A JavaScript WeakMap does not allow you to get the key, or the length or size, by design.
Is it possible to nevertheless loop over entries in some way ?
If not .. how does the Chrome console do this ?
Is it possible to nevertheless loop over entries in some way?
No, as you say, the contents of a WeakMap are not accessible by design, and there is no iterability.
If not … how does the Chrome console do this?
The console uses the debugging API of the JS engine, which allows access to the internals of objects (also to promise states, wrapped primitives, etc.) and many more.
Things are moving and it will soon be possible to create iterable week maps thanks to weak refs.
See the iterable WeakMap example in the tc39 weakrefs proposal.
(note that it is already possible with nodejs v12.?.? using --harmony-weak-refs flag)
Running far afield with a qualifier in your (2015) question, specifically:
Is it possible to nevertheless loop over entries in some way ?
Yes.
In one ridiculous situation, it is possible to emulate and then iterate the keys and values of a WeakMap, and also to make a proper, independent copy of your WeakMap.
If the WeakMap you wish to clone was built in a very specific fashion by a constructor function, you can do it:
// Define a Constructor-Function
// that makes objects
// containing WeakMaps:
function makeWeakMapObject(){
this.wm1 = new WeakMap();
this.o1 = {};
this.o2 = {"orange":"orange"};
this.wm1.set(this.o1, 37);
this.wm1.set(this.o2, 'azerty');
}
// Construct a new object:
let constructedWeakMapObject = new makeWeakMapObject();
// Then set a new key-value pair
// on the WeakMap in your object;
// because, ya know, otherwise you'd
// just reuse the WeakMap constructor
// and wouldn't need to clone :D
constructedWeakMapObject.added = {"ya":"glad"};
constructedWeakMapObject.wm1.set(constructedWeakMapObject.added, 42);
// In preparation to clone your newly constructed object,
// get that newly constructed object's property descriptors:
let props = Object.getOwnPropertyDescriptors(constructedWeakMapObject);
// Have a gander at those props; just for fun:
console.log({"props":props});
// Attempt to clone the constructedWeakMapObject
// using its ownPropertyDescriptors
let weakClone = new cloneWeak(props);
// and then check out what you made:
console.log({"weakClone":weakClone});
// Verify that you've made an independent clone
// (even though this example is shallow)
// by altering the WeakMap in your weakClone:
weakClone.wm.delete(weakClone.o1);
// Make sure your clone was altered:
console.log(weakClone.wm.get(weakClone.o1));
// And then check to see that the
// changes to your clone
// don't appear on your constructed object:
console.log(constructedWeakMapObject);
console.log(constructedWeakMapObject.wm1.get(constructedWeakMapObject.o1));
// A support function to help you use fresh keys in your cloned WeakMap to keep it independent from your original WeakMap
function cloneObject(obj) { // use something more robust, like underscore: _.cloneDeep(obj); actually, you'll likely have to roll your own so you can make clones of functions... anywho
var clone = {};
for(var i in obj) {
if(typeof(obj[i])==="object" && obj[i] !== null)
clone[i] = cloneObject(obj[i]);
else
clone[i] = obj[i];
}
return clone;
}
// Called as a constructor function w/arguments
function cloneWeak(inco){ // a bit wonky, at least in the middle
this.wm = new WeakMap();
let tempMap;
for(key in inco){
// Build keys on 'this' that match the incoming keys
if(Object.prototype.toString.call(inco[key].value) !== "[object WeakMap]"){
this[key] = cloneObject(inco[key].value);
}
// Reference the incoming map from your temp map
// (this makes the following loop possible)
else{tempMap = inco[key].value;}
}
this.fakeForHack = {}; // no idea why this works
this.wm.set(this.fakeForHack, "ok"); // no idea why this works... without it, the WeakMap entry for made.wm1.get(made.added) won't transfer -> ???
for(key in inco){
if(Object.prototype.toString.call(inco[key].value) !== "[object WeakMap]"){
// Set values for 'this' WeakMap:
this.wm.set(this[key], tempMap.get(inco[key].value));
}
}
}
It's kinda ugly, it's brittle, and it only solves a ridiculous edge-case; you're welcome!
Related
I am trying to understand the Object.freeze method of ECMAscript.
My understanding was that it essentially stops changes to all the properties of an object. MDN documentation says:
Prevents new properties from being added to it; prevents existing properties from being removed; and prevents existing properties, or their enumerability, configurability, or writability, from being changed.
This does not seem to be the case, but perhaps I have misinterpreted the docs.
Here is my object, with its enumerable property exampleArray
function myObject()
{
this.exampleArray = [];
}
var obj = new myObject();
obj.exampleArray[0] = "foo";
Now if I freeze the object, I would expect the exampleArray property to be frozen too, as in it can no longer be changed in any way.
Object.freeze(obj);
obj.exampleArray[1] = "bar";
console.log(obj.exampleArray.length); // logs 2
"bar" has been added to the array, thus the frozen object has been changed. My immediate solution is to just freeze the desired property:
Object.freeze(obj.exampleArray);
obj.exampleArray[2] = "boo";
Now changing the array throws an error, as desired.
However, I am developing my application and I don't yet know what will be assigned to my object. My use case is that I have some game objects which are initialized (from an XML file) when the game starts. After this, I do not want to be able to change any of their properties accidentally.
Perhaps I am misusing the freeze method? I would like to be able to freeze the whole object, a sort of recursive freeze. The best solution I can think of here is to loop through the properties and freeze each one.
I've already searched for this question and the only answer says it's an implementation bug. I am using the newest version of Chrome. Any help is appreciated.
Object.freeze is a shallow freeze.
If you look at the description in the docs, it says:
Values cannot be changed for data properties. Accessor properties (getters and setters) work the same (and still give the illusion that you are changing the value). Note that values that are objects can still be modified, unless they are also frozen.
If you want to deep-freeze an object, here's a good recursive example
function deepFreeze(o) {
Object.freeze(o);
Object.getOwnPropertyNames(o).forEach(function(prop) {
if (o.hasOwnProperty(prop)
&& o[prop] !== null
&& (typeof o[prop] === "object" || typeof o[prop] === "function")
&& !Object.isFrozen(o[prop])) {
deepFreeze(o[prop]);
}
});
return o;
}
function myObject() {
this.exampleArray = [];
}
var obj = deepFreeze(new myObject());
obj.exampleArray[0] = "foo";
console.log(obj); // exampleArray is unchanged
Set the property descriptors for the object to writable:false, configurable:false using Object.defineProprties; then call Object.preventExtensions on the object. See How to create static array in javascript.
I've defined an enumerable property in the prototype object and would like it to appear when I convert a prototyped object to JSON.
My first idea was to set it in toJSON but because I don't really want to keep it in the object afterwards I'll have to more or less clone the whole object in the function and set the necessary property.
Redefining the property in the target object and just proxying with the context of the current object doesn't seem to be an option as well, since I can't really use apply or call when getting dynamic properties.
Working solutions I could come up with so far seem to require quite an amount of code and aren't flexible and concise enough, so I'm wondering if there are any best practices of solving this task.
Here is an example which could seem a bit synthetic but still, I believe, conveys the idea:
function ProjectFolder() {
this.files = [];
Object.defineProperty(this, 'size', {enumerable: true, get: function() {
return this.files.length;
}});
}
function GithubProjectFolder() {
this.files = ['.gitignore', 'README.md'];
}
GithubProjectFolder.prototype = new ProjectFolder();
var project1 = new ProjectFolder();
JSON.stringify(project1);
// output: {"files":[],"size":0}
// size is present
var project = new GithubProjectFolder();
JSON.stringify(project);
// output: {"files":[".gitignore","README.md"]}
// size is absent
I'll have to more or less clone the whole object in the function and set the necessary property.
Yes, and there's nothing wrong with that. That's how .toJSON is supposed to work:
ProjectFolder.prototype.toJSON = function toJSON() {
var obj = {};
for (var p in this) // all enumerable properties, including inherited ones
obj[p] = this[p];
return obj;
};
However, there are two other points I'd like to make:
The size of a folder doesn't really need to be stored separately in the JSON when it already is encoded in the length of the files array. This redundant data seems to be superfluous, and can confuse deserialisation. Unless something requires this property to be present, I'd recommend to simply omit it.
In ProjectFolders, the .size is an own property of each instance - in GithubProjectFolders it is not. This suggest that you're doing inheritance wrong. Better:
function GithubProjectFolder() {
ProjectFolder.call(this);
this.files.puhs('.gitignore', 'README.md');
}
GithubProjectFolder.prototype = Object.create(ProjectFolder.prototype);
If you'd fix that alone, the size will appear in the serialisation of your project.
Looking this and this MDN pages it seems like the only difference between Maps and WeakMaps is a missing "size" property for WeakMaps. But is this true? What's the difference between them?
They both behave differently when a object referenced by their keys/values gets deleted. Lets take the below example code:
var map = new Map();
var weakmap = new WeakMap();
(function(){
var a = {x: 12};
var b = {y: 12};
map.set(a, 1);
weakmap.set(b, 2);
})()
The above IIFE is executed there is no way we can reference {x: 12} and {y: 12} anymore. Garbage collector goes ahead and deletes the key b pointer from “WeakMap” and also removes {y: 12} from memory. But in case of “Map”, the garbage collector doesn’t remove a pointer from “Map” and also doesn’t remove {x: 12} from memory.
Summary: WeakMap allows garbage collector to do its task but not Map.
References: http://qnimate.com/difference-between-map-and-weakmap-in-javascript/
Maybe the next explanation will be more clear for someone.
var k1 = {a: 1};
var k2 = {b: 2};
var map = new Map();
var wm = new WeakMap();
map.set(k1, 'k1');
wm.set(k2, 'k2');
k1 = null;
map.forEach(function (val, key) {
console.log(key, val); // k1 {a: 1}
});
k2 = null;
wm.get(k2); // undefined
As you see, after removing k1 key from the memory we can still access it inside the map. At the same time removing k2 key of WeakMap removes it from wm as well by reference.
That's why WeakMap hasn't enumerable methods like forEach, because there is no such thing as list of WeakMap keys, they are just references to another objects.
From the very same page, section "Why Weak Map?":
The experienced JavaScript programmer will notice that this API could
be implemented in JavaScript with two arrays (one for keys, one for
values) shared by the 4 API methods. Such an implementation would have
two main inconveniences. The first one is an O(n) search (n being the
number of keys in the map). The second one is a memory leak issue.
With manually written maps, the array of keys would keep references to
key objects, preventing them from being garbage collected. In native
WeakMaps, references to key objects are held "weakly", which means
that they do not prevent garbage collection in case there would be no
other reference to the object.
Because of references being weak, WeakMap keys are not enumerable
(i.e. there is no method giving you a list of the keys). If they were,
the list would depend on the state of garbage collection, introducing
non-determinism.
[And that's why they have no size property as well]
If you want to have a list of keys, you should
maintain it yourself. There is also an ECMAScript
proposal
aiming at introducing simple sets and maps which would not use weak
references and would be enumerable.
‐ which would be the "normal" Maps. Not mentioned at MDN, but in the harmony proposal, those also have items, keys and values generator methods and implement the Iterator interface.
Another difference (source: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap):
Keys of WeakMaps are of the type Object only. Primitive data types as
keys are not allowed (e.g. a Symbol can't be a WeakMap key).
Nor can a string, number, or boolean be used as a WeakMap key. A Map can use primitive values for keys.
w = new WeakMap;
w.set('a', 'b'); // Uncaught TypeError: Invalid value used as weak map key
m = new Map
m.set('a', 'b'); // Works
From Javascript.info
Map -- If we use an object as the key in a regular Map, then while the Map exists, that object exists as well. It occupies memory and may not be garbage collected.
let john = { name: "John" };
let array = [ john ];
john = null; // overwrite the reference
// john is stored inside the array, so it won't be garbage-collected
// we can get it as array[0]
Similar to that, if we use an object as the key in a regular Map, then while the Map exists, that object exists as well. It occupies memory and may not be garbage collected
let john = { name: "John" };
let map = new Map();
map.set(john, "...");
john = null; // overwrite the reference
// john is stored inside the map,
// we can get it by using map.keys()
WeakMap -- Now, if we use an object as the key in it, and there are no other references to that object – it will be removed from memory (and from the map) automatically.
let john = { name: "John" };
let weakMap = new WeakMap();
weakMap.set(john, "...");
john = null; // overwrite the reference
// john is removed from memory!
WeakMap keys must be objects, not primitive values.
let weakMap = new WeakMap();
let obj = {};
weakMap.set(obj, "ok"); // works fine (object key)
// can't use a string as the key
weakMap.set("test", "Not ok"); // Error, because "test" is not an object
Why????
Let's see below example.
let user = { name: "User" };
let map = new Map();
map.set(user, "...");
user = null; // overwrite the reference
// 'user' is stored inside the map,
// We can get it by using map.keys()
If we use an object as the key in a regular Map, then while the
Map exists, that object exists as well. It occupies memory and may
not be garbage collected.
WeakMap is fundamentally different in this aspect. It doesn’t
prevent garbage-collection of key objects.
let user = { name: "User" };
let weakMap = new WeakMap();
weakMap.set(user, "...");
user = null; // overwrite the reference
// 'user' is removed from memory!
if we use an object as the key in it, and there are no other
references to that object – it will be removed from memory (and from
the map) automatically.
WeakMap does not support iteration and methods keys(), values(), entries(), so there’s no way to get all keys or values from it.
WeakMap has only the following methods:
weakMap.get(key)
weakMap.set(key, value)
weakMap.delete(key)
weakMap.has(key)
That is obvious as if an object has lost all other references (like 'user' in the code above), then it is to be garbage-collected automatically. But technically it’s not exactly specified when the cleanup happens.
The JavaScript engine decides that. It may choose to perform the memory cleanup immediately or to wait and do the cleaning later when more deletions happen. So, technically the current element count of a WeakMap is not known. The engine may have cleaned it up or not or did it partially. For that reason, methods that access all keys/values are not supported.
Note:- The main area of application for WeakMap is an additional data storage. Like caching an object until that object gets garbage collected.
WeapMap in javascript does not hold any keys or values, it just manipulates key value using a unique id and define a property to the key object.
because it define property to key object by method Object.definePropert(), key must not be primitive type.
and also because WeapMap does not contain actually key value pairs, we cannot get length property of weakmap.
and also manipulated value is assigned back to the key object, garbage collector easily can collect key if it in no use.
Sample code for implementation.
if(typeof WeapMap != undefined){
return;
}
(function(){
var WeapMap = function(){
this.__id = '__weakmap__';
}
weakmap.set = function(key,value){
var pVal = key[this.__id];
if(pVal && pVal[0] == key){
pVal[1]=value;
}else{
Object.defineProperty(key, this.__id, {value:[key,value]});
return this;
}
}
window.WeakMap = WeakMap;
})();
reference of implementation
My Task
In my JavaScript code i'm often using objects to "map" keys to values so i can later access them directly through a certain value. For example:
var helloMap = {};
helloMap.de = "Hallo";
helloMap["en"] = "Hello";
helloMap.es = "Hola";
So i build up the map object step by step in my source code using the two available notations object style and array style.
Later i can then access the values i added through helloMap["de"] for example. So thats all fine if i don't have to care about the order in which the attributes has been set on the object.
If i want to iterate the objects properties now as far as i know there is no way to ensure that i'll iterate them in the order they have been added (insertion order).
Note: I can't use some wrapper object and simply hold a array in there and then use its methods to add the values so something like this:
var HelloMap = function(){
this.myMap = [];
this.addProperty = function(key, value){
this.myMap.push({key: key, value: value});
}
}
or something similar won't work for me. So the solution needs to be absolutely transparent to the programmer using the object.
That said the object i needed would be an empty object which maintains the order of the properties that were added to it. Something like this would do:
var helloMap = {};
helloMap = getOrderAwareObject(helloMap);
so that every further assignment of the form helloMap.xy = "foo" and helloMap["yz"] = "bar" would be tracked in the object "in order",
Possible Solutions
Since i did not find any solution in underscore or jQuery giving me such a special object i came across the possibility of defining getters and setters for properties in JavaScript objects with Object.defineProperty since i can rely on ECMAScript 5 standard i can use it.
The Problem with this one is, that you have to know all the possible properties that can be set on the object, before they are actually set. Since if you define it you got to name it.
What i am searching for is something like a Default Getter and Default Setter which applies on the object if no getter and setter has been defined for the property. So i could then hide the sorted map behind the object inteface.
Is there already a solution for this in any framework you know?
Is there a mechanism like "default getter/setter" ?
You'll need a wrapper of some kind using an array internally, I'm afraid. ECMAScript 5 (which is the standard on which current browser JavaScript implementations are based) simply doesn't allow for ordered object properties.
However, ECMAScript 6 will have a Map implementation that has ordered properties. See also http://www.nczonline.net/blog/2012/10/09/ecmascript-6-collections-part-2-maps/.
There may also be other options in ECMAScript 6. See the following question:
How can I define a default getter and setter using ECMAScript 5?
Adding a link to a custom javascript library which provides Sorted maps and other implementation, for future reference in this thread . Check out https://github.com/monmohan/dsjslib
-msingh
I don't know of a general solution but non-general solutions are very simple to construct.
Typically, you maintain an Array of objects, with several methods defined as properties of the Array. At least, that's my approach.
Here's an example, taken (in a modified form) from a larger application :
var srcs = [];
srcs.find = function(dist) {
var i;
for(i=0; i<this.length; i++) {
if(dist <= this[i].dist) { return this[i]; }
}
return null;
};
srcs.add = function(dist, src) {
this.push({ dist:dist, src:src });
}
srcs.remove = function(dist) {
var i;
for(i=0; i<this.length; i++) {
if(this[i].dist === dist) {
srcs.splice(i,1);
return true;
}
}
return false;
};
srcs.add(-1, 'item_0.gif' );
srcs.add(1.7, 'item_1.gif');
srcs.add(5, 'item_2.gif');
srcs.add(15, 'item_3.gif');
srcs.add(90, 'item_4.gif');
Unfortunately, you lose the simplicity of a plain js object lookup, but that's the price you pay for having an ordered entity.
If you absolutely must have order and dot.notation, then maintain a plain js Object for lookup and an Array for order. With care, the two can be maintained with total integrity.
See my answer to this question. I implemented an basic ordered hashtable (ES 5+ only, didn't bother to polyfill)
var put = function(k,v){
if(map[k]){
console.log("Key "+ k+" is already present");
}else
{
var newMap = {};
map[k] = v;
Object.keys(map).sort().forEach(function(key){
newMap[key] = map[key];
});
map = newMap;
//delete newMap; in case object memory need to release
return map;
}
}
Put method will always take a key-value pair, internally creates another map with sorted keys from the actual map, update the value and return the updated map with sorted keys.No external library need to includ.
I am serializing and storing an object that was created from a WinJS.Class like this:
var myClass = WinJS.Class.define(...);
var myObject = new myClass();
var serialized = JSON.stringify(myObject);
//store the object
And later I'm pulling the object out of storage and I want to deserialize it and cast it as a myClass. Is that possible with WinJS out of the box or do I need to create a constructor for my class that is capable of taking an object that can turn it into a new object?
I haven't broken into TypeScript yet, and I think that would help out in this situation, but until then I'm wondering how to do it with plain JavaScript/WinJS.
There are a few ways to handle this, and none are particularly special to WinJS. Simply put: JSON serialization only serializes and deserializes the obje values, not its methods, prototype, or other type information.
Option 1: Copy values to new instance of your class
This is usually best accomplished by having your constructor take the deserialized object as a parameter and copying the data to the new instance.
There are a variety of variations of this. Using the object constructor is generally the best for performance, as this typically enables the JS engine to apply the greater number of optimizations to the object.
WinJS.UI.setOptions can be helpful here, or you can just copy the data using a simple loop like this:
var keys = Object.keys(source);
for (var i = 0, len = keys.length; i < len; i++) {
var key = keys[i];
destination[key] = source[key];
}
Option 2: Setting __proto__
Warning: This can have significantly adverse performance effects, so it's not appropriate in some situations. But occasionally it can be handy.
Object.setPrototypeOf(myObject, myClass.prototype);
Note that setPrototypeOf is relatively new. It's there on Win8.1 for web apps (which I'm guessing this is about) and in IE 11, but not available in Safari, for example. On older browsers/ Safari, assigning to proto is the equivalent (but if available, setPrototypeOf is better).
This will attach methods from myClass to the object, but in addition to the negative performance effects, also does not run your constructor on the object - so it still may not be in exactly the same state as the object you originally serialized.
Other helpful thing: JSON "revivers"
JSON.parse takes an optional second parameter, called a "reviver". This lets you provide a function that gets the opportunity to transform each node of the JSON being deserialized. This can be useful for rehydrating serialized dates into JavaScript Date objects, for example. It also gets the opportunity to transform the top-most object, which could be useful in some cases to turn the deserialized object into the "class" you want.
Javascript is a dynamic language so I think you dont need to cast the deserialized object, just treat it as myClass type and that's it. Hope it helps you.
You should consider using the 'Options' constructor pattern, where the option value is the deserialized object:
// MovieModel Constructor
// ----------------------
function MovieModel(options) {
this._titleValue = options.title || "Sample Title";
}
Where the movie methods closure is something like this:
// MovieModel Methods
// ------------------
var movieModelMethods = {
title: {
get: function () {
return this._titleValue;
},
set: function (val) {
this._titleValue = val;
this.dispatchEvent("title");
}
}
};
Since WinJS class define can only specify one constructor function (as far as I understand it), you may use the static members to define a factory function that will take the serialized data as a parameter. This factory methdod will actually create a new instance and will set the values one by one and return the new object.
It as some advantages like the fact that you can actually manage the data structure changes over the time you enhance the app...
The drawback is that you cannot write new MySuperClass() all the time...
...
// let's suppose we already called JSON.parse(data);
create: function(serializedData) {
var newObj = new MySuperClass();
newObj.name = serializedData.name || "";
newObj.color = serializedData.color || "";
return newObj;
}
Then you will call somewhere else in the app :
var myInstance = MySuperClass.create(serializedDataFromfile);
You should just be able to call JSON.parse after pulling it out of local storage:
var myObject2;
myObject2 = JSON.parse(localStorage["mySeriazliedObject"];