc function to change the wall position
// x1,y1 are the start coords
// x2,y2 are the end coords
changeWallPosition = function(x1, y1, x2, y2){
this.x = x1;
this.y = y1;
this.vx = x2 - x1;
this.vy = y2 - y1;
this.len = Math.hypot(this.vx,this.vy);
this.nx = this.vx / this.len;
this.ny = this.vy / this.len;
return this;
}
// returns a wall object
// x1,y1 are the star coords
// x2,y2 are the end coords
var createWall = function(x1, y1, x2, y2){
return({
x : x1, y : y1,
vx : x2 - x1,
vy : y2 - y1,
rayDist : rayDist2Wall, // add ray cast method
setPos : changeWallPosition,
}).setPos(x1, y1, x2, y2);
}
So those are the objects, they can be static or moving through the circle should have a setRadius function because I have added a property that holds the square of the radius but I will leave that up to you if you use that code.
Now the intercept functions.
Ray Intercepts
The stuff that matters. In the demo these functions are bound to the objects so that the ray casting code need not have to know what type of object it is checking.
Distance to circle.
// Self evident
// returns a distance or infinity if no valid solution
var rayDist2Circle = function(ray){
var vcx, vcy, v;
vcx = ray.x - this.x; // vector from ray to circle
vcy = ray.y - this.y;
v = -2 * (vcx * ray.nx + vcy * ray.ny);
v -= Math.sqrt(v * v - 4 * (vcx * vcx + vcy * vcy - this.r2)); // this.r2 is the radius squared
// If there is no solution then Math.sqrt returns NaN we should return Infinity
// Not interested in intercepts in the negative direction so return infinity
return isNaN(v) || v < 0 ? Infinity : v / 2;
}
Distance to wall
// returns the distance to the wall
// if no valid solution then return Infinity
var rayDist2Wall = function(ray){
var x,y,u;
rWCross = ray.nx * this.ny - ray.ny * this.nx;
if(!rWCross) { return Infinity; } // Not really needed.
x = ray.x - this.x; // vector from ray to wall start
y = ray.y - this.y;
u = (ray.nx * y - ray.ny * x) / rWCross; // unit distance along normalised wall
// does the ray hit the wall segment
if(u < 0 || u > this.len){ return Infinity;} /// no
// as we use the wall normal and ray normal the unit distance is the same as the
u = (this.nx * y - this.ny * x) / rWCross;
return u < 0 ? Infinity : u; // if behind ray return Infinity else the dist
}
That covers the objects. If you need to have a circle that is inside out (you want the inside surface then change the second last line of the circle ray function to v += rather than v -=
The ray casting
Now it is just a matter of iterating all the objects against the ray and keeping the distant to the closest object. Set the ray to that distance and you are done.
// Does a ray cast.
// ray the ray to cast
// objects an array of objects
var castRay = function(ray,objects)
var i,minDist;
minDist = ray.len; // set the min dist to the rays length
i = objects.length; // number of objects to check
while(i > 0){
i -= 1;
minDist = Math.min(objects[i].rayDist(ray),minDist);
}
ray.len = minDist;
}
A demo
And a demo of all the above in action. THere are some minor changes (drawing). The important stuff is the two intercept functions. The demo creates a random scene each time it is resized and cast 16 rays from the mouse position. I can see in your code you know how to get the direction of a line so I made the demo show how to cast multiple rays that you most likely will end up doing
const COLOUR = "BLACK";
const RAY_COLOUR = "RED";
const LINE_WIDTH = 4;
const RAY_LINE_WIDTH = 2;
const OBJ_COUNT = 20; // number of object in the scene;
const NUMBER_RAYS = 16; // number of rays
const RAY_DIR_SPACING = Math.PI / (NUMBER_RAYS / 2);
const RAY_ROTATE_SPEED = Math.PI * 2 / 31000;
if(typeof Math.hypot === "undefined"){ // poly fill for Math.hypot
Math.hypot = function(x, y){
return Math.sqrt(x * x + y * y);
}
}
var ctx, canvas, objects, ray, w, h, mouse, rand, ray, rayMaxLen, screenDiagonal;
// create a canvas and add to the dom
var canvas = document.createElement("canvas");
canvas.width = w = window.innerWidth;
canvas.height = h = window.innerHeight;
canvas.style.position = "absolute";
canvas.style.left = "0px";
canvas.style.top = "0px";
document.body.appendChild(canvas);
// objects to ray cast
objects = [];
// mouse object
mouse = {x :0, y: 0};
//========================================================================
// random helper
rand = function(min, max){
return Math.random() * (max - min) + min;
}
//========================================================================
// Ad Hoc draw line method
// col is the stroke style
// width is the storke width
var drawLine = function(col,width){
ctx.strokeStyle = col;
ctx.lineWidth = width;
ctx.beginPath();
ctx.moveTo(this.x,this.y);
ctx.lineTo(this.x + this.nx * this.len, this.y + this.ny * this.len);
ctx.stroke();
}
//========================================================================
// Ad Hoc draw circle method
// col is the stroke style
// width is the storke width
var drawCircle = function(col,width){
ctx.strokeStyle = col;
ctx.lineWidth = width;
ctx.beginPath();
ctx.arc(this.x , this.y, this.radius, 0 , Math.PI * 2);
ctx.stroke();
}
//========================================================================
// Ad Hoc method for ray to set the direction vector
var updateRayDir = function(dir){
this.nx = Math.cos(dir);
this.ny = Math.sin(dir);
return this;
}
//========================================================================
// Creates a ray objects from
// x,y start location
// dir the direction in radians
// len the rays length
var createRay = function(x,y,dir,len){
return ({
x : x,
y : y,
len : len,
draw : drawLine,
setDir : updateRayDir, // add function to set direction
}).setDir(dir);
}
//========================================================================
// returns a circle object
// x,y is the center
// radius is the you know what..
// Note r2 is radius squared if you change the radius remember to set r2 as well
var createCircle = function(x , y, radius){
return {
x : x,
y : y,
draw : drawCircle, // draw function
rayDist : rayDist2Circle, // add ray cast method
radius : radius,
r2 : radius * radius, // ray caster needs square of radius may as well do it here
};
}
//========================================================================
// Ad Hoc function to change the wall position
// x1,y1 are the start coords
// x2,y2 are the end coords
changeWallPosition = function(x1, y1, len, dir){
this.x = x1;
this.y = y1;
this.len = len;
this.nx = Math.cos(dir);
this.ny = Math.sin(dir);
return this;
}
//========================================================================
// returns a wall object
// x1,y1 are the star coords
// len is the length
// dir is the direction
var createWall = function(x1, y1, len, dir){
return({
x : x1, y : y1,
rayDist : rayDist2Wall, // add ray cast method
draw : drawLine,
setPos : changeWallPosition,
}).setPos(x1, y1, len, dir);
}
//========================================================================
// Self evident
// returns a distance or infinity if no valid solution
var rayDist2Circle = function(ray){
var vcx, vcy, v;
vcx = ray.x - this.x; // vector from ray to circle
vcy = ray.y - this.y;
v = -2 * (vcx * ray.nx + vcy * ray.ny);
v -= Math.sqrt(v * v - 4 * (vcx * vcx + vcy * vcy - this.r2)); // this.r2 is the radius squared
// If there is no solution then Math.sqrt returns NaN we should return Infinity
// Not interested in intercepts in the negative direction so return infinity
return isNaN(v) || v < 0 ? Infinity : v / 2;
}
//========================================================================
// returns the distance to the wall
// if no valid solution then return Infinity
var rayDist2Wall = function(ray){
var x,y,u;
rWCross = ray.nx * this.ny - ray.ny * this.nx;
if(!rWCross) { return Infinity; } // Not really needed.
x = ray.x - this.x; // vector from ray to wall start
y = ray.y - this.y;
u = (ray.nx * y - ray.ny * x) / rWCross; // unit distance along normal of wall
// does the ray hit the wall segment
if(u < 0 || u > this.len){ return Infinity;} /// no
// as we use the wall normal and ray normal the unit distance is the same as the
u = (this.nx * y - this.ny * x) / rWCross;
return u < 0 ? Infinity : u; // if behind ray return Infinity else the dist
}
//========================================================================
// does a ray cast
// ray the ray to cast
// objects an array of objects
var castRay = function(ray,objects){
var i,minDist;
minDist = ray.len; // set the min dist to the rays length
i = objects.length; // number of objects to check
while(i > 0){
i -= 1;
minDist = Math.min(objects[i].rayDist(ray), minDist);
}
ray.len = minDist;
}
//========================================================================
// Draws all objects
// objects an array of objects
var drawObjects = function(objects){
var i = objects.length; // number of objects to check
while(i > 0){
objects[--i].draw(COLOUR, LINE_WIDTH);
}
}
//========================================================================
// called on start and resize
// creats a new scene each time
// fits the canvas to the avalible realestate
function reMakeAll(){
w = canvas.width = window.innerWidth;
h = canvas.height = window.innerHeight;
ctx = canvas.getContext("2d");
screenDiagonal = Math.hypot(window.innerWidth,window.innerHeight);
if(ray === undefined){
ray = createRay(0,0,0,screenDiagonal);
}
objects.length = 0;
var i = OBJ_COUNT;
while( i > 0 ){
if(Math.random() < 0.5){ // half circles half walls
objects.push(createWall(rand(0, w), rand(0, h), rand(screenDiagonal * 0.1, screenDiagonal * 0.2), rand(0, Math.PI * 2)));
}else{
objects.push(createCircle(rand(0, w), rand(0, h), rand(screenDiagonal * 0.02, screenDiagonal * 0.05)));
}
i -= 1;
}
}
//========================================================================
function mouseMoveEvent(event){
mouse.x = event.clientX;
mouse.y = event.clientY;
}
//========================================================================
// updates all that is needed when needed
function updateAll(time){
var i;
ctx.clearRect(0,0,w,h);
ray.x = mouse.x;
ray.y = mouse.y;
drawObjects(objects);
i = 0;
while(i < NUMBER_RAYS){
ray.setDir(i * RAY_DIR_SPACING + time * RAY_ROTATE_SPEED);
ray.len = screenDiagonal;
castRay(ray,objects);
ray.draw(RAY_COLOUR, RAY_LINE_WIDTH);
i ++;
}
requestAnimationFrame(updateAll);
}
// add listeners
window.addEventListener("resize",reMakeAll);
canvas.addEventListener("mousemove",mouseMoveEvent);
// set it all up
reMakeAll();
// start the ball rolling
requestAnimationFrame(updateAll);
An alternative use of above draws a polygon using the end points of the cast rays can be seen at codepen

For this you would need a line to circle intersection algorithm for the balls as well as line to line intersection for the walls.
For the ball you can use this function - I made this to return arrays being empty if no intersection, one point if tangent or two points if secant.
Simply feed it start of line, line of sight end-point as well as the ball's center position and radius. In your case you will probably only need the first point:
function lineIntersectsCircle(x1, y1, x2, y2, cx, cy, r) {
x1 -= cx;
y1 -= cy;
x2 -= cx;
y2 -= cy;
// solve quadrant
var a = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1),
b = 2 * ((x2 - x1) * x1 + (y2 - y1) * y1),
c = x1 * x1 + y1 * y1 - r * r,
d = b * b - 4 * a * c,
dq, p1, p2, t1, t2;
if (d <= 0 || !a) return [];
dq = Math.sqrt(d);
t1 = (-b - dq) / (2 * a);
t2 = (-b + dq) / (2 * a);
// calculate actual intersection points
if (t1 >= 0 && t1 <= 1)
p1 = {
x: x1 + t1 * (x2 - x1) + cx,
y: y1 + t1 * (y2 - y1) + cy
};
if (t2 >= 0 && t2 <= 1)
p2 = {
x: x1 + t2 * (x2 - x1) + cx,
y: y1 + t2 * (y2 - y1) + cy
};
return p1 && p2 ? [p1, p2] : p1 ? [p1] : [p2]
};
Then for the walls you would need a line to line intersection - define one line for each side of the rectangle. If there is line overlap you may get hit for two intersection, just ignore the second.
This will return a single point for the intersection or null if no intersection:
function getLineIntersection(p0x, p0y, p1x, p1y, p2x, p2y, p3x, p3y) {
var d1x = p1x - p0x,
d1y = p1y - p0y,
d2x = p3x - p2x,
d2y = p3y - p2y,
d = d1x * d2y - d2x * d1y,
px, py, s, t;
if (Math.abs(d) < 1e-14) return null;
px = p0x - p2x;
py = p0y - p2y;
s = (d1x * py - d1y * px) / d;
if (s >= 0 && s <= 1) {
t = (d2x * py - d2y * px) / d;
if (t >= 0 && t <= 1) {
return {
x: p0x + (t * d1x),
y: p0y + (t * d1y)
}
}
}
return null
}
Then just iterate with the line through the ball array, if no hit, iterate through the wall array.
Modified fiddle
To utilize these you will have to run the line through these each time it is moved (or per frame update).
Tip: You can make the function recursive so that you can find the intersection point, calculate reflected vector based on the hit angle, then find next intersection for n number of times (or total length the shot can move) using the last intersecting point and new angle as start of next line. This way you can build the path the shot will follow.
var canvas = document.querySelector("canvas");
canvas.width = 500;
canvas.height = 300;
var ctx = canvas.getContext("2d"),
line = {
x1: 190, y1: 170,
x2: 0, y2: 0,
x3: 0, y3: 0
};
var length = 100;
var circle = {
x: 400,
y: 70
};
var wall = {
x1: 440, y1: 0,
x2: 440, y2: 100
};
window.onmousemove = function(e) {
//get correct mouse pos
var rect = ctx.canvas.getBoundingClientRect(),
x = e.clientX - rect.left,
y = e.clientY - rect.top;
// calc line angle
var dx = x - line.x1,
dy = y - line.y1,
angle = Math.atan2(dy, dx);
//Then render the line using length as pixel radius:
line.x2 = line.x1 - length * Math.cos(angle);
line.y2 = line.y1 - length * Math.sin(angle);
line.x3 = line.x1 + canvas.width * Math.cos(angle);
line.y3 = line.y1 + canvas.width * Math.sin(angle);
// does it intersect?
var pts = lineIntersectsCircle(line.x1, line.y1, line.x3, line.y3, circle.x, circle.y, 20);
if (pts.length) {
line.x3 = pts[0].x;
line.y3 = pts[0].y
}
else {
pts = getLineIntersection(line.x1, line.y1, line.x3, line.y3, wall.x1, wall.y1, wall.x2, wall.y2);
if (pts) {
line.x3 = pts.x;
line.y3 = pts.y
}
}
// render
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.beginPath();
ctx.moveTo(line.x1, line.y1);
ctx.lineTo(line.x2, line.y2);
ctx.strokeStyle = '#333';
ctx.stroke();
ctx.beginPath();
ctx.moveTo(line.x1, line.y1);
ctx.lineTo(line.x3, line.y3);
ctx.strokeStyle = 'red';
ctx.stroke();
ctx.beginPath();
ctx.arc(circle.x, circle.y, 20, 0, Math.PI * 2, true);
ctx.fillStyle = '#333';
ctx.fill();
// render example wall:
ctx.fillRect(wall.x1, wall.y1, 4, wall.y2-wall.y1);
}
function lineIntersectsCircle(x1, y1, x2, y2, cx, cy, r) {
x1 -= cx;
y1 -= cy;
x2 -= cx;
y2 -= cy;
// solve quadrant
var a = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1),
b = 2 * ((x2 - x1) * x1 + (y2 - y1) * y1),
c = x1 * x1 + y1 * y1 - r * r,
d = b * b - 4 * a * c,
dq, p1, p2, t1, t2;
if (d <= 0 || !a) return [];
dq = Math.sqrt(d);
t1 = (-b - dq) / (2 * a);
t2 = (-b + dq) / (2 * a);
// calculate actual intersection points
if (t1 >= 0 && t1 <= 1)
p1 = {
x: x1 + t1 * (x2 - x1) + cx,
y: y1 + t1 * (y2 - y1) + cy
};
if (t2 >= 0 && t2 <= 1)
p2 = {
x: x1 + t2 * (x2 - x1) + cx,
y: y1 + t2 * (y2 - y1) + cy
};
return p1 && p2 ? [p1, p2] : p1 ? [p1] : [p2]
};
function getLineIntersection(p0x, p0y, p1x, p1y, p2x, p2y, p3x, p3y) {
var d1x = p1x - p0x,
d1y = p1y - p0y,
d2x = p3x - p2x,
d2y = p3y - p2y,
d = d1x * d2y - d2x * d1y,
px, py, s, t;
if (Math.abs(d) < 1e-14) return null;
px = p0x - p2x;
py = p0y - p2y;
s = (d1x * py - d1y * px) / d;
if (s >= 0 && s <= 1) {
t = (d2x * py - d2y * px) / d;
if (t >= 0 && t <= 1) {
return {
x: p0x + (t * d1x),
y: p0y + (t * d1y)
}
}
}
return null
}
<canvas></canvas>

I don't have enough reputation to add this as a comment to Blindman67's solution, so i have to resort to adding this as an answer.
Blindman67's answer is great, but i needed support for polygons as well.
I am no math wizard so there may be a much better solution for polygons than this, but what i did was loop over all pairs of points from a polygon (so all sides of a polygon, really) and treat them as walls based on the code from Blindman67, then check the ray distance in the new rayDist2Polygon:
var rayDist2Polygon = function(ray){
let u,lineU;
const polLength = this.points.length;
const startX = this.x;
const startY = this.y;
// Loop over all lines of the polygon
for (i = 0; i < polLength; i++) {
const nextPoint = i === polLength - 1 ? this.points[0] : this.points[i + 1];
const x1 = startX + this.points[i].x;
const x2 = startX + nextPoint.x;
const y1 = startY + this.points[i].y;
const y2 = startY + nextPoint.y;
this.setupWall(x1, y1, x2, y2);
lineU = rayDist2Wall.bind(this)(ray);
if (!u) {
// If it's the first hit, assign it to `u`
u = lineU;
} else if (lineU < u) {
// If the current hit is smaller than anything we have so far, then this is the closest one, assign it to `u`
u = lineU;
}
}
// Reset positions after running this.setupWall;
this.x = startX;
this.y = startY;
return (!u || u < 0) ? Infinity : u; // if behind ray return Infinity else the dist
}
Then used the same logic to also support squares by converting a square's dimension/shape to points.
You can view it below, or fiddle with it at my codepen.
// Forked from https://stackoverflow.com/a/36566360/16956030
// All credits go to Blindman67
// All i did was add support for Polygons and Squares based on code from
// Blindman67, by treating each side of a polyon/square as a line/wall,
// then loop over each side and get the smallest result in rayDist2Polygon.
// I'm no math wizard and there may be a much better solution for these shapes,
// but this'll do for now.
console.clear();
const COLOUR = "BLACK";
const RAY_COLOUR = "RED";
const LINE_WIDTH = 4;
const RAY_LINE_WIDTH = 2;
const OBJ_COUNT = 20; // number of object in the scene;
const NUMBER_RAYS = 16; // number of rays
const RAY_DIR_SPACING = Math.PI / (NUMBER_RAYS / 2);
const RAY_ROTATE_SPEED = Math.PI * 2 / 31000;
if(typeof Math.hypot === "undefined"){ // poly fill for Math.hypot
Math.hypot = function(x, y){
return Math.sqrt(x * x + y * y);
}
}
var ctx, canvas, objects, ray, w, h, mouse, rand, ray, rayMaxLen, screenDiagonal;
// create a canvas and add to the dom
var canvas = document.createElement("canvas");
canvas.width = w = window.innerWidth;
canvas.height = h = window.innerHeight;
canvas.style.position = "absolute";
canvas.style.left = "0px";
canvas.style.top = "0px";
document.body.appendChild(canvas);
// objects to ray cast
objects = [];
// mouse object
mouse = {x :0, y: 0};
//========================================================================
// random helper
rand = function(min, max){
return Math.random() * (max - min) + min;
}
//========================================================================
// Ad Hoc draw line method
// col is the stroke style
// width is the storke width
var drawLine = function(col,width){
ctx.strokeStyle = col;
ctx.lineWidth = width;
ctx.beginPath();
ctx.moveTo(this.x,this.y);
ctx.lineTo(this.x + this.nx * this.len, this.y + this.ny * this.len);
ctx.stroke();
}
//========================================================================
// Ad Hoc draw circle method
// col is the stroke style
// width is the storke width
var drawCircle = function(col,width){
ctx.strokeStyle = col;
ctx.lineWidth = width;
ctx.beginPath();
ctx.arc(this.x , this.y, this.radius, 0 , Math.PI * 2);
ctx.stroke();
}
//========================================================================
// Ad Hoc draw square method
var drawSquare = function(){
ctx.beginPath();
ctx.rect(this.x, this.y, this.width, this.height);
ctx.stroke();
// Create array of points like a polygon based on the position & dimensions
// from this square, necessary for rayDist2Polygon
this.points = [
{ x: 0, y: 0},
{ x: this.width, y: 0},
{ x: this.width, y: this.height},
{ x: 0, y: this.height}
];
}
//========================================================================
// Ad Hoc draw [poligon] method
var drawPolygon = function(){
ctx.beginPath();
ctx.moveTo(this.x,this.y);
var polLength = this.points.length;
for(var i=0; i < polLength; ++i) {
ctx.lineTo(this.x + this.points[i].x, this.y + this.points[i].y);
}
ctx.closePath();
ctx.stroke();
}
//========================================================================
// Ad Hoc method for ray to set the direction vector
var updateRayDir = function(dir){
this.nx = Math.cos(dir);
this.ny = Math.sin(dir);
return this;
}
//========================================================================
// Creates a ray objects from
// x,y start location
// dir the direction in radians
// len the rays length
var createRay = function(x,y,dir,len){
return ({
x : x,
y : y,
len : len,
draw : drawLine,
setDir : updateRayDir, // add function to set direction
}).setDir(dir);
}
//========================================================================
// returns a circle object
// x,y is the center
// radius is the you know what..
// Note r2 is radius squared if you change the radius remember to set r2 as well
var createCircle = function(x , y, radius){
return {
x : x,
y : y,
draw : drawCircle, // draw function
rayDist : rayDist2Circle, // add ray cast method
radius : radius,
r2 : radius * radius, // ray caster needs square of radius may as well do it here
};
}
// Ad Hoc function to set the wall information
// x1,y1 are the start coords
// x2,y2 are the end coords
setupWallInformation = function(x1, y1, x2, y2){
this.x = x1;
this.y = y1;
this.vx = x2 - x1;
this.vy = y2 - y1;
this.len = Math.hypot(this.vx,this.vy);
this.nx = this.vx / this.len;
this.ny = this.vy / this.len;
return this;
}
//========================================================================
// returns a polygon object
// x,y are the start coords
// In this example the polygon always has the same shape
var createPolygon = function(x , y){
return {
x : x,
y : y,
points: [
{ x: 0, y: 0},
{ x: 100, y: 50},
{ x: 50, y: 100},
{ x: 0, y: 90}
],
draw : drawPolygon, // draw function
setupWall : setupWallInformation,
rayDist : rayDist2Polygon, // add ray cast method
};
}
//========================================================================
// returns a square object
// x,y are the start coords
// In this example the polygon always has the same shape
var createSquare = function(x , y, width, height){
return {
x : x,
y : y,
width: width,
height: height,
draw : drawSquare, // draw function
setupWall : setupWallInformation,
rayDist : rayDist2Polygon, // add ray cast method
};
}
//========================================================================
// Ad Hoc function to change the wall position
// x1,y1 are the start coords
// x2,y2 are the end coords
changeWallPosition = function(x1, y1, len, dir){
this.x = x1;
this.y = y1;
this.len = len;
this.nx = Math.cos(dir);
this.ny = Math.sin(dir);
return this;
}
//========================================================================
// returns a wall object
// x1,y1 are the star coords
// len is the length
// dir is the direction
var createWall = function(x1, y1, len, dir){
return({
x : x1, y : y1,
rayDist : rayDist2Wall, // add ray cast method
draw : drawLine,
setPos : changeWallPosition,
}).setPos(x1, y1, len, dir);
}
//========================================================================
// Self evident
// returns a distance or infinity if no valid solution
var rayDist2Circle = function(ray){
var vcx, vcy, v;
vcx = ray.x - this.x; // vector from ray to circle
vcy = ray.y - this.y;
v = -2 * (vcx * ray.nx + vcy * ray.ny);
v -= Math.sqrt(v * v - 4 * (vcx * vcx + vcy * vcy - this.r2)); // this.r2 is the radius squared
// If there is no solution then Math.sqrt returns NaN we should return Infinity
// Not interested in intercepts in the negative direction so return infinity
return isNaN(v) || v < 0 ? Infinity : v / 2;
}
//========================================================================
// returns the distance to the wall
// if no valid solution then return Infinity
var rayDist2Wall = function(ray){
var x,y,u;
rWCross = ray.nx * this.ny - ray.ny * this.nx;
if(!rWCross) { return Infinity; } // Not really needed.
x = ray.x - this.x; // vector from ray to wall start
y = ray.y - this.y;
u = (ray.nx * y - ray.ny * x) / rWCross; // unit distance along normal of wall
// does the ray hit the wall segment
if(u < 0 || u > this.len){ return Infinity;} /// no
// as we use the wall normal and ray normal the unit distance is the same as the
u = (this.nx * y - this.ny * x) / rWCross;
return u < 0 ? Infinity : u; // if behind ray return Infinity else the dist
}
//========================================================================
// returns the distance to the polygon
// if no valid solution then return Infinity
var rayDist2Polygon = function(ray){
let u,lineU;
const polLength = this.points.length;
const startX = this.x;
const startY = this.y;
// Loop over all lines of the polygon
for (i = 0; i < polLength; i++) {
const nextPoint = i === polLength - 1 ? this.points[0] : this.points[i + 1];
const x1 = startX + this.points[i].x;
const x2 = startX + nextPoint.x;
const y1 = startY + this.points[i].y;
const y2 = startY + nextPoint.y;
this.setupWall(x1, y1, x2, y2);
lineU = rayDist2Wall.bind(this)(ray);
if (!u) {
// If it's the first hit, assign it to `u`
u = lineU;
} else if (lineU < u) {
// If the current hit is smaller than anything we have so far, then this is the closest one, assign it to `u`
u = lineU;
}
}
// Reset positions after running this.setupWall;
this.x = startX;
this.y = startY;
return (!u || u < 0) ? Infinity : u; // if behind ray return Infinity else the dist
}
//========================================================================
// does a ray cast
// ray the ray to cast
// objects an array of objects
var castRay = function(ray,objects){
var i,minDist;
minDist = ray.len; // set the min dist to the rays length
i = objects.length; // number of objects to check
while(i > 0){
i -= 1;
minDist = Math.min(objects[i].rayDist(ray), minDist);
}
ray.len = minDist;
}
//========================================================================
// Draws all objects
// objects an array of objects
var drawObjects = function(objects){
var i = objects.length; // number of objects to check
while(i > 0){
objects[--i].draw(COLOUR, LINE_WIDTH);
}
}
//========================================================================
// called on start and resize
// creats a new scene each time
// fits the canvas to the avalible realestate
function reMakeAll(){
w = canvas.width = window.innerWidth;
h = canvas.height = window.innerHeight;
ctx = canvas.getContext("2d");
screenDiagonal = Math.hypot(window.innerWidth,window.innerHeight);
if(ray === undefined){
ray = createRay(0,0,0,screenDiagonal);
}
objects.length = 0;
var i = OBJ_COUNT;
while( i > 0 ){
var objectRandom = Math.floor(rand(0, 4));
if(objectRandom === 1){
objects.push(createWall(rand(0, w), rand(0, h), rand(screenDiagonal * 0.1, screenDiagonal * 0.2), rand(0, Math.PI * 2)));
}else if(objectRandom === 2){
objects.push(createPolygon(rand(0, w), rand(0, h)));
}else if(objectRandom === 3){
objects.push(createSquare(rand(0, w), rand(0, h), rand(screenDiagonal * 0.02, screenDiagonal * 0.05), rand(screenDiagonal * 0.02, screenDiagonal * 0.05)));
}else{
objects.push(createCircle(rand(0, w), rand(0, h), rand(screenDiagonal * 0.02, screenDiagonal * 0.05)));
}
i -= 1;
}
}
//========================================================================
function mouseMoveEvent(event){
mouse.x = event.clientX;
mouse.y = event.clientY;
}
//========================================================================
// updates all that is needed when needed
function updateAll(time){
var i;
ctx.clearRect(0,0,w,h);
ray.x = mouse.x;
ray.y = mouse.y;
drawObjects(objects);
i = 0;
while(i < NUMBER_RAYS){
ray.setDir(i * RAY_DIR_SPACING + time * RAY_ROTATE_SPEED);
ray.len = screenDiagonal;
castRay(ray,objects);
ray.draw(RAY_COLOUR, RAY_LINE_WIDTH);
i ++;
}
requestAnimationFrame(updateAll);
}
// add listeners
window.addEventListener("resize",reMakeAll);
canvas.addEventListener("mousemove",mouseMoveEvent);
// set it all up
reMakeAll();
// start the ball rolling
requestAnimationFrame(updateAll);

Related

How to draw triangle pointers inside of circle

I realize this is a simple Trigonometry question, but my high school is failing me right now.
Given an angle, that I have converted into radians to get the first point. How do I figure the next two points of the triangle to draw on the canvas, so as to make a small triangle always point outwards to the circle. So lets say Ive drawn a circle of a given radius already. Now I want a function to plot a triangle that sits on the edge of the circle inside of it, that points outwards no matter the angle. (follows the edge, so to speak)
function drawPointerTriangle(ctx, angle){
var radians = angle * (Math.PI/180)
var startX = this.radius + this.radius/1.34 * Math.cos(radians)
var startY = this.radius - this.radius/1.34 * Math.sin(radians)
// This gives me my starting point on the outer edge of the circle, plotted at the angle I need
ctx.moveTo(startX, startY);
// HOW DO I THEN CALCULATE x1,y1 and x2, y2. So that no matter what angle I enter into this function, the arrow/triangle always points outwards to the circle.
ctx.lineTo(x1, y1);
ctx.lineTo(x2, y2);
}
Example
You don't say what type of triangle you want to draw so I suppose that it is an equilateral triangle.
Take a look at this image (credit here)
I will call 3 points p1, p2, p3 from top right to bottom right, counterclockwise.
You can easily calculate the coordinate of three points of the triangle in the coordinate system with the origin is coincident with the triangle's centroid.
Given a point belongs to the edge of the circle and the point p1 that we just calculated, we can calculate parameters of the translation from our main coordinate system to the triangle's coordinate system. Then, we just have to translate the coordinate of two other points back to our main coordinate system. That is (x1,y1) and (x2,y2).
You can take a look at the demo below that is based on your code.
const w = 300;
const h = 300;
function calculateTrianglePoints(angle, width) {
let r = width / Math.sqrt(3);
let firstPoint = [
r * Math.cos(angle),
r * Math.sin(angle),
]
let secondPoint = [
r * Math.cos(angle + 2 * Math.PI / 3),
r * Math.sin(angle + 2 * Math.PI / 3),
]
let thirdPoint = [
r * Math.cos(angle + 4 * Math.PI / 3),
r * Math.sin(angle + 4 * Math.PI / 3),
]
return [firstPoint, secondPoint, thirdPoint]
}
const radius = 100
const triangleWidth = 20;
function drawPointerTriangle(ctx, angle) {
var radians = angle * (Math.PI / 180)
var startX = radius * Math.cos(radians)
var startY = radius * Math.sin(radians)
var [pt0, pt1, pt2] = calculateTrianglePoints(radians, triangleWidth);
var delta = [
startX - pt0[0],
startY - pt0[1],
]
pt1[0] = pt1[0] + delta[0]
pt1[1] = pt1[1] + delta[1]
pt2[0] = pt2[0] + delta[0]
pt2[1] = pt2[1] + delta[1]
ctx.beginPath();
// This gives me my starting point on the outer edge of the circle, plotted at the angle I need
ctx.moveTo(startX, startY);
[x1, y1] = pt1;
[x2, y2] = pt2;
// HOW DO I THEN CALCULATE x1,y1 and x2, y2. So that no matter what angle I enter into this function, the arrow/triangle always points outwards to the circle.
ctx.lineTo(x1, y1);
ctx.lineTo(x2, y2);
ctx.closePath();
ctx.fillStyle = '#FF0000';
ctx.fill();
}
function drawCircle(ctx, radius) {
ctx.beginPath();
ctx.arc(0, 0, radius, 0, 2 * Math.PI);
ctx.closePath();
ctx.fillStyle = '#000';
ctx.fill();
}
function clear(ctx) {
ctx.fillStyle = '#fff';
ctx.fillRect(-w / 2, -h / 2, w, h);
}
function normalizeAngle(pointCoordinate, angle) {
const [x, y] = pointCoordinate;
if (x > 0 && y > 0) return angle;
else if (x > 0 && y < 0) return 360 + angle;
else if (x < 0 && y < 0) return 180 - angle;
else if (x < 0 && y > 0) return 180 - angle;
}
function getAngleFromPoint(point) {
const [x, y] = point;
if (x == 0 && y == 0) return 0;
else if (x == 0) return 90 * (y > 0 ? 1 : -1);
else if (y == 0) return 180 * (x >= 0 ? 0: 1);
const radians = Math.asin(y / Math.sqrt(
x ** 2 + y ** 2
))
return normalizeAngle(point, radians / (Math.PI / 180))
}
document.addEventListener('DOMContentLoaded', function() {
const canvas = document.querySelector('canvas');
const angleText = document.querySelector('.angle');
const ctx = canvas.getContext('2d');
ctx.translate(w / 2, h / 2);
drawCircle(ctx, radius);
drawPointerTriangle(ctx, 0);
canvas.addEventListener('mousemove', _.throttle(function(ev) {
let mouseCoordinate = [
ev.clientX - w / 2,
ev.clientY - h / 2
]
let degAngle = getAngleFromPoint(mouseCoordinate)
clear(ctx);
drawCircle(ctx, radius);
drawPointerTriangle(ctx, degAngle)
angleText.innerText = Math.floor((360 - degAngle)*100)/100;
}, 15))
})
<script src="https://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.9.1/underscore-min.js"></script>
<canvas width=300 height=300></canvas>
<div class="angle">0</div>
reduce the radius, change the angle and call again cos/sin:
function drawPointerTriangle(ctx, angle)
{
var radians = angle * (Math.PI/180);
var radius = this.radius/1.34;
var startX = this.center.x + radius * Math.cos(radians);
var startY = this.center.y + radius * Math.sin(radians);
ctx.moveTo(startX, startY);
radius *= 0.9;
radians += 0.1;
var x1 = this.center.x + radius * Math.cos(radians);
var y1 = this.center.y + radius * Math.sin(radians);
radians -= 0.2;
var x1 = this.center.x + radius * Math.cos(radians);
var y1 = this.center.y + radius * Math.sin(radians);
ctx.lineTo(x1, y1);
ctx.lineTo(x2, y2);
ctx.lineTo(startX, startY);
}
the resulting triangle's size is proportional to the size of the circle.
in case you need an equilateral, fixed size triangle, use this:
//get h by pythagoras
h = sqrt( a^2 - (a/2)^2 );)
//get phi using arcustangens:
phi = atan( a/2, radius-h );
//reduced radius h by pythagoras:
radius = sqrt( (radius-h)^2 + (a/2)^2 );
radians += phi;
...
radians -= 2*phi;
...

How to draw an irregular shaped polygon using the given angles

I am making a drawing application. I have created a class Polygon. Its constructor will receive three arguments and these will be its properties:
points(Number): Number of points the polygon will have.
rotation(Number): The angle the whole polygon will be rotated.
angles(Array Of number): The angles between two lines of the polygon.
I have been trying for the whole day, but I couldn't figure out the correct solution.
const canvas = document.querySelector('canvas');
const c = canvas.getContext('2d');
let isMouseDown = false;
let tool = 'polygon';
let savedImageData;
canvas.height = window.innerHeight;
canvas.width = window.innerWidth;
const mouse = {x:null,y:null}
let mousedown = {x:null,y:null}
const toDegree = val => val * 180 / Math.PI
class Polygon {
constructor(points, rotation, angles){
this.points = points;
this.rotation = rotation;
//if angles are given then convert them to radian
if(angles){
this.angles = angles.map(x => x * Math.PI/ 180);
}
//if angles array is not given
else{
/*get the angle for a regular polygon for given points.
3-points => 60
4-points => 90
5-points => 108
*/
let angle = (this.points - 2) * Math.PI/ this.points;
//fill the angles array with the same angle
this.angles = Array(points).fill(angle)
}
let sum = 0;
this.angles = this.angles.map(x => {
sum += x;
return sum;
})
}
draw(startx, starty, endx, endy){
c.beginPath();
let rx = (endx - startx) / 2;
let ry = (endy - starty) / 2;
let r = Math.max(rx, ry)
c.font = '35px cursive'
let cx = startx + r;
let cy = starty + r;
c.fillRect(cx - 2, cy - 2, 4, 4); //marking the center
c.moveTo(cx + r, cy);
c.strokeText(0, cx + r, cy);
for(let i = 1; i < this.points; i++){
//console.log(this.angles[i])
let dx = cx + r * Math.cos(this.angles[i] + this.rotation);
let dy = cy + r * Math.sin(this.angles[i] + this.rotation);
c.strokeStyle = 'red';
c.strokeText(i, dx, dy, 100);
c.strokeStyle ='black';
c.lineTo(dx, dy);
}
c.closePath();
c.stroke();
}
}
//update();
c.beginPath();
c.lineWidth = 1;
document.addEventListener('mousemove', function(e){
//Getting the mouse coords according to canvas
const canvasData = canvas.getBoundingClientRect();
mouse.x = (e.x - canvasData.left) * (canvas.width / canvasData.width);
mouse.y = (e.y - canvasData.top) * (canvas.height / canvasData.height);
if(tool === 'polygon' && isMouseDown){
drawImageData();
let pol = new Polygon(5, 0);
pol.draw(mousedown.x, mousedown.y, mouse.x, mouse.y);
}
})
function saveImageData(){
savedImageData = c.getImageData(0, 0, canvas.width, canvas.height);
}
function drawImageData(){
c.putImageData(savedImageData, 0, 0)
}
document.addEventListener('mousedown', () => {
isMouseDown = true;
mousedown = {...mouse};
if(tool === 'polygon'){
saveImageData();
}
});
document.addEventListener('mouseup', () => isMouseDown = false);
<canvas></canvas>
In the above code I am trying to make a pentagon but it doesn't work.
Unit polygon
The following snippet contains a function polygonFromSidesOrAngles that returns the set of points defining a unit polygon as defined by the input arguments. sides, or angles
Both arguments are optional but must have one argument
If only sides given then angles are calculated to make the complete polygon with all side lengths equal
If only angles given then the number of sides is assumed to be the number of angles. Angles are in degrees 0-360
If the arguments can not define a polygon then there are several exceptions throw.
The return is a set of points on a unit circle that define the points of the polygon. The first point is at coordinate {x : 1, y: 0} from the origin.
The returned points are not rotated as that is assumed to be a function of the rendering function.
All points on the polygon are 1 unit distance from the origin (0,0)
Points are in the form of an object containing x and y properties as defined by the function point and polarPoint
Method used
I did not lookup an algorithm, rather I worked it out from the assumption that a line from (1,0) on the unit circle at the desired angle will intercept the circle at the correct distance from (1,0). The intercept point is used to calculate the angle in radians from the origin. That angle is then used to calculate the ratio of the total angles that angle represents.
The function that does this is calcRatioOfAngle(angle, sides) returning the angle as a ratio (0-1) of Math.PI * 2
It is a rather long handed method and likely can be significantly reduced
As it is unclear in your question what should be done with invalid arguments the function will throw a range error if it can not proceed.
Polygon function
Math.PI2 = Math.PI * 2;
Math.TAU = Math.PI2;
Math.deg2Rad = Math.PI / 180;
const point = (x, y) => ({x, y});
const polarPoint = (ang, dist) => ({x: Math.cos(ang) * dist, y: Math.sin(ang) * dist});
function polygonFromSidesOrAngles(sides, angles) {
function calcRatioOfAngle(ang, sides) {
const v1 = point(Math.cos(ang) - 1, Math.sin(ang));
const len2 = v1.x * v1.x + v1.y * v1.y;
const u = -v1.x / len2;
const v2 = point(v1.x * u + 1, v1.y * u);
const d = (1 - (v2.y * v2.y + v2.x * v2.x)) ** 0.5 / (len2 ** 0.5);
return Math.atan2(v2.y + v1.y * d, v2.x + 1 + v1.x * d) / (Math.PI * (sides - 2) / 2);
}
const vetAngles = angles => angles.reduce((sum, ang) => sum += ang, 0) === (angles.length - 2) * 180;
var ratios = [];
if(angles === undefined) {
if (sides < 3) { throw new RangeError("Polygon must have more than 2 side") }
const rat = 1 / sides;
while (sides--) { ratios.push(rat) }
} else {
if (sides === undefined) { sides = angles.length }
else if (sides !== angles.length) { throw new RangeError("Numbers of sides does not match number of angles") }
if (sides < 3) { throw new RangeError("Polygon must have more than 2 side") }
if (!vetAngles(angles)) { throw new RangeError("Set of angles can not create a "+sides+" sided polygon") }
ratios = angles.map(ang => calcRatioOfAngle(ang * Math.deg2Rad, sides));
ratios.unshift(ratios.pop()); // rotate right to get first angle at start
}
var ang = 0;
const points = [];
for (const rat of ratios) {
ang += rat;
points.push(polarPoint(ang * Math.TAU, 1));
}
return points;
}
Render function
Function to render the polygon. It includes the rotation so you don't need to create a separate set of points for each angle you want to render the polygon at.
The radius is the distance from the center point x,y to any of the polygons vertices.
function drawPolygon(ctx, poly, x, y, radius, rotate) {
ctx.setTransform(radius, 0, 0, radius, x, y);
ctx.rotate(rotate);
ctx.beginPath();
for(const p of poly.points) { ctx.lineTo(p.x, p.y) }
ctx.closePath();
ctx.setTransform(1, 0, 0, 1, 0, 0);
ctx.stroke();
}
Example
The following renders a set of test polygons to ensure that the code is working as expected.
Polygons are rotated to start at the top and then rendered clock wise.
The example has had the vetting of input arguments removed.
const ctx = can.getContext("2d");
can.height = can.width = 512;
Math.PI2 = Math.PI * 2;
Math.TAU = Math.PI2;
Math.deg2Rad = Math.PI / 180;
const point = (x, y) => ({x, y});
const polarPoint = (ang, dist) => ({x: Math.cos(ang) * dist, y: Math.sin(ang) * dist});
function polygonFromAngles(sides, angles) {
function calcRatioOfAngle(ang, sides) {
const x = Math.cos(ang) - 1, y = Math.sin(ang);
const len2 = x * x + y * y;
const u = -x / len2;
const x1 = x * u + 1, y1 = y * u;
const d = (1 - (y1 * y1 + x1 * x1)) ** 0.5 / (len2 ** 0.5);
return Math.atan2(y1 + y * d, x1 + 1 + x * d) / (Math.PI * (sides - 2) / 2);
}
var ratios = [];
if (angles === undefined) {
const rat = 1 / sides;
while (sides--) { ratios.push(rat) }
} else {
ratios = angles.map(ang => calcRatioOfAngle(ang * Math.deg2Rad, angles.length));
ratios.unshift(ratios.pop());
}
var ang = 0;
const points = [];
for(const rat of ratios) {
ang += rat;
points.push(polarPoint(ang * Math.TAU, 1));
}
return points;
}
function drawPolygon(poly, x, y, radius, rot) {
const xdx = Math.cos(rot) * radius;
const xdy = Math.sin(rot) * radius;
ctx.setTransform(xdx, xdy, -xdy, xdx, x, y);
ctx.beginPath();
for (const p of poly) { ctx.lineTo(p.x, p.y) }
ctx.closePath();
ctx.setTransform(1, 0, 0, 1, 0, 0);
ctx.stroke();
}
const segs = 4;
const tests = [
[3], [, [45, 90, 45]], [, [90, 10, 80]], [, [60, 50, 70]], [, [40, 90, 50]],
[4], [, [90, 90, 90, 90]], [, [90, 60, 90, 120]],
[5], [, [108, 108, 108, 108, 108]], [, [58, 100, 166, 100, 116]],
[6], [, [120, 120, 120, 120, 120, 120]], [, [140, 100, 180, 100, 100, 100]],
[7], [8],
];
var angOffset = -Math.PI / 2; // rotation of poly
const w = ctx.canvas.width;
const h = ctx.canvas.height;
const wStep = w / segs;
const hStep = h / segs;
const radius = Math.min(w / segs, h / segs) / 2.2;
var x,y, idx = 0;
for (y = 0; y < segs && idx < tests.length; y ++) {
for (x = 0; x < segs && idx < tests.length; x ++) {
drawPolygon(polygonFromAngles(...tests[idx++]), (x + 0.5) * wStep , (y + 0.5) * hStep, radius, angOffset);
}
}
canvas {
border: 1px solid black;
}
<canvas id="can"></canvas>
I do just a few modification.
Constructor take angles on degree
When map angles to radian complement 180 because canvas use angles like counterclockwise. We wan to be clockwise
First point start using the passed rotation
const canvas = document.querySelector('canvas');
const c = canvas.getContext('2d');
let isMouseDown = false;
let tool = 'polygon';
let savedImageData;
canvas.height = window.innerHeight;
canvas.width = window.innerWidth;
const mouse = {x:null,y:null}
let mousedown = {x:null,y:null}
const toDegree = val => val * 180 / Math.PI;
const toRadian = val => val * Math.PI / 180;
class Polygon {
constructor(points, rotation, angles){
this.points = points;
this.rotation = toRadian(rotation);
//if angles array is not given
if(!angles){
/*get the angle for a regular polygon for given points.
3-points => 60
4-points => 90
5-points => 108
*/
let angle = (this.points - 2) * 180 / this.points;
//fill the angles array with the same angle
angles = Array(points).fill(angle);
}
this.angles = angles;
let sum = 0;
console.clear();
// To radians
this.angles = this.angles.map(x => {
x = 180 - x;
x = toRadian(x);
return x;
})
}
draw(startx, starty, endx, endy){
c.beginPath();
let rx = (endx - startx) / 2;
let ry = (endy - starty) / 2;
let r = Math.max(rx, ry)
c.font = '35px cursive'
let cx = startx + r;
let cy = starty + r;
c.fillRect(cx - 2, cy - 2, 4, 4); //marking the center
c.moveTo(cx + r, cy);
let sumAngle = 0;
let dx = cx + r * Math.cos(this.rotation);
let dy = cy + r * Math.sin(this.rotation);
c.moveTo(dx, dy);
for(let i = 0; i < this.points; i++){
sumAngle += this.angles[i];
dx = dx + r * Math.cos((sumAngle + this.rotation));
dy = dy + r * Math.sin((sumAngle + this.rotation));
c.strokeStyle = 'red';
c.strokeText(i, dx, dy, 100);
c.strokeStyle ='black';
c.lineTo(dx, dy);
}
c.closePath();
c.stroke();
}
}
//update();
c.beginPath();
c.lineWidth = 1;
document.addEventListener('mousemove', function(e){
//Getting the mouse coords according to canvas
const canvasData = canvas.getBoundingClientRect();
mouse.x = (e.x - canvasData.left) * (canvas.width / canvasData.width);
mouse.y = (e.y - canvasData.top) * (canvas.height / canvasData.height);
if(tool === 'polygon' && isMouseDown){
drawImageData();
let elRotation = document.getElementById("elRotation").value;
let rotation = elRotation.length == 0 ? 0 : parseInt(elRotation);
let elPoints = document.getElementById("elPoints").value;
let points = elPoints.length == 0 ? 3 : parseInt(elPoints);
let elAngles = document.getElementById("elAngles").value;
let angles = elAngles.length == 0 ? null : JSON.parse(elAngles);
let pol = new Polygon(points, rotation, angles);
pol.draw(mousedown.x, mousedown.y, mouse.x, mouse.y);
}
})
function saveImageData(){
savedImageData = c.getImageData(0, 0, canvas.width, canvas.height);
}
function drawImageData(){
c.putImageData(savedImageData, 0, 0)
}
document.addEventListener('mousedown', () => {
isMouseDown = true;
mousedown = {...mouse};
if(tool === 'polygon'){
saveImageData();
}
});
document.addEventListener('mouseup', () => isMouseDown = false);
<!DOCTYPE html>
<html lang="en">
<body>
Points: <input id="elPoints" style="width:30px" type="text" value="3" />
Rotation: <input id="elRotation" style="width:30px" type="text" value="0" />
Angles: <input id="elAngles" style="width:100px" type="text" value="[45, 45, 90]" />
<canvas></canvas>
</body>
</html>

How to draw parallel edges (arrows) between vertices with canvas?

I'm working on a flow-network visualization with Javascript.
Vertices are represented as circles and edges are represented as arrows.
Here is my Edge class:
function Edge(u, v) {
this.u = u; // start vertex
this.v = v; // end vertex
this.draw = function() {
var x1 = u.x;
var y1 = u.y;
var x2 = v.x;
var y2 = v.y;
context.beginPath();
context.moveTo(x1, y1);
context.lineTo(x2, y2);
context.stroke();
var dx = x1 - x2;
var dy = y1 - y2;
var length = Math.sqrt(dx * dx + dy * dy);
x1 = x1 - Math.round(dx / ((length / (radius))));
y1 = y1 - Math.round(dy / ((length / (radius))));
x2 = x2 + Math.round(dx / ((length / (radius))));
y2 = y2 + Math.round(dy / ((length / (radius))));
// calculate the angle of the edge
var deg = (Math.atan(dy / dx)) * 180.0 / Math.PI;
if (dx < 0) {
deg += 180.0;
}
if (deg < 0) {
deg += 360.0;
}
// calculate the angle for the two triangle points
var deg1 = ((deg + 25 + 90) % 360) * Math.PI * 2 / 360.0;
var deg2 = ((deg + 335 + 90) % 360) * Math.PI * 2 / 360.0;
// calculate the triangle points
var arrowx = [];
var arrowy = [];
arrowx[0] = x2;
arrowy[0] = y2;
arrowx[1] = Math.round(x2 + 12 * Math.sin(deg1));
arrowy[1] = Math.round(y2 - 12 * Math.cos(deg1));
arrowx[2] = Math.round(x2 + 12 * Math.sin(deg2));
arrowy[2] = Math.round(y2 - 12 * Math.cos(deg2));
context.beginPath();
context.moveTo(arrowx[0], arrowy[0]);
context.lineTo(arrowx[1], arrowy[1]);
context.lineTo(arrowx[2], arrowy[2]);
context.closePath();
context.stroke();
context.fillStyle = "black";
context.fill();
};
}
Given the code
var canvas = document.getElementById('canvas'); // canvas element
var context = canvas.getContext("2d");
context.lineWidth = 1;
context.strokeStyle = "black";
var radius = 20; // vertex radius
var u = {
x: 50,
y: 80
};
var v = {
x: 150,
y: 200
};
var e = new Edge(u, v);
e.draw();
The draw() function will draw an edge between two vertices like this:
If we add the code
var k = new Edge(v, u);
k.draw();
We will get:
but I want to draw edges both directions as following:
(sorry for my bad paint skills)
Of course the vertices and the edge directions are not fixed.
A working example (with drawing vertex fucntion) on JSFiddle:
https://jsfiddle.net/Romansko/0fu01oec/18/
Aligning axis to a line.
It can make everything a little easier if you rotate the rendering to align with the line. Once you do that it is then easy to draw above or below the line as that is just in the y direction and along the line is the x direction.
Thus if you have a line
const line = {
p1 : { x : ? , y : ? },
p2 : { x : ? , y : ? },
};
Convert it to a vector and normalise that vector
// as vector from p1 to p2
var nx = line.p2.x - line.p1.x;
var ny = line.p2.y - line.p1.y;
// then get length
const len = Math.sqrt(nx * nx + ny * ny);
// use the length to normalise the vector
nx /= len;
ny /= len;
The normalised vector represents the new x axis we want to render along, and the y axis is at 90 deg to that. We can use setTransform to set both axis and the origin (0,0) point at the start of the line.
ctx.setTransform(
nx, ny, // the x axis
-ny, nx, // the y axis at 90 deg to the x axis
line.p1.x, line.p1.y // the origin (0,0)
)
Now rendering the line and arrow heads is easy as they are axis aligned
ctx.beginPath();
ctx.lineTo(0,0); // start of line
ctx.lineTo(len,0); // end of line
ctx.stroke();
// add the arrow head
ctx.beginPath();
ctx.lineTo(len,0); // tip of arrow
ctx.lineTo(len - 10, 10);
ctx.lineTo(len - 10, -10);
ctx.fill();
To render two lines offset from the center
var offset = 10;
ctx.beginPath();
ctx.lineTo(0,offset); // start of line
ctx.lineTo(len,offset); // end of line
ctx.moveTo(0,-offset); // start of second line
ctx.lineTo(len,-offset); // end of second line
ctx.stroke();
// add the arrow head
ctx.beginPath();
ctx.lineTo(len,offset); // tip of arrow
ctx.lineTo(len - 10, offset+10);
ctx.lineTo(len - 10, offset-10);
ctx.fill();
offset = -10;
// add second arrow head
ctx.beginPath();
ctx.lineTo(0,offset); // tip of arrow
ctx.lineTo(10, offset+10);
ctx.lineTo(10, offset-10);
ctx.fill();
And you can reset the transform with
ctx.setTransform(1,0,0,1,0,0); // restore default transform

Canvas perpendicular points to line

I'm using Konva library to draw some stuff on HTML5 canvas.
I have given 2 points from user interaction by mouse click:
var A={x:'',y:''};
var B={x:'',y:''};
1) How to draw line line this?
My question is:
1) How to get perpendicular lines on each interval?
2) How to get distance from A to B point?
3) How to get all points on line from A to B?
4) How to get red points?
You have not explained what your line is so I am assuming it is a sin wave (though the image looks like circles stuck together???)
As MBo has given the basics this is just applying it to the wavy line.
// normalize a vector
function normalize(vec){
var length = Math.sqrt(vec.x * vec.x + vec.y * vec.y);
vec.x /= length;
vec.y /= length;
return vec;
}
// creates a wavy line
function wavyLine(start, end, waves, amplitude){
return ({
start,
end,
waves,
amplitude,
update(){
if(this.vec === undefined){
this.vec = {};
this.norm = {};
}
this.vec.x = this.end.x - this.start.x;
this.vec.y = this.end.y - this.start.y;
this.length = Math.sqrt(this.vec.x * this.vec.x + this.vec.y * this.vec.y);
this.norm.x = this.vec.x / this.length;
this.norm.y = this.vec.y / this.length;
return this;
}
}).update();
}
// draws a wavy line
function drawWavyLine(line) {
var x, stepSize, i, y, phase, dist;
ctx.beginPath();
stepSize = ctx.lineWidth;
ctx.moveTo(line.start.x, line.start.y);
for (i = stepSize; i < line.length; i+= stepSize) {
x = line.start.x + line.norm.x * i; // get point i pixels from start
y = line.start.y + line.norm.y * i; // get point i pixels from start
phase = (i / (line.length / line.waves)) * Math.PI * 2; // get the wave phase at this point
dist = Math.sin(phase) * line.amplitude; // get the distance from the line to the point on the wavy curve
x -= line.norm.y * dist;
y += line.norm.x * dist;
ctx.lineTo(x, y);
}
phase = line.waves * Math.PI * 2; // get the wave phase at this point
dist = Math.sin(phase) * line.amplitude; // get the distance from the line to the point on the wavy curve
ctx.lineTo(line.end.x - line.norm.y * dist, line.end.y + line.norm.x * dist);
ctx.stroke();
}
// find the closest point on a wavy line to a point returns the pos on the wave, tangent and point on the linear line
function closestPointOnLine(point,line){
var x = point.x - line.start.x;
var y = point.y - line.start.y;
// get the amount the line vec needs to be scaled so tat point is perpendicular to the line
var l = (line.vec.x * x + line.vec.y * y) / (line.length * line.length);
x = line.vec.x * l; // scale the vec
y = line.vec.y * l;
return pointAtDistance(Math.sqrt(x * x + y * y), line);
}
// find the point at (linear) distance along wavy line and return coordinate, coordinate on wave, and tangent
function pointAtDistance(distance,line){
var lenScale = line.length / line.waves; // scales the length into radians
var phase = distance * Math.PI * 2 / lenScale; // get the wave phase at this point
var dist = Math.sin(phase) * line.amplitude; // get the distance from the line to the point on the wavy curve
var slope = Math.cos(phase ) * Math.PI * 2 * line.amplitude / lenScale; // derivitive of sin(a*x) is -a*cos(a*x)
// transform tangent (slope) into a vector along the line. This vector is not a unit vector so normalize it
var tangent = normalize({
x : line.norm.x - line.norm.y * slope,
y : line.norm.y + line.norm.x * slope
});
// move from the line start to the point on the linear line at distance
var linear = {
x : line.start.x + line.norm.x * distance,
y : line.start.y + line.norm.y * distance
}
// move out perpendicular to the wavy part
return {
x : linear.x - line.norm.y * dist,
y : linear.y + line.norm.x * dist,
tangent,linear
};
}
// create a wavy line
var wLine = wavyLine({x:10,y:100},{x:300,y:100},3,50);
// draw the wavy line and show some points on it
function display(timer){
globalTime = timer;
ctx.setTransform(1,0,0,1,0,0); // reset transform
ctx.globalAlpha = 1; // reset alpha
ctx.clearRect(0,0,w,h);
var radius = Math.max(ch,cw);
// set up the wavy line
wLine.waves = Math.sin(timer / 10000) * 6;
wLine.start.x = Math.cos(timer / 50000) * radius + cw;
wLine.start.y = Math.sin(timer / 50000) * radius + ch;
wLine.end.x = -Math.cos(timer / 50000) * radius + cw;
wLine.end.y = -Math.sin(timer / 50000) * radius + ch ;
wLine.update();
// draw the linear line
ctx.lineWidth = 0.5;
ctx.strokeStyle = "blue";
ctx.beginPath();
ctx.moveTo(wLine.start.x, wLine.start.y);
ctx.lineTo(wLine.end.x, wLine.end.y);
ctx.stroke();
// draw the wavy line
ctx.lineWidth = 2;
ctx.strokeStyle = "black";
drawWavyLine(wLine);
// find point nearest mouse
var p = closestPointOnLine(mouse,wLine);
ctx.lineWidth = 1;
ctx.strokeStyle = "red";
ctx.beginPath();
ctx.arc(p.x,p.y,5,0,Math.PI * 2);
ctx.moveTo(p.x + p.tangent.x * 20,p.y + p.tangent.y * 20);
ctx.lineTo(p.x - p.tangent.y * 10,p.y + p.tangent.x * 10);
ctx.lineTo(p.x + p.tangent.y * 10,p.y - p.tangent.x * 10);
ctx.closePath();
ctx.stroke();
// find points at equal distance along line
ctx.lineWidth = 1;
ctx.strokeStyle = "blue";
ctx.beginPath();
for(var i = 0; i < w; i += w / 10){
var p = pointAtDistance(i,wLine);
ctx.moveTo(p.x + 5,p.y);
ctx.arc(p.x,p.y,5,0,Math.PI * 2);
ctx.moveTo(p.x,p.y);
ctx.lineTo(p.linear.x,p.linear.y);
ctx.moveTo(p.x + p.tangent.x * 40, p.y + p.tangent.y * 40);
ctx.lineTo(p.x - p.tangent.x * 40, p.y - p.tangent.y * 40);
}
ctx.stroke();
}
/******************************************************************************
The code from here down is generic full page mouse and canvas boiler plate
code. As I do many examples which all require the same mouse and canvas
functionality I have created this code to keep a consistent interface. The
Code may or may not be part of the answer.
This code may or may not have ES6 only sections so will require a transpiler
such as babel.js to run on legacy browsers.
*****************************************************************************/
// V2.0 ES6 version for Stackoverflow and Groover QuickRun
var w, h, cw, ch, canvas, ctx, mouse, globalTime = 0;
// You can declare onResize (Note the capital R) as a callback that is also
// called once at start up. Warning on first call canvas may not be at full
// size.
;(function(){
const RESIZE_DEBOUNCE_TIME = 100;
var resizeTimeoutHandle;
var firstRun = true;
function createCanvas () {
var c,cs;
cs = (c = document.createElement("canvas")).style;
cs.position = "absolute";
cs.top = cs.left = "0px";
cs.zIndex = 1000;
document.body.appendChild(c);
return c;
}
function resizeCanvas () {
if (canvas === undefined) { canvas = createCanvas() }
canvas.width = innerWidth;
canvas.height = innerHeight;
ctx = canvas.getContext("2d");
if (typeof setGlobals === "function") { setGlobals() }
if (typeof onResize === "function") {
clearTimeout(resizeTimeoutHandle);
if (firstRun) { onResize() }
else { resizeTimeoutHandle = setTimeout(onResize, RESIZE_DEBOUNCE_TIME) }
firstRun = false;
}
}
function setGlobals () {
cw = (w = canvas.width) / 2;
ch = (h = canvas.height) / 2;
}
mouse = (function () {
var m; // alias for mouse
var mouse = {
x : 0, y : 0, // mouse position and wheel
buttonRaw : 0,
buttonOnMasks : [0b1, 0b10, 0b100], // mouse button on masks
buttonOffMasks : [0b110, 0b101, 0b011], // mouse button off masks
bounds : null,
eventNames : "mousemove,mousedown,mouseup".split(","),
event(e) {
var t = e.type;
m.bounds = m.element.getBoundingClientRect();
m.x = e.pageX - m.bounds.left - scrollX;
m.y = e.pageY - m.bounds.top - scrollY;
if (t === "mousedown") { m.buttonRaw |= m.buttonOnMasks[e.which - 1] }
else if (t === "mouseup") { m.buttonRaw &= m.buttonOffMasks[e.which - 1] }
},
start(element) {
m.element = element === undefined ? document : element;
m.eventNames.forEach(name => document.addEventListener(name, mouse.event) );
},
}
m = mouse;
return mouse;
})();
function update(timer) { // Main update loop
globalTime = timer;
display(timer); // call demo code
requestAnimationFrame(update);
}
setTimeout(function(){
canvas = createCanvas();
mouse.start(canvas);
resizeCanvas();
window.addEventListener("resize", resizeCanvas);
requestAnimationFrame(update);
},0);
})();
We have points A and B. Difference vector
D.X = B.X - A.X
D.Y = B.Y - A.Y
Length = Sqrt(D.X * D.X + D.Y * D.Y)
normalized (unit) vector
uD.X = D.X / Length
uD.Y = D.Y / Length
perpendicular unit vector
P.X = - uD.Y
P.Y = uD.X
some red point:
R.X = A.X + uD.X * Dist + P.X * SideDist * SideSign
R.Y = A.Y + uD.Y * Dist + P.Y * SideDist * SideSign
where Dist is in range 0..Length
Dist = i / N * Length for N equidistant points
SideSign is +/- 1 for left and right side

How to get bezier curve size in HTML5 canvas with cp2 point?

I want to get the rendered size (width/height) of a bézier curve in HTML5 canvas
context.bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y);
with this code, for instance
// control points
var cp1x = 200,
cp1y = 150,
cp2x = 260,
cp2y = 10;
var x = 0,
y = 0;
// calculation
var curveWidth = cp1x > x ? cp1x - x : x - cp1x,
curveHeight = cp1y > y ? cp1y - y : y - cp1y;
However, the cp2 point can increase the curve distance (length, size). I.e., suppose cp2 point is the red point in this image and its x coordinate is bigger than cp1's x, which looks to be the end point of the bézier curve:
So, how can I consider the length of cp2 point in curveWidth and in curveHeight to be exact?
To get extent of a quadratic bezier
The points
var x1 = ? // start
var y1 = ?
var x2 = ? // control
var y2 = ?
var x3 = ? // end
var y3 = ?
The extent
extent = {
minx : null,
miny : null,
maxx : null,
maxy : null,
}
The Math.
These equation apply for the x and y axis (thus two equations)
For quadratic bezier
F(u) = a(1-u)^2+2b(1-u)u+cu^2
which is more familiar in the form of a quadratic equation
Ax^2 + Bx + C = 0
so the bezier rearranged
F(u) = (a-2b+c)u^2+2(-a+b)u+a
We need the derivative so that becomes
2(a-2b+c)u-2a+2b
simplify divide common factor 2 to give
(a-2b+c)u + b - a = 0
separate out u
b-a = (a-2b + c)u
(b-a) / (a - 2b + c) = u
Then algorithm optimised for the fact the (b-a) part of (a-2b-c)
function solveB2(a,b,c){
var ba = b-a;
return ba / (ba - (c-b)); // the position on the curve of the maxima
}
var ux = solveB2(x1,x2,x3);
var uy = solveB2(y1,y2,y3);
These two values are positions along the curve so we now just have to find the coordinates of these two points. We need a function that finds a point on a quadratic bezier
function findPoint(u,x1,y1,x2,y2,x3,y3){ // returns array with x, and y at u
var xx1 = x1 + (x2 - x1) * u;
var yy1 = y1 + (y2 - y1) * u;
var xx2 = x2 + (x3 - x2) * u;
var yy2 = y2 + (y3 - y2) * u;
return [
xx1 + (xx2 - xx1) * u,
yy1 + (yy2 - yy1) * u
]
}
First check that they are on the curve and find the point at ux,uy
if(ux >= 0 && ux <= 1){
var px = findPoint(ux,x1,y1,x2,y2,x3,y3);
}
if(uy >= 0 && uy <= 1){
var py = findPoint(uy,x1,y1,x2,y2,x3,y3);
}
Now test against the extent
extent.minx = Math.min(x1,x3,px[0],py[0]);
extent.miny = Math.min(y1,y3,px[1],py[1]);
extent.maxx = Math.max(x1,x3,px[0],py[0]);
extent.maxy = Math.max(y1,y3,px[1],py[1]);
And you are done
extent has the coordinates of the box around the bezier. Top left (min) and bottom right (max)
You can also get the minimum bounding box if you rotate the bezier so that the start and end points fall on the x axis. Then do the above and the resulting rectangle is the minimum sized rectangle that can be placed around the bezier.
Cubics are much the same but just a lot more typing.
And a demo, just to make sure I got it all correct.
var canvas = document.createElement("canvas");
canvas.width = 800;
canvas.height = 400;
var ctx = canvas.getContext("2d");
document.body.appendChild(canvas);
var x1,y1,x2,y2,x3,y3;
var ux,uy,px,py;
var extent = {
minx : null,
miny : null,
maxx : null,
maxy : null,
}
function solveB2(a,b,c){
var ba = b-a;
return ba / (ba - (c-b)); // the position on the curve of the maxima
}
function findPoint(u,x1,y1,x2,y2,x3,y3){ // returns array with x, and y at u
var xx1 = x1 + (x2 - x1) * u;
var yy1 = y1 + (y2 - y1) * u;
var xx2 = x2 + (x3 - x2) * u;
var yy2 = y2 + (y3 - y2) * u;
return [
xx1 + (xx2 - xx1) * u,
yy1 + (yy2 - yy1) * u
]
}
function update(time){
ctx.clearRect(0,0,800,400);
// create random bezier
x1 = Math.cos(time / 1000) * 300 + 400;
y1 = Math.sin(time / 2100) * 150 + 200;
x2 = Math.cos((time + 3000) / 1200) * 300 + 400;
y2 = Math.sin(time / 2300) * 150 + 200;
x3 = Math.cos(time / 1400) * 300 + 400;
y3 = Math.sin(time / 2500) * 150 + 200;
// solve for bounds
var ux = solveB2(x1,x2,x3);
var uy = solveB2(y1,y2,y3);
if(ux >= 0 && ux <= 1){
px = findPoint(ux,x1,y1,x2,y2,x3,y3);
}else{
px = [x1,y1]; // a bit of a cheat but saves having to put in extra conditions
}
if(uy >= 0 && uy <= 1){
py = findPoint(uy,x1,y1,x2,y2,x3,y3);
}else{
py = [x3,y3]; // a bit of a cheat but saves having to put in extra conditions
}
extent.minx = Math.min(x1,x3,px[0],py[0]);
extent.miny = Math.min(y1,y3,px[1],py[1]);
extent.maxx = Math.max(x1,x3,px[0],py[0]);
extent.maxy = Math.max(y1,y3,px[1],py[1]);
// draw the rectangle
ctx.strokeStyle = "red";
ctx.lineWidth = 2;
ctx.strokeRect(extent.minx,extent.miny,extent.maxx-extent.minx,extent.maxy-extent.miny);
ctx.fillStyle = "rgba(255,200,0,0.2)";
ctx.fillRect(extent.minx,extent.miny,extent.maxx-extent.minx,extent.maxy-extent.miny);
// show points
ctx.fillStyle = "blue";
ctx.fillRect(x1-3,y1-3,6,6);
ctx.fillRect(x3-3,y3-3,6,6);
ctx.fillStyle = "black";
ctx.fillRect(px[0]-4,px[1]-4,8,8);
ctx.fillRect(py[0]-4,py[1]-4,8,8);
ctx.lineWidth = 3;
ctx.strokeStyle = "black";
ctx.beginPath();
ctx.moveTo(x1,y1);
ctx.quadraticCurveTo(x2,y2,x3,y3);
ctx.stroke();
// control point
ctx.lineWidth = 1;
ctx.strokeStyle = "#0a0";
ctx.strokeRect(x2-3,y2-3,6,6);
ctx.beginPath();
ctx.moveTo(x1,y1);
ctx.lineTo(x2,y2);
ctx.lineTo(x3,y3);
ctx.stroke();
// do it all again
requestAnimationFrame(update);
}
requestAnimationFrame(update);
UPDATE
While musing over the bezier I realised that I could remove a lot of code if I assumed that the bezier was normalised (the end points start at (0,0) and end at (1,1)) because the zeros can be removed and the ones simplified.
While changing the code I also realized that I had needlessly calculated the x and y for both the x and y extent coordinates. Giving 4 values while I only need 2.
The resulting code is much simpler. I remove the function solveB2 and findPoint as the calculations seam too trivial to bother with functions.
To find the x and y maxima from quadratic bezier defined with x1, y1, x2, y2, x3, y3
// solve quadratic for bounds by normalizing equation
var brx = x3 - x1; // get x range
var bx = x2 - x1; // get x control point offset
var x = bx / brx; // normalise control point which is used to check if maxima is in range
// do the same for the y points
var bry = y3 - y1;
var by = y2 - y1
var y = by / bry;
var px = [x1,y1]; // set defaults in case maximas outside range
if(x < 0 || x > 1){ // check if x maxima is on the curve
px[0] = bx * bx / (2 * bx - brx) + x1; // get the x maxima
}
if(y < 0 || y > 1){ // same as x
px[1] = by * by / (2 * by - bry) + y1;
}
// now only need to check the x and y maxima not the coordinates of the maxima
extent.minx = Math.min(x1,x3,px[0]);
extent.miny = Math.min(y1,y3,px[1]);
extent.maxx = Math.max(x1,x3,px[0]);
extent.maxy = Math.max(y1,y3,px[1]);
And the example code which has far better performance but unlike the previous demo this version does not calculate the actual coordinates of the x and y maximas.
var canvas = document.createElement("canvas");
canvas.width = 800;
canvas.height = 400;
var ctx = canvas.getContext("2d");
document.body.appendChild(canvas);
var x1,y1,x2,y2,x3,y3;
var ux,uy,px,py;
var extent = {
minx : null,
miny : null,
maxx : null,
maxy : null,
}
function update(time){
ctx.clearRect(0,0,800,400);
// create random bezier
x1 = Math.cos(time / 1000) * 300 + 400;
y1 = Math.sin(time / 2100) * 150 + 200;
x2 = Math.cos((time + 3000) / 1200) * 300 + 400;
y2 = Math.sin(time / 2300) * 150 + 200;
x3 = Math.cos(time / 1400) * 300 + 400;
y3 = Math.sin(time / 2500) * 150 + 200;
// solve quadratic for bounds by normalizing equation
var brx = x3 - x1; // get x range
var bx = x2 - x1; // get x control point offset
var x = bx / brx; // normalise control point which is used to check if maxima is in range
// do the same for the y points
var bry = y3 - y1;
var by = y2 - y1
var y = by / bry;
var px = [x1,y1]; // set defaults in case maximas outside range
if(x < 0 || x > 1){ // check if x maxima is on the curve
px[0] = bx * bx / (2 * bx - brx) + x1; // get the x maxima
}
if(y < 0 || y > 1){ // same as x
px[1] = by * by / (2 * by - bry) + y1;
}
// now only need to check the x and y maxima not the coordinates of the maxima
extent.minx = Math.min(x1,x3,px[0]);
extent.miny = Math.min(y1,y3,px[1]);
extent.maxx = Math.max(x1,x3,px[0]);
extent.maxy = Math.max(y1,y3,px[1]);
// draw the rectangle
ctx.strokeStyle = "red";
ctx.lineWidth = 2;
ctx.strokeRect(extent.minx,extent.miny,extent.maxx-extent.minx,extent.maxy-extent.miny);
ctx.fillStyle = "rgba(255,200,0,0.2)";
ctx.fillRect(extent.minx,extent.miny,extent.maxx-extent.minx,extent.maxy-extent.miny);
// show points
ctx.fillStyle = "blue";
ctx.fillRect(x1-3,y1-3,6,6);
ctx.fillRect(x3-3,y3-3,6,6);
ctx.fillStyle = "black";
ctx.fillRect(px[0]-4,px[1]-4,8,8);
ctx.lineWidth = 3;
ctx.strokeStyle = "black";
ctx.beginPath();
ctx.moveTo(x1,y1);
ctx.quadraticCurveTo(x2,y2,x3,y3);
ctx.stroke();
// control point
ctx.lineWidth = 1;
ctx.strokeStyle = "#0a0";
ctx.strokeRect(x2-3,y2-3,6,6);
ctx.beginPath();
ctx.moveTo(x1,y1);
ctx.lineTo(x2,y2);
ctx.lineTo(x3,y3);
ctx.stroke();
// do it all again
requestAnimationFrame(update);
}
requestAnimationFrame(update);

Categories