I've created a custom shader in three.js to allow me to set individual vertices color, size and position.
Color and size work fine but when I update the vertex x,y or z it's not updated on screen.
JSFiddle
What am I missing?
Vertex shaders:
<script type="x-shader/x-vertex" id="vertexshader">
attribute float size;
attribute vec3 color;
varying vec3 vColor;
varying vec2 vUv;
void main()
{
vColor = color;
gl_PointSize = size;
gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
}
</script>
Fragment shader
<script type="x-shader/x-fragment" id="fragmentshader">
uniform sampler2D texture;
varying vec2 vUv;
varying vec3 vColor;
void main()
{
vec4 color = vec4(vColor, 1);
gl_FragColor = color;
}
</script>
JS:
var container = document.getElementById('container');
var camera = new THREE.PerspectiveCamera( 75, window.innerWidth / window.innerHeight, 1, 2000 );
camera.position.z = 100;
var scene = new THREE.Scene();
var vShader = document.getElementById('vertexshader').textContent;
var fShader = document.getElementById('fragmentshader').textContent;
var uniforms = {};
var attributes = {
color: { type: 'c', value: [] },
size: { type: 'f', value: [] }
};
var geometry = new THREE.Geometry();
for ( var i = 0; i < 100; i ++ )
{
var angle = Math.random() * Math.PI * 2;
var radius = 40 + (Math.random() * 5);
var vertex = new THREE.Vector3();
vertex.x = Math.cos(angle) * radius;
vertex.y = Math.sin(angle) * radius;
vertex.z = 0;
attributes.size.value[i] = Math.random() * 10;
attributes.color.value[i] = new THREE.Color( 0xff0000 );
geometry.vertices.push( vertex );
}
var material = new THREE.ShaderMaterial(
{
uniforms: uniforms,
attributes: attributes,
vertexShader: vShader,
fragmentShader: fShader,
transparent: true
});
var particleSystem = new THREE.PointCloud(geometry, material);
scene.add( particleSystem );
renderer = new THREE.WebGLRenderer();
renderer.setPixelRatio( window.devicePixelRatio );
renderer.setSize( window.innerWidth, window.innerHeight );
renderer.setClearColor( 0x292B30, 1 );
container.appendChild( renderer.domElement );
animate();
function animate()
{
requestAnimationFrame( animate );
render();
}
function render()
{
for (var i = geometry.vertices.length - 1; i >= 0; i--)
{
geometry.vertices[i].z = geometry.vertices[i].z - 0.5 ;
}
camera.lookAt( scene.position );
//particleSystem.geometry.__dirtyVertices = true;
renderer.render( scene, camera );
}
When modifying the vertex position, set the verticesNeedUpdate flag:
geometry.verticesNeedUpdate = true;
Updated fiddle: https://jsfiddle.net/1cmg0z2f/2/
Three.js r71, due to changes in ShaderMaterial the fiddle doesnt work with the new version.
I added a comment to the previous accepted answer but just in case here's an updated answer
geometry.attributes[attributeName].needsUpdate = true
eg
geometry.attributes.position.needsUpdate = true
keep in mind that this works for custom / shader attributes that you've added using setAttribute, which is what I was searching for before I found this QA.
Related
I'm working to display geometric figures in 3D, using three.js.
When you draw (by hand) hidden lines as dashed lines, the 'dashes' are regular for all them. This means that a line parallel to the camera plane or a line (nearly) perpendicular to the camera plane should do have the same length and gap.
But this seems to not work with LineDashedMaterial.
For the attached example, I'm using this (very) basic code:
var scene = new THREE.Scene();
var camera = new THREE.PerspectiveCamera( 75, window.innerWidth/window.innerHeight, 0.1, 1000 );
var renderer = new THREE.WebGLRenderer();
renderer.setSize( window.innerWidth, window.innerHeight );
document.body.appendChild( renderer.domElement );
var geometry = new THREE.BoxGeometry( 2, 2, 2 );
var LINES_DASHED = new THREE.LineSegments(
new THREE.EdgesGeometry(geometry),
new THREE.LineDashedMaterial({
linewidth: 2,
color: 0x000000,
dashSize: 0.2,
gapSize: 0.1,
depthTest: false,
polygonOffset: true, polygonOffsetFactor: 1, polygonOffsetUnits: 1
})
);
LINES_DASHED.computeLineDistances();
scene.add( LINES_DASHED );
scene.background = new THREE.Color( 0xffffff);
camera.position.z = 5;
var animate = function () {
requestAnimationFrame( animate );
LINES_DASHED.rotation.x += 0.01;
LINES_DASHED.rotation.y += 0.01;
renderer.render( scene, camera );
};
animate();
body { margin: 0; }
canvas { width: 100%; height: 100% }
<script src="https://threejs.org/build/three.min.js"></script>
Working example:
https://bs4.scolcours.ch/_dev/3js_ex.php
I thougth that using:
line.computeLineDistance();
will solve the problem. But it seems to calculate the line length in 3D space (which seems to be logical).
Is there something I missed ?
Thanks for your help!
That's abroad task. It seems that THREE.LineDashedMaterial does not support this.
But it is possible to write a shader and to use a THREE.ShaderMaterial.
The trick is to know the start of a line in the fragment shader. In general this easy by using a flat interpolation qualifier.
Sadly WebGL 1.0 / GLSL ES 1.00 doesn't support this. So we have to use WebGL 2.0 / GLSL ES 3.00.
In OpenGL ES there exists the extension GL_NV_shader_noperspective_interpolation. Unfortunately there doesn't seem to be a corresponding WebGL extension. (See WebGL Extension Registry)
So lets cerate a THREE.WebGLRenderer with a WebGL2 context. See How to use WebGL2:
var canvas = document.createElement( 'canvas' );
var context = canvas.getContext( 'webgl2' );
var renderer = new THREE.WebGLRenderer( { canvas: canvas, context: context } );
The vertex shader has to pass the normalized device coordinate to the fragment shader. Once with default interpolation and once with no (flat) interpolation. This causes that in the fragment shade the first input parameter contains the NDC coordinate of the actual position on the line and th later the NDC coordinate of the start of the line.
flat out vec3 startPos;
out vec3 vertPos;
void main() {
vec4 pos = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
gl_Position = pos;
vertPos = pos.xyz / pos.w;
startPos = vertPos;
}
Additionally the varying inputs, the fragment shader has uniform variables. u_resolution contains the width and the height of the viewport. u_dashSize contains the length of line and u_gapSize the length of a gap in pixel.
So the length of the line from the start to the actual fragment can be calculated:
vec2 dir = (vertPos.xy-startPos.xy) * u_resolution/2.0;
float dist = length(dir);
And fragment on the gab can be discarded, by the discard command.
if (fract(dist / (u_dashSize + u_gapSize)) > u_dashSize/(u_dashSize + u_gapSize))
discard;
Fragment shader:
precision highp float;
flat in vec3 startPos;
in vec3 vertPos;
uniform vec3 u_color;
uniform vec2 u_resolution;
uniform float u_dashSize;
uniform float u_gapSize;
void main(){
vec2 dir = (vertPos.xy-startPos.xy) * u_resolution/2.0;
float dist = length(dir);
if ( fract(dist / (u_dashSize + u_gapSize)) > u_dashSize/(u_dashSize + u_gapSize) )
discard;
gl_FragColor = vec4(u_color.rgb, 1.0);
}
Setup the THREE.ShaderMaterial and the uniforms:
var uniforms = {
u_resolution: {type: 'v2', value: {x: vpSize[0], y: vpSize[1]}},
u_dashSize : {type:'f', value: 10.0},
u_gapSize : {type:'f', value: 5.0},
u_color : {type: 'v3', value: {x:0.0, y:0.0, z:0.0} }
};
var material = new THREE.ShaderMaterial({
uniforms: uniforms,
vertexShader: document.getElementById('vertex-shader').textContent,
fragmentShader: document.getElementById('fragment-shader').textContent
});
var LINES_DASHED = new THREE.LineSegments(
new THREE.EdgesGeometry(geometry),
material);
Note, if the resolution of the canvas changes, the values of the u_resolution have to be set:
e.g.
LINES_DASHED.material.uniforms.u_resolution.value.x = window.innerWidth;
LINES_DASHED.material.uniforms.u_resolution.value.y = window.innerHeight;
I applied the suggestions to your original code. See the preview and the example:
var scene = new THREE.Scene();
var camera = new THREE.PerspectiveCamera( 60, window.innerWidth/window.innerHeight, 0.1, 1000 );
var canvas = document.createElement( 'canvas' );
var context = canvas.getContext( 'webgl2' );
var renderer = new THREE.WebGLRenderer( { canvas: canvas, context: context } );
var vpSize = [window.innerWidth, window.innerHeight];
renderer.setSize( window.innerWidth, window.innerHeight );
document.body.appendChild( renderer.domElement );
var geometry = new THREE.BoxGeometry( 2, 2, 2 );
var uniforms = {
u_resolution: {type: 'v2', value: {x: vpSize[0], y: vpSize[1]}},
u_dashSize : {type:'f', value: 10.0},
u_gapSize : {type:'f', value: 5.0},
u_color : {type: 'v3', value: {x:0.0, y:0.0, z:0.0} }
};
var material = new THREE.ShaderMaterial({
uniforms: uniforms,
vertexShader: document.getElementById('vertex-shader').textContent,
fragmentShader: document.getElementById('fragment-shader').textContent
});
var LINES_DASHED = new THREE.LineSegments(
new THREE.EdgesGeometry(geometry),
material);
LINES_DASHED.computeLineDistances();
scene.add( LINES_DASHED );
scene.background = new THREE.Color( 0xffffff);
camera.position.z = 5;
var animate = function () {
requestAnimationFrame( animate );
LINES_DASHED.rotation.x += 0.01;
LINES_DASHED.rotation.y += 0.01;
renderer.render( scene, camera );
};
window.onresize = function() {
vpSize = [window.innerWidth, window.innerHeight];
LINES_DASHED.material.uniforms.u_resolution.value.x = window.innerWidth;
LINES_DASHED.material.uniforms.u_resolution.value.y = window.innerHeight;
renderer.setSize(window.innerWidth, window.innerHeight);
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
}
animate();
<script type='x-shader/x-vertex' id='vertex-shader'>
flat out vec3 startPos;
out vec3 vertPos;
void main() {
vec4 pos = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
gl_Position = pos;
vertPos = pos.xyz / pos.w;
startPos = vertPos;
}
</script>
<script type='x-shader/x-fragment' id='fragment-shader'>
precision highp float;
flat in vec3 startPos;
in vec3 vertPos;
uniform vec3 u_color;
uniform vec2 u_resolution;
uniform float u_dashSize;
uniform float u_gapSize;
void main(){
vec2 dir = (vertPos.xy-startPos.xy) * u_resolution.xy/2.0;
float dist = length(dir);
if (fract(dist / (u_dashSize + u_gapSize)) > u_dashSize/(u_dashSize + u_gapSize))
discard;
gl_FragColor = vec4(u_color.rgb, 1.0);
}
</script>
<script src="https://rawcdn.githack.com/mrdoob/three.js/r128/build/three.js"></script>
I created two particles with a threejs BufferGeometry, I want to click on each particle shows the corresponding image.
But when I clicked on the particle the image was shown and another particle covered it.
I want to know how to get the particles out of the control of the hierarchy and keep the clicked particles always on top.
code:`
var scene, camera, renderer,controls;
var points;
var shaderMaterial;
var particleCount = 2;
function init () {
scene = new THREE.Scene();
camera = new THREE.PerspectiveCamera(45, window.innerWidth / window.innerHeight, 0.1, 1000);
camera.position.x = 15;
camera.position.y = 16;
camera.position.z = 35;
camera.lookAt(scene.position);
renderer = new THREE.WebGLRenderer();
renderer.setClearColor(0x000000, 1.0);
renderer.setSize(window.innerWidth, window.innerHeight);
var light = new THREE.AmbientLight( 0xcccccc );
scene.add(light);
document.body.appendChild(renderer.domElement);
createParticles();
createGrid();
render();
document.querySelector('canvas').addEventListener( 'click', interactive, false );
}
function createParticles () {
var geometry = new THREE.BufferGeometry();
var positions = new Float32Array( particleCount * 3 );
var sizes = new Float32Array( particleCount );
var pop = new Float32Array( particleCount);
for (var i = 0, i3 = 0; i < particleCount; i ++, i3 += 3) {
positions[i3 + 0] = i* 10;
positions[i3 + 1] = 0.1;
positions[i3 + 2] = 1;
sizes[i] = 15;
pop[i] = 0.0;
}
geometry.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ) );
geometry.addAttribute( 'size', new THREE.BufferAttribute( sizes, 1 ) );
geometry.addAttribute( 'pop', new THREE.BufferAttribute( pop, 1 ) );
shaderMaterial = new THREE.ShaderMaterial({
uniforms: {
'u_time': {type: 'f', value: 1.0},
'u_texture_0': { value: new THREE.TextureLoader().load('https://avatars2.githubusercontent.com/u/5829050?s=256&v=4') }},
vertexShader: document.getElementById( 'vs' ).textContent,
fragmentShader: document.getElementById( 'fs' ).textContent,
// blending: THREE.AdditiveBlending,
depthTest: false,
transparent: true
});
shaderMaterial.uniforms['u_texture_0'].value.flipY = false;
points = new THREE.Points(geometry, shaderMaterial);
scene.add(points);
}
var raycaster = new THREE.Raycaster();
raycaster.params.Points.threshold = 5;
var touch = new THREE.Vector2();
var intersects, INTERSECTED;
var beforeIndex;
function interactive (event) {
touch.x = ( event.clientX / window.innerWidth ) * 2 - 1;
touch.y = - ( event.clientY / window.innerHeight ) * 2 + 1;
points.geometry.computeBoundingSphere();
camera.updateMatrixWorld();
var vector = new THREE.Vector3(touch.x, touch.y, 0.5 ).unproject(camera);
raycaster.set(camera.position, vector.sub(camera.position ).normalize());
raycaster.setFromCamera( touch, camera );
intersects = raycaster.intersectObject(points);
if ( intersects.length > 0 ) {
if ( INTERSECTED != intersects[ 0 ].index ) {
INTERSECTED = intersects[ 0 ].index;
if (beforeIndex != INTERSECTED) {
points.geometry.attributes.pop.array[ beforeIndex ] = 0.0;
}
points.geometry.attributes.pop.array[ INTERSECTED ] = 1.0;
beforeIndex = INTERSECTED;
}
}
points.geometry.attributes.size.needsUpdate = true;
points.geometry.attributes.pop.needsUpdate = true;
}
function createGrid () {
var helper = new THREE.GridHelper( 100, 20, 0x303030, 0x303030 );
scene.add( helper );
}
function render () {
renderer.render(scene, camera);
requestAnimationFrame(render);
}
init();
* {
margin: 0;
padding: 0;
}
html, body {
width: 100%;
height: 100%;
background: #000;
}
canvas {
display: block;
}
<script src="https://threejs.org/build/three.js"></script>
<script id="fs" type="x-shader/x-fragment">
precision highp float;
uniform sampler2D u_texture_0;
uniform float u_time;
varying float u_pop;
void main () {
vec2 uv = gl_PointCoord.xy;
vec4 rval = texture2D(u_texture_0,uv);
vec2 posToCenter = (uv - vec2(.5, .5)) * 2.0;
float distanceToCenter = length(posToCenter);
float fadeOpacity = 1. - smoothstep(0.8, 1., distanceToCenter);
float opacity = (1. - step(0.8, distanceToCenter)) + fadeOpacity;
vec3 bgColor = mix(vec3(255., 255., 255.), vec3(252., 222., 184.), distanceToCenter) / 255.;
vec4 color = vec4(mix(bgColor, rval.rgb, u_pop), 1.);
color.a = opacity;
gl_FragColor = color;
}
</script>
<script type="x-shader/x-vertex" id="vs">
attribute float size;
attribute float pop;
varying float u_pop;
void main() {
vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
gl_PointSize = size * ( 300.0 / -mvPosition.z );
gl_Position = projectionMatrix * mvPosition;
u_pop = pop;
}
</script>
`
You have misunderstanding about how 3D works, therefore, you use wrong concepts and terminology. There is no "Z-Index" in 3D. There is Z-buffer or Depth-buffer (two names, same thing), which reflects object distance from the render's point of view (camera, virtual observer). Naturarly, the purpose of the depth-buffer with depth-testing is to prevent farest objects to be rendered in front of closest ones (this also allow to optimize, by preventing unseen pixels to be computed).
Also, the background to foreground display is not controled by any hierarchy (unless the engine deliberately implements such feature), objects are simply rendered in order they are supplied. If the Depth-testing is disabled, the latest rendered object will be displayed in front of all previously rendered ones. In 3D scene, the hierarchy is relative to transformations, not display order (unless objects are rendered in scene's hierarchy order without depth-testing).
To achieve what you want in robust way, you'll have to disable the depth-desting and manually control the order which of sprites are rendered, to ensure the one which must be in "front", is the last rendered one. This is a pretty low-level manipulation, and unless Three.JS allow you to control that (which I doubt), you'll probably have to changes your tactic, or implements your own WebGL engine.
I am currently using the MeshPhongMaterial provided by Three.js to create a simple scene with basic water. I would like for the water material to have the Hard Light blending mode that can be found in applications such as Photoshop. How can I achieve the Hard Light blending modes below on the right?
The right halves of the images above are set to Hard Light in Photoshop. I am trying to recreate that Hard Light blend mode in Three.js.
One lead I have come across is to completely reimplement the MeshPhongMaterial's fragment and vertex shader, but this will take me some time as I am quite new to this.
What is the way to implement a Hard Light blending mode for a material in Three.js?
/*
* Scene config
**/
var scene = new THREE.Scene();
var camera = new THREE.PerspectiveCamera(50, window.innerWidth / window.innerHeight, 0.1, 10000);
var renderer = new THREE.WebGLRenderer({
antialias: true
});
renderer.setClearColor(0xffffff);
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);
camera.position.set(0, 500, 1000);
camera.lookAt(scene.position);
/*
* Scene lights
**/
var spotlight = new THREE.SpotLight(0x999999, 0.1);
spotlight.castShadow = true;
spotlight.shadowDarkness = 0.75;
spotlight.position.set(0, 500, 0);
scene.add(spotlight);
var pointlight = new THREE.PointLight(0x999999, 0.5);
pointlight.position.set(75, 50, 0);
scene.add(pointlight);
var hemiLight = new THREE.HemisphereLight(0xffce7a, 0x000000, 1.25);
hemiLight.position.y = 75;
hemiLight.position.z = 500;
scene.add(hemiLight);
/*
* Scene objects
*/
/* Water */
var waterGeo = new THREE.PlaneGeometry(1000, 1000, 50, 50);
var waterMat = new THREE.MeshPhongMaterial({
color: 0x00aeff,
emissive: 0x0023b9,
shading: THREE.FlatShading,
shininess: 60,
specular: 30,
transparent: true
});
for (var j = 0; j < waterGeo.vertices.length; j++) {
waterGeo.vertices[j].x = waterGeo.vertices[j].x + ((Math.random() * Math.random()) * 30);
waterGeo.vertices[j].y = waterGeo.vertices[j].y + ((Math.random() * Math.random()) * 20);
}
var waterObj = new THREE.Mesh(waterGeo, waterMat);
waterObj.rotation.x = -Math.PI / 2;
scene.add(waterObj);
/* Floor */
var floorGeo = new THREE.PlaneGeometry(1000, 1000, 50, 50);
var floorMat = new THREE.MeshPhongMaterial({
color: 0xe9b379,
emissive: 0x442c10,
shading: THREE.FlatShading
});
for (var j = 0; j < floorGeo.vertices.length; j++) {
floorGeo.vertices[j].x = floorGeo.vertices[j].x + ((Math.random() * Math.random()) * 30);
floorGeo.vertices[j].y = floorGeo.vertices[j].y + ((Math.random() * Math.random()) * 20);
floorGeo.vertices[j].z = floorGeo.vertices[j].z + ((Math.random() * Math.random()) * 20);
}
var floorObj = new THREE.Mesh(floorGeo, floorMat);
floorObj.rotation.x = -Math.PI / 2;
floorObj.position.y = -75;
scene.add(floorObj);
/*
* Scene render
**/
var count = 0;
function render() {
requestAnimationFrame(render);
var particle, i = 0;
for (var ix = 0; ix < 50; ix++) {
for (var iy = 0; iy < 50; iy++) {
waterObj.geometry.vertices[i++].z = (Math.sin((ix + count) * 2) * 3) +
(Math.cos((iy + count) * 1.5) * 6);
waterObj.geometry.verticesNeedUpdate = true;
}
}
count += 0.05;
renderer.render(scene, camera);
}
render();
html,
body {
margin: 0;
padding: 0;
width: 100%;
height: 100%;
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/r73/three.min.js"></script>
I don't think you're going to get the effect you want.
How do you generate the first image? I assume you just made fuzzy oval in photoshop and picked "hard light"?
If you want the same thing in three.js you'll need to generate a fuzzy oval and apply it in 2d using a post processing effect in three.js
You could generate such an oval by making a 2nd scene in three.js, adding the lights and shining them on a black plane that has no waves that's at the same position as the water is in the original scene. Render that to a rendertarget. You probably want only the spotlight and maybe point light in that scene. In your current scene remove the spotlight for sure. Render that to another render target.
When you're done combine the scenes using a post processing effect that implements hard light
// pseudo code
vec3 partA = texture2D(sceneTexture, texcoord);
vec3 partB = texture2D(lightTexture, texcoord);
vec3 line1 = 2.0 * partA * partB;
vec3 line2 = 1.0 - (1.0 - partA) * (1.0 - partB);
gl_FragCoord = vec4(mix(line2, line1, step(0.5, partA)), 1);
I ended up doing it in the following way thanks to gman's excellent answer. View the code snippet below to see it in action.
As gman described:
I created a WebGLRenderTarget to which the scene is rendered to.
The WebGLRenderTarget is then passed to the ShaderMaterial's uniforms as a texture, together with the window.innerWidth, window.innerHeight and color.
The respective texture coordinates, in relation to the current fragment, are calculated by dividing gl_FragCoord by the window's width and height.
The fragment can now sample what is on screen from the WebGLRenderTarget texture and combine that with the color of the object to output the correct gl_FragColor.
So far it works great. The only thing I am currently looking into is to create a separate scene containing only the objects that are necessary for blending, perhaps cloned. I assume that would be more performant. Currently I am toggling the visibility of the object to be blended in the render loop, before and after it is sent to the WebGLRenderTarget. For a larger scene with more objects, that probably doesn't make much sense and would complicate things.
var conf = {
'Color A': '#cc6633',
'Color B': '#0099ff'
};
var GUI = new dat.GUI();
var A_COLOR = GUI.addColor(conf, 'Color A');
A_COLOR.onChange(function(val) {
A_OBJ.material.uniforms.color = {
type: "c",
value: new THREE.Color(val)
};
A_OBJ.material.needsUpdate = true;
});
var B_COLOR = GUI.addColor(conf, 'Color B');
B_COLOR.onChange(function(val) {
B_OBJ.material.uniforms.color = {
type: "c",
value: new THREE.Color(val)
};
B_OBJ.material.needsUpdate = true;
});
var scene = new THREE.Scene();
var camera = new THREE.PerspectiveCamera(50, window.innerWidth / window.innerHeight, 0.1, 100);
var renderer = new THREE.WebGLRenderer();
renderer.setClearColor(0x888888);
renderer.setSize(window.innerWidth, window.innerHeight);
var target = new THREE.WebGLRenderTarget(window.innerWidth, window.innerHeight, {format: THREE.RGBFormat});
document.body.appendChild(renderer.domElement);
camera.position.set(0, 0, 50);
camera.lookAt(scene.position);
var A_GEO = new THREE.PlaneGeometry(20, 20);
var B_GEO = new THREE.PlaneGeometry(20, 20);
var A_MAT = new THREE.ShaderMaterial({
uniforms: {
color: {
type: "c",
value: new THREE.Color(0xcc6633)
}
},
vertexShader: document.getElementById('vertexShaderA').innerHTML,
fragmentShader: document.getElementById('fragmentShaderA').innerHTML
});
var B_MAT = new THREE.ShaderMaterial({
uniforms: {
color: {
type: "c",
value: new THREE.Color(0x0099ff)
},
window: {
type: "v2",
value: new THREE.Vector2(window.innerWidth, window.innerHeight)
},
target: {
type: "t",
value: target
}
},
vertexShader: document.getElementById('vertexShaderB').innerHTML,
fragmentShader: document.getElementById('fragmentShaderB').innerHTML
});
var A_OBJ = new THREE.Mesh(A_GEO, A_MAT);
var B_OBJ = new THREE.Mesh(B_GEO, B_MAT);
A_OBJ.position.set(-5, -5, 0);
B_OBJ.position.set(5, 5, 0);
scene.add(A_OBJ);
scene.add(B_OBJ);
function render() {
requestAnimationFrame(render);
B_OBJ.visible = false;
renderer.render(scene, camera, target, true);
B_OBJ.visible = true;
renderer.render(scene, camera);
}
render();
body { margin: 0 }
canvas { display: block }
<script src="https://cdnjs.cloudflare.com/ajax/libs/dat-gui/0.5.1/dat.gui.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/r74/three.min.js"></script>
<script type="x-shader/x-vertex" id="vertexShaderA">
uniform vec3 color;
void main() {
gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
}
</script>
<script type="x-shader/x-fragment" id="fragmentShaderA">
uniform vec3 color;
void main() {
gl_FragColor = vec4(color, 1.0);
}
</script>
<script type="x-shader/x-vertex" id="vertexShaderB">
uniform vec3 color;
void main() {
gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
}
</script>
<script type="x-shader/x-fragment" id="fragmentShaderB">
uniform vec3 color;
uniform vec2 window;
uniform sampler2D target;
void main() {
vec2 targetCoords = gl_FragCoord.xy / window.xy;
vec4 a = texture2D(target, targetCoords);
vec4 b = vec4(color, 1.0);
vec4 multiply = 2.0 * a * b;
vec4 screen = 1.0 - 2.0 * (1.0 - a) * (1.0 - b);
gl_FragColor = vec4(mix(screen, multiply, step(0.5, a)));
}
</script>
I'm trying to establish a full screen quad using a pass thru vertex shader in THREE.js. The quad itself is a plane geometry with dimension (2, 2) located at the origin. It is assigned the ShaderMaterial. The camera is at z = 1 aiming at the quad.
The shaders are quite simple:
Vertex Shader:
void main() {
gl_Position = vec4( position, 1.0 );
}
Fragment Shader:
void main() {
gl_FragColor = vec4(0.0, 1.0, 0.0, 1.0);
}
But nothing shows up on screen. This setup is a standard way of render-to-texture, why is it not working in THREE.js?
I've tried plane.frustumCulled = false and changing the clip planes of the camera to no avail.
Any help is appreciated.
Upon further investigation, the reason for not seeing the rendering result is more involved and pointing to some odd behavior in three.js.
I am using a PlaneGeometry with a rotation matrix applied, which is then wrapped by an Object3D with a counter rotation.
var geometry = new THREE.PlaneGeometry(2, 2);
var m4 = new THREE.Matrix4().makeRotationX(Math.PI * 0.5);
geometry.applyMatrix(m4);
var mesh = new THREE.Mesh(geometry, material);
var obj = new THREE.Object3D();
obj.add(mesh);
obj.rotation.x = -Math.PI * 0.5;
scene.add(obj);
This setup seems to throw three.js off and no rendering is shown.
Ok, the rotation got thrown away because it is a part of model view matrix that I ignored in the vertex shader. I've to refact what I'm currently doing.
I'm not sure the exact problem you're having, but here is an example of a working fullscreen quad using the same technique.
var canvas = document.getElementById('canvas');
var scene = new THREE.Scene();
var renderer = new THREE.WebGLRenderer({canvas: canvas, antialias: true});
var camera = new THREE.PerspectiveCamera(45, canvas.clientWidth / canvas.clientWidth, 1, 1000);
var clock = new THREE.Clock();
var quad = new THREE.Mesh(
new THREE.PlaneGeometry(2, 2),
new THREE.ShaderMaterial({
vertexShader: document.getElementById('vertex-shader').textContent,
fragmentShader: document.getElementById('fragment-shader').textContent,
depthWrite: false,
depthTest: false
})
);
scene.add(quad);
var box = new THREE.Mesh(
new THREE.BoxGeometry(50, 50, 50),
new THREE.MeshBasicMaterial({color: '#000', wireframe: true})
);
scene.add(box);
camera.position.z = 200;
render();
function render() {
requestAnimationFrame(render);
if (canvas.width !== canvas.clientWidth || canvas.height !== canvas.clientHeight) {
renderer.setSize(canvas.clientWidth, canvas.clientHeight, false);
camera.aspect = canvas.clientWidth / canvas.clientHeight;
camera.updateProjectionMatrix();
}
var dt = clock.getDelta();
box.rotation.x += dt * 2 * Math.PI / 5;
box.rotation.y += dt * 2 * Math.PI / 7;
box.rotation.z += dt * 2 * Math.PI / 11;
renderer.render(scene, camera);
}
html, body, #canvas {
margin: 0;
padding: 0;
width: 100%;
height: 100%;
display: block;
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/r73/three.min.js"></script>
<canvas id="canvas"></canvas>
<script id="vertex-shader" type="x-shader/x-vertex">
varying vec2 vUv;
void main() {
vUv = uv;
gl_Position = vec4(position, 1.0);
}
</script>
<script id="fragment-shader" type="x-shader/x-fragment">
varying vec2 vUv;
void main() {
gl_FragColor = vec4(vUv, 0.0, 1.0);
}
</script>
How to achieve an x-ray-style effect in three.js / webgl? Some sort of this
UPD
I need real-time render with this stuff, not a still image. This can be done with shaders, that change density in non-linear way on overlaps based on distance. I briefly understand theory, but have no practice, that is why I need help with this
This is the as Владимир Корнилов's example except I changed the shader a little.
I'm not sure what he was going for with the dot(vNormal, vNormel). Doing abs(dot(vNormal, vec3(0, 0, 1)) will give you something that is brighter when facing toward or away from the view. Making it 1.0 - abs(dot(vNormal, vec3(0, 0, 1)) will flip that so perpendicular to the view is brighter. Then add the pow and it looks better to me but I guess that's subjective
var human;
var $ = document.querySelector.bind(document);
var scene = new THREE.Scene();
var camera = new THREE.PerspectiveCamera(45, 1, 0.1, 1000);
var renderer = new THREE.WebGLRenderer({antialias: true, alpha: true});
renderer.setClearColor(0x000000, 1.0);
lookAt = scene.position;
lookAt.y = 15;
camera.lookAt(lookAt);
document.body.appendChild(renderer.domElement);
var customMaterial = new THREE.ShaderMaterial(
{
uniforms: {
p: { type: "f", value: 2 },
glowColor: { type: "c", value: new THREE.Color(0x84ccff) },
},
vertexShader: $('#vertexShader').text,
fragmentShader: $('#fragmentShader').text,
side: THREE.DoubleSide,
blending: THREE.AdditiveBlending,
transparent: true,
depthWrite: false
});
var loader = new THREE.ColladaLoader();
loader.options.convertUpAxis = true;
loader.load('http://greggman.github.io/doodles/assets/woman.dae', function (collada) {
dae = collada.scene;
dae.traverse( function ( child ) {
if (child instanceof THREE.Mesh) {
console.log(child);
child.material = customMaterial;
}
} );
dae.scale.x = 0.2;
dae.scale.y = 0.2;
dae.scale.z = 0.2;
human = dae;
scene.add(human);
});
function resize() {
var canvas = renderer.domElement;
var width = canvas.clientWidth;
var height = canvas.clientHeight;
if (canvas.width !== width || canvas.height !== height) {
renderer.setSize(width, height, false);
camera.aspect = width / height;
camera.updateProjectionMatrix();
}
}
// call the render function
function render(time) {
time *= 0.001;
resize();
camera.position.x = -20 * (Math.cos(time));
camera.position.z = (20 * (Math.sin(time)));
camera.position.y = 20;
camera.lookAt(lookAt);
renderer.render(scene, camera);
requestAnimationFrame(render);
}
requestAnimationFrame(render);
<script src="//cdnjs.cloudflare.com/ajax/libs/three.js/r123/three.min.js"></script>
<script src="//greggman.github.io/doodles/js/three/js/loaders/ColladaLoader.js"></script>
<script id="vertexShader" type="x-shader/x-vertex">
uniform float p;
varying float intensity;
void main()
{
vec3 vNormal = normalize( normalMatrix * normal );
intensity = pow(1.0 - abs(dot(vNormal, vec3(0, 0, 1))), p);
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}
</script>
<!-- fragment shader a.k.a. pixel shader -->
<script id="fragmentShader" type="x-shader/x-vertex">
uniform vec3 glowColor;
varying float intensity;
void main()
{
vec3 glow = glowColor * intensity;
gl_FragColor = vec4( glow, 1.0 );
}
</script>
<style>
html, body {
margin: 0;
overflow: hidden;
height: 100%;
}
canvas {
width: 100%;
height: 100%;
}
</style>
Ok, got acceptable result with this:
<!DOCTYPE html>
<html>
<head>
<title>X-ray</title>
<script type="text/javascript" src="js/three.js/build/three.js"></script>
<script type="text/javascript" src="js/three.js/examples/js/loaders/OBJLoader.js"></script>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<script type="text/javascript" src="js/stats.min.js"></script>
<script type="text/javascript" src="js/three.js/examples/js/renderers/SVGRenderer.js"></script>
<script id="vertexShader" type="x-shader/x-vertex">
uniform vec3 viewVector;
uniform float c;
uniform float p;
varying float intensity;
void main()
{
vec3 vNormal = normalize( normalMatrix * normal );
vec3 vNormel = normalize( normalMatrix * viewVector );
intensity = pow( c - dot(vNormal, vNormel), p );
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}
</script>
<!-- fragment shader a.k.a. pixel shader -->
<script id="fragmentShader" type="x-shader/x-vertex">
uniform vec3 glowColor;
varying float intensity;
void main()
{
vec3 glow = glowColor * intensity;
gl_FragColor = vec4( glow, 1.0 );
}
</script>
<style>
body {
/* set margin to 0 and overflow to hidden, to go fullscreen */
margin: 0;
overflow: hidden;
}
</style>
</head>
<body>
<div id="Stats-output">
</div>
<!-- Div which will hold the Output -->
<div id="WebGL-output">
</div>
<!-- Javascript code that runs our Three.js examples -->
<script type="text/javascript">
// once everything is loaded, we run our Three.js stuff.
$(function () {
var mouseX = 0, mouseY = 0;
var human;
camstep = 0;
var stats = initStats();
// create a scene, that will hold all our elements such as objects, cameras and lights.
var scene = new THREE.Scene();
// create a camera, which defines where we're looking at.
var camera = new THREE.PerspectiveCamera(45, window.innerWidth / window.innerHeight, 0.1, 1000);
// create a render and set the size
var renderer = new THREE.WebGLRenderer({antialias: true, alpha: true});
renderer.setClearColor(0x000000, 1.0);
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.shadowMapEnabled = true;
renderer.shadowMapType = THREE.PCFShadowMap;
materialCameraPosition = camera.position.clone();
materialCameraPosition.z += 10;
// position and point the camera to the center of the scene
camera.position.x = -10;
camera.position.y = 0;
camera.position.z = 15;
lookAt = scene.position;
lookAt.y = 15;
camera.lookAt(lookAt);
// add subtle ambient lighting
var ambientLight = new THREE.AmbientLight(0x0c0c0c);
//scene.add(ambientLight);
// add the output of the renderer to the html element
$("#WebGL-output").append(renderer.domElement);
var customMaterial = new THREE.ShaderMaterial(
{
uniforms: {
"c": { type: "f", value: 1.0 },
"p": { type: "f", value: 3 },
glowColor: { type: "c", value: new THREE.Color(0x84ccff) },
viewVector: { type: "v3", value: materialCameraPosition }
},
vertexShader: document.getElementById('vertexShader').textContent,
fragmentShader: document.getElementById('fragmentShader').textContent,
side: THREE.FrontSide,
blending: THREE.AdditiveBlending,
transparent: true,
//opacity: 0.5,
depthWrite: false
});
var manager = new THREE.LoadingManager();
manager.onProgress = function (item, loaded, total) {
console.log(item, loaded, total);
};
var loader = new THREE.OBJLoader(manager);
loader.load('body_anatomy3.obj', function (object) {
console.log(object);
object.traverse(function (child) {
if (child instanceof THREE.Mesh) {
console.log(child);
child.material = customMaterial;
}
});
object.position.y = 4;
object.scale.x = 0.01;
object.scale.y = 0.01;
object.scale.z = 0.01;
human = object;
scene.add(human);
});
// call the render function
var step = 0;
render();
function render() {
stats.update();
camstep += 0.02;
camera.position.x = -20 * (Math.cos(camstep));
camera.position.z = (20 * (Math.sin(camstep)));
camera.position.y = 20;
camera.lookAt(lookAt);
if (human) {
//human.rotation.y += 0.02;
materialCameraPosition = camera.position.clone();
materialCameraPosition.z += 10;
human.traverse(function (child) {
if (child instanceof THREE.Mesh) {
//console.log(child.material.uniforms.viewVector);
child.material.uniforms.viewVector.value =
new THREE.Vector3().subVectors(camera.position, human.position);
}
});
}
//sphere.material.uniforms.viewVector.value = new THREE.Vector3().subVectors(camera.position, sphere.position);
// render using requestAnimationFrame
requestAnimationFrame(render);
renderer.render(scene, camera);
}
function initStats() {
var stats = new Stats();
stats.setMode(0); // 0: fps, 1: ms
// Align top-left
stats.domElement.style.position = 'absolute';
stats.domElement.style.left = '0px';
stats.domElement.style.top = '0px';
$("#Stats-output").append(stats.domElement);
return stats;
}
});
</script>
</body>
</html>
At the moment got close result with glow shader based on this demo http://stemkoski.github.io/Three.js/Shader-Glow.html