I'm figuring out how I could animate a path with arrow marker at end. I'm trying to animate diagonal lines.
You can see a running sample here: http://codepen.io/danieltnaves/pen/ZWryxm
var animationsPaths = new Array();
animationsPaths.push("M 100 10 L 200 110");
animationsPaths.push("M 100 10 L 230 110");
animationsPaths.push("M 250 110 L 300 10");
animationsPaths.push("M 400 110 L 600 210");
animationsPaths.push("M 700 210 L 800 10");
animationsPaths.push("M 700 210 L 850 110");
var paper = Snap("#paper");
function animatePaths() {
if (animationsPaths.length == 0) return;
var line2 = paper.path(animationsPaths[0]);
var lengthLine2 = line2.getTotalLength();
console.log(animationsPaths);
animationsPaths.shift();
var Triangle = paper.polyline("0,10 5,0 10,10");
Triangle.attr({
fill: "#000"
});
var triangleGroup = paper.g( Triangle ); // Group polyline
Snap.animate(0, lengthLine2 - 1, function( value ) {
movePoint = line2.getPointAtLength( value );
triangleGroup.transform( 't' + parseInt(movePoint.x - 15) + ',' + parseInt(movePoint.y - 15) + 'r' + (movePoint.alpha - 90));
}, 500,mina.easeinout);
line2.attr({
stroke: '#000',
strokeWidth: 2,
fill: 'none',
// Draw Path
"stroke-dasharray": lengthLine2 + " " + lengthLine2,
"stroke-dashoffset": lengthLine2
}).animate({"stroke-dashoffset": 20}, 500, mina.easeinout, animatePaths.bind( this ));
}
animatePaths();
Thanks!
I'd start with centering your triangle, then things get easier...
var Triangle = paper.polyline("-5,5 0,-5 5,5");
http://codepen.io/anon/pen/PNQXbQ
Related
I know there are charting libraries out there but I wanted my hand at creating my own custom one.
I found some work from another person where he creates a pie chart from an array in javascript, except his is based off percentages.
I've been trying to rework it so that it:
Takes your value from array
Divide by total in array
Use that percentage as area
As you can see when you run the below, it doesn't make a full circle based off the data unless you have the percentages pre-calculated.
My aim would be to replace all the percent: x with value: y so you could use the raw values:
const slices = [
{ value: 1024 },
{ value: 5684 },
{ value: 125 },
];
let sum = slices.reduce(function (a, b) {
return a + b.value
}, 0);
Then in the loop, you'd be able to use slice.value / sum for the percentage of the pie. Only it doesn't seem to be working as the original percentage values.
// variables
const svgEl = document.querySelector('svg');
const slices = [
{ percent: 0.1, color: 'red' },
{ percent: 0.1, color: 'blue' },
{ percent: 0.1, color: 'green' },
];
let cumulativePercent = 0;
// coordinates
function getCoordinatesForPercent(percent) {
const x = Math.cos(2 * Math.PI * percent);
const y = Math.sin(2 * Math.PI * percent);
return [x, y];
}
// loop
slices.forEach(slice => {
// destructuring assignment sets the two variables at once
const [startX, startY] = getCoordinatesForPercent(cumulativePercent);
// each slice starts where the last slice ended, so keep a cumulative percent
cumulativePercent += slice.percent;
const [endX, endY] = getCoordinatesForPercent(cumulativePercent);
// if the slice is more than 50%, take the large arc (the long way around)
const largeArcFlag = slice.percent > 0.5 ? 1 : 0;
// create an array and join it just for code readability
const pathData = [
`M ${startX} ${startY}`, // Move
`A 1 1 0 ${largeArcFlag} 1 ${endX} ${endY}`, // Arc
`L 0 0`, // Line
].join(' ');
// create a <path> and append it to the <svg> element
const pathEl = document.createElementNS('http://www.w3.org/2000/svg', 'path');
pathEl.setAttribute('d', pathData);
pathEl.setAttribute('fill', slice.color);
svgEl.appendChild(pathEl);
});
svg {
height: 200px;
}
<svg viewBox="-1 -1 2 2" style="transform: rotate(-90deg);fill:black;"></svg>
You don't have to calculate any percentage (unless you want the percentage value)
Let SVG do the work with pathLength
With slice values: blue:10 , gold:20 , red:30 that makes: pathLength="60"
and you only have to calculate the stroke-dasharray gap (second value = 60 - value)
and stroke-dashoffset accumulative value : 10 , 30 , 60
More advanced use in: https://pie-meister.github.io
<style>
svg {
width:180px;
}
</style>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100">
<path stroke-dasharray="10 50" stroke-dashoffset="10" stroke="blue"
pathLength="60"
stroke-width="50" d="M75 50a1 1 90 10-50 0a1 1 90 10 50 0" fill="none"></path>
<path stroke-dasharray="20 40" stroke-dashoffset="30" stroke="gold"
pathLength="60"
stroke-width="50" d="M75 50a1 1 90 10-50 0a1 1 90 10 50 0" fill="none"></path>
<path stroke-dasharray="30 30" stroke-dashoffset="60" stroke="red"
pathLength="60"
stroke-width="50" d="M75 50a1 1 90 10-50 0a1 1 90 10 50 0" fill="none"></path>
</svg>
const slices = [{color: 'red', value: 10}, {color: 'blue', value: 20}, {color: 'green', value: 30}];
const valueSum = slices.reduce((sum, slice) => sum + slice.value, 0);
const pctSlices = slices.map(slice => ({...slice, percent: slice.value / valueSum}));
The pctSlices array will contain percent value for each slice
I'm currently trying to generate a SVG path representing a sine wave that fit the width of the webpage.
The algorithm I'm currently using is drawing small line to between two point which is drawing the sine wave.
The algorithm :
for(var i = 0; i < options.w; i++) {
var operator = ' M ';
d += operator + ((i - 1) * rarity + origin.x) + ', ';
d += (Math.sin(freq * (i - 1 + phase)) * amplitude + origin.y);
if(operator !== ' L ') { operator = ' L '; }
d += ' L ' + (i * rarity + origin.x) + ', ';
d += (Math.sin(freq * (i + phase)) * amplitude + origin.y);
}
Which generates a path for the svg :
M 9, 82.66854866662797 L 10, 102.5192336707523
M 10, 102.5192336707523 L 11, 121.18508371540987
M 11, 121.18508371540987 L 12, 129.88725786264592
M 12, 129.88725786264592 L 13, 124.53298763579338
M 13, 124.53298763579338 L 14, 107.64046998532105
M 14, 107.64046998532105 L 15, 87.15451991511547
M 15, 87.15451991511547 L 16, 72.70999984499424
M 16, 72.70999984499424 L 17, 71.10039326578718
M 17, 71.10039326578718 L 18, 83.08272330249196
M 18, 83.08272330249196 L 19, 103.02151290977501
The thing is, at the end of the sinus I wanted to draw a line to close the rest of the path (with the Z)
Sorry for my drawing skills ! :D
The reason for closing the path and having a path linked is to be able to fill this path with a background or a gradient
I found that I could represent the sine waves in a single path where it's linked
M0 50 C 40 10, 60 10, 100 50 C 140 90, 160 90, 200 50 Z
Which looks like this :
But the thing is the algorithm I'm using lets me play with the sine function so that I could animate this waves (which is something I need) and I dont see how to animate the representation of the sine waves.
So to sum up, either you can help me find a way to link all the lines drawed by the actual algorithm ? or a way to animate the other representation to draw a waves without caring about the sinus.
Thanks in advance for your help !
You can animate the sine wave by just making the path the width of two wavelengths and then moving it left or right.
<svg width="200" height="100" viewBox="0 0 200 100">
<defs>
<path id="double-wave"
d="M0 50
C 40 10, 60 10, 100 50 C 140 90, 160 90, 200 50
C 240 10, 260 10, 300 50 C 340 90, 360 90, 400 50
L 400 100 L 0 100 Z" />
</defs>
<use xlink:href="#double-wave" x="0" y="0">
<animate attributeName="x" from="0" to="-200" dur="3s"
repeatCount="indefinite"/>
</use>
</svg>
I'm animating the x attribute of a <use> here because IMO it is more obvious what is going on.
What we are doing is animating the position that our two-wavelength path is rendered. Once it has moved one wavelength of distance, it jumps back to it's original position and repeats. The effect is seamless because the two waveshapes are identical. And the rest of the wave is off the edge of the SVG.
If you want to see what's going on behaind the scenes, we can make the SVG wider so you can see what's going on off to the left and right of the original SVG.
<svg width="400" height="100" viewBox="-200 0 600 100">
<defs>
<path id="double-wave"
d="M0 50
C 40 10, 60 10, 100 50 C 140 90, 160 90, 200 50
C 240 10, 260 10, 300 50 C 340 90, 360 90, 400 50
L 400 100 L 0 100 Z" />
</defs>
<use xlink:href="#double-wave" x="0" y="0">
<animate attributeName="x" from="0" to="-200" dur="3s"
repeatCount="indefinite"/>
</use>
<rect width="200" height="100" fill="none" stroke="red" stroke-width="2"/>
</svg>
Below is an example of sine wave across the width of the svg. It creates a polyline via a parametric equation. Animation can be had by adjusting the amplitude and/or phase angle.
Edit - added animation to phase angle.
<!DOCTYPE HTML>
<html>
<head>
<title>Sine Wave</title>
</head>
<body onload=amplitudeSelected() >
<div style=background:gainsboro;width:400px;height:400px;>
<svg id="mySVG" width="400" height="400">
<polyline id="sineWave" stroke="black" stroke-width="3" fill="blue" ></polyline>
</svg>
</div>
Amplitide:<select id="amplitudeSelect" onChange=amplitudeSelected() >
<option selected>10</option>
<option>20</option>
<option>30</option>
<option>40</option>
<option>50</option>
<option>60</option>
<option>70</option>
<option>80</option>
<option>90</option>
<option>100</option>
</select>
<button onClick=animatePhaseAngle();this.disabled=true >Animate Phase Angle</button>
<script>
//---onload & select---
function amplitudeSelected()
{
var startPoint=[0,400]
var endPoint=[400,400]
var originX=0
var originY=200
var width=400
var amplitude=+amplitudeSelect.options[amplitudeSelect.selectedIndex].text
var pointSpacing=1
var angularFrequency=.02
var phaseAngle=0
var origin = { //origin of axes
x: originX,
y: originY
}
var points=[]
points.push(startPoint)
var x,y
for (var i = 0; i < width/pointSpacing; i++)
{
x= i * pointSpacing + origin.x
y= Math.sin(angularFrequency*(i + phaseAngle)) * amplitude + origin.y
points.push([x,y])
}
points.push(endPoint)
sineWave.setAttribute("points",points.join(" "))
}
//---buton---
function animatePhaseAngle()
{
setInterval(animate,20)
var seg=.5
var cntr=0
var cntrAmp=0
var startPoint=[0,400]
var endPoint=[400,400]
var originX=0
var originY=200
var origin = { //origin of axes
x: originX,
y: originY
}
var width=400
var pointSpacing=1
var angularFrequency=.02
setInterval(animate,10)
function animate()
{
phaseAngle=seg*cntr++
var amplitude=+amplitudeSelect.options[amplitudeSelect.selectedIndex].text
var points=[]
points.push(startPoint)
var x,y
for (var i = 0; i < width/pointSpacing; i++)
{
x= i * pointSpacing + origin.x
y= Math.sin(angularFrequency*(i + phaseAngle)) * amplitude + origin.y
points.push([x,y])
}
points.push(endPoint)
sineWave.setAttribute("points",points.join(" "))
}
}
</script>
</body>
</html>
SVG path element for example:
<path id="path1"
d="M 160 180 C 60 140 230 20 200 170 C 290 120 270 300 200 240 C 160 390 50 240 233 196"
stroke="#009900" stroke-width="4" fill="none"/>
It has 4 svg segments (3 curve segments in human eyes):
M 160 180
C 60 140 230 20 200 170
C 290 120 270 300 200 240
C 160 390 50 240 233 196
when click on the path, I get the x and y of mouse position, then how to detect which curve segment is clicked?
function isInWhichSegment(pathElement,x,y){
//var segs = pathElement.pathSegList; //all segments
//
//return the index of which segment is clicked
//
}
There are a few methods for SVGPathElements that you can use. Not really straighforward, but you could get the total length of your path, then check at every point of length the coordinates with getPointAtLength and compare it with coordinates of the click. Once you figure the click was at which length, you get the segment at that length with getPathSegAtLength. like that for example:
var pathElement = document.getElementById('path1')
var len = pathElement.getTotalLength();
pathElement.onclick = function(e) {
console.log('The index of the clicked segment is', isInWhichSegment(pathElement, e.offsetX, e.offsetY))
}
function isInWhichSegment(pathElement, x, y) {
var seg;
// You get get the coordinates at the length of the path, so you
// check at all length point to see if it matches
// the coordinates of the click
for (var i = 0; i < len; i++) {
var pt = pathElement.getPointAtLength(i);
// you need to take into account the stroke width, hence the +- 2
if ((pt.x < (x + 2) && pt.x > (x - 2)) && (pt.y > (y - 2) && pt.y < (y + 2))) {
seg = pathElement.getPathSegAtLength(i);
break;
}
}
return seg;
}
<svg>
<path id="path1" d="M10 80 C 40 10, 65 10, 95 80 S 150 150, 180 80" stroke="#009900" stroke-width="4" fill="none" />
</svg>
Take a typical cubic bezier curve drawn in JavaScript (this example I googled...)
http://jsfiddle.net/atsanche/K38kM/
Specifically, these two lines:
context.moveTo(188, 130);
context.bezierCurveTo(170, 10, 350, 10, 388, 170);
We have a cubic bezier which starts at 188, 130, ends at 388, 170, and has controls points a:170, 10 and b:350, 10
My question is would it be possible to mathematically adjust the end point and control points to make another curve which is only a segment of the original curve?
The ideal result would be able to able to take a percentage slice of the bezier from the beginning, where 0.5 would draw only half of the bezier, 0.75 would draw most of the bezier (and so on)
I've already gotten working a few implementations of De Castelau which allow me to trace the contour of the bezier between [0...1], but this doesn't provide a way to mathematically recalculate the end and control points of the bezier to make a sub-bezier...
Thanks in advance
De Casteljau is indeed the algorithm to go. For a cubic Bezier curve defined by 4 control points P0, P1, P2 and P3, the control points of the sub-Bezier curve (0, u) are P0, Q0, R0 and S0 and the control points of the sub-Bezier curve (u, 1) are S0, R1, Q2 and P3, where
Q0 = (1-u)*P0 + u*P1
Q1 = (1-u)*P1 + u*P2
Q2 = (1-u)*P2 + u*P3
R0 = (1-u)*Q0 + u*Q1
R1 = (1-u)*Q1 + u*Q2
S0 = (1-u)*R0 + u*R1
Please note that if you want to "extract" a segment (u1, u2) from the original Bezier curve, you will have to apply De Casteljau twice. The first time will split the input Bezier curve C(t) into C1(t) and C2(t) at parameter u1 and the 2nd time you will have to split the curve C2(t) at an adjusted parameter u2* = (u2-u1)/(1-u1).
This is how to do it. You can get the left half or right half with this functin. This function is take thanks to mark from here: https://stackoverflow.com/a/23452618/1828637
I have it modified so it can be fit to a unit cell so we can use it for cubic-bezier in css transitions.
function splitCubicBezier(options) {
var z = options.z,
cz = z-1,
z2 = z*z,
cz2 = cz*cz,
z3 = z2*z,
cz3 = cz2*cz,
x = options.x,
y = options.y;
var left = [
x[0],
y[0],
z*x[1] - cz*x[0],
z*y[1] - cz*y[0],
z2*x[2] - 2*z*cz*x[1] + cz2*x[0],
z2*y[2] - 2*z*cz*y[1] + cz2*y[0],
z3*x[3] - 3*z2*cz*x[2] + 3*z*cz2*x[1] - cz3*x[0],
z3*y[3] - 3*z2*cz*y[2] + 3*z*cz2*y[1] - cz3*y[0]];
var right = [
z3*x[3] - 3*z2*cz*x[2] + 3*z*cz2*x[1] - cz3*x[0],
z3*y[3] - 3*z2*cz*y[2] + 3*z*cz2*y[1] - cz3*y[0],
z2*x[3] - 2*z*cz*x[2] + cz2*x[1],
z2*y[3] - 2*z*cz*y[2] + cz2*y[1],
z*x[3] - cz*x[2],
z*y[3] - cz*y[2],
x[3],
y[3]];
if (options.fitUnitSquare) {
return {
left: left.map(function(el, i) {
if (i % 2 == 0) {
//return el * (1 / left[6])
var Xmin = left[0];
var Xmax = left[6]; //should be 1
var Sx = 1 / (Xmax - Xmin);
return (el - Xmin) * Sx;
} else {
//return el * (1 / left[7])
var Ymin = left[1];
var Ymax = left[7]; //should be 1
var Sy = 1 / (Ymax - Ymin);
return (el - Ymin) * Sy;
}
}),
right: right.map(function(el, i) {
if (i % 2 == 0) {
//xval
var Xmin = right[0]; //should be 0
var Xmax = right[6];
var Sx = 1 / (Xmax - Xmin);
return (el - Xmin) * Sx;
} else {
//yval
var Ymin = right[1]; //should be 0
var Ymax = right[7];
var Sy = 1 / (Ymax - Ymin);
return (el - Ymin) * Sy;
}
})
}
} else {
return { left: left, right: right};
}
}
Thats the function and now to use it with your parameters.
var myBezier = {
xs: [188, 170, 350, 388],
ys: [130, 10, 10, 170]
};
var splitRes = splitCubicBezier({
z: .5, //percent
x: myBezier.xs,
y: myBezier.ys,
fitUnitSquare: false
});
This gives you
({
left: [188, 130, 179, 70, 219.5, 40, 267, 45],
right: [267, 45, 314.5, 50, 369, 90, 388, 170]
})
fiddle proving its half, i overlaid it over your original:
http://jsfiddle.net/K38kM/8/
Yes it is! Have a look at the bezier section here
http://en.m.wikipedia.org/wiki/De_Casteljau's_algorithm
It is not that difficult all in all.
I'm trying to do something I thought would be rather simple. I've an object that I move around stepwise, i.e. I receive messages every say 100 milliseconds that tell me "your object has moved x pixels to the right and y pixels down". The code below simulates that by moving that object on a circle, but note that it is not known in advance where the object will be heading in the next step.
Anyway, that is pretty simple. But now I want to also tell the object, which is actually a set of subobjects, that it is being rotated.
Unfortunately, I am having trouble getting Raphaël to do what I want. I believe the reason is that while I can animate both translation and rotation independently, I have to set the center of the rotation when it starts. Obviously the center of the rotation changes as the object is moving.
Here's the code I'm using and you can view a live demo here. As you can see, the square rotates as expected, but the arrow rotates incorrectly.
// c&p this into http://raphaeljs.com/playground.html
var WORLD_SIZE = 400,
rect = paper.rect(WORLD_SIZE / 2 - 20, 0, 40, 40, 5).attr({ fill: 'red' }),
pointer = paper.path("M 200 20 L 200 50"),
debug = paper.text(25, 10, ""),
obj = paper.set();
obj.push(rect, pointer);
var t = 0,
step = 0.05;
setInterval(function () {
var deg = Math.round(Raphael.deg(t));
t += step;
debug.attr({ text: deg + '°' });
var dx = ((WORLD_SIZE - 40) / 2) * (Math.sin(t - step) - Math.sin(t)),
dy = ((WORLD_SIZE - 40) / 2) * (Math.cos(t - step) - Math.cos(t));
obj.animate({
translation: dx + ' ' + dy,
rotation: -deg
}, 100);
}, 100);
Any help is appreciated!
If you want do a translation and a rotation too, the raphael obj should be like that
obj.animate({
transform: "t" + [dx , dy] + "r" + (-deg)
}, 100);
Check out http://raphaeljs.com/animation.html
Look at the second animation from the top on the right.
Hope this helps!
Here's the code:
(function () {
var path1 = "M170,90c0-20 40,20 40,0c0-20 -40,20 -40,0z",
path2 = "M270,90c0-20 40,20 40,0c0-20 -40,20 -40,0z";
var t = r.path(path1).attr(dashed);
r.path(path2).attr({fill: "none", stroke: "#666", "stroke-dasharray": "- ", rotation: 90});
var el = r.path(path1).attr({fill: "none", stroke: "#fff", "stroke-width": 2}),
elattrs = [{translation: "100 0", rotation: 90}, {translation: "-100 0", rotation: 0}],
now = 0;
r.arrow(240, 90).node.onclick = function () {
el.animate(elattrs[now++], 1000);
if (now == 2) {
now = 0;
}
}; })();