Related
I have been trying to wrap my head around this codility question for 1H30,and how to solve with binary search. I found the answer but I cant understand the logic behind it. Can someone who gets it kindly walk me through this answer.
This is the question
Task description
You are given integers K, M and a non-empty zero-indexed array A
consisting of N integers. Every element of the array is not greater
than M.
You should divide this array into K blocks of consecutive elements.
The size of the block is any integer between 0 and N. Every element of
the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y].
The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such
that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2
A[6] = 2
The array can be divided, for example, into the following blocks:
[2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15; [2], [1, 5, 1,
2], [2, 2] with a large sum of 9; [2, 1, 5], [], [1, 2, 2, 2] with a
large sum of 8; [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the
minimal large sum.
Write a function:
function solution(K, M, A);
that, given integers K, M and a non-empty zero-indexed array A
consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2
A[6] = 2
the function should return 6, as explained above.
Assume that:
N and K are integers within the range [1..100,000];
M is an integer within the range [0..10,000];
each element of array A is an integer within the range [0..M].
This is the answer I could get my hands on
function solution(K, M, A) {
var begin = A.reduce((a, v) => (a + v), 0)
begin = parseInt((begin+K-1)/K, 10);
var maxA = Math.max(A);
if (maxA > begin) begin = maxA;
var end = begin + M + 1;
var res = 0;
while(begin <= end) {
var mid = (begin + end) / 2;
var sum = 0;
var block = 1;
for (var ind in A) {
var a = A[ind];
sum += a;
if (sum > mid) {
++block;
if (block > K) break;
sum = a;
}
}
if (block > K) {
begin = mid + 1;
} else {
res = mid;
end = mid - 1;
}
}
return res;
}
I would like to give the more detailed explanation of the algorithm that I have implemented and then one correct implementation in C++.
Find the maximum element in the input array. We could also use M, but M does not necessarily occur. A smaller number could be the maximum, so it is slight optimisation.
Calculate the sum of the input array. This would be the maximum largest sum.
Apply binary search, where the start is the maximum element and the end is the sum. The minimum largest sum would be in this range.
For each trial, check whether we can squeeze the elements into fewer blocks than the block number requested. If it is fewer, it is okay because we can use empty blocks. If it is equal, that is also acceptable. However, it is greater, then we can conclude that the tried minimum largest sum needs to be higher to allow individual blocks to be larger to reduce the block count.
One general principle can be observed above that the more fairly we distribute the sums of the blocks, the largest will become the minimum possible. For this, we need to squeeze as many elements into an individual block as possible.
If the number of blocks for a tried minimum largest sum is smaller than the expected block count, then we can try a slightly smaller minimum largest sum, otherwise we have to try a bit greater until we eventually find the best number.
As far as runtime complexity goes, the solution is O(n * log(N * M)) because the binary search is logarithmic. The sum can be N number of times the maximum element M at worst, which results in an N * M range to bisect with binary search. The inner iteration will go through all the elements, so that is N times. Therefore, it is O(N * log(N * M)) which is equivalent to O(N * log(N + M).
int check(vector<int>& A, int largest_sum)
{
int sum = 0;
int count = 0;
for (size_t i = 0; i < A.size(); ++i) {
const int e = A[i];
if ((sum + e) > largest_sum) { sum = 0; ++count; }
sum += e;
}
return count;
}
int solution(int K, int /*M*/, vector<int> &A)
{
int start = *max_element(A.begin(), A.end());
int end = accumulate(A.begin(), A.end(), 0);
while (start <= end) {
int mid = (start + end) / 2;
if (check(A, mid) < K) end = mid - 1;
else start = mid + 1;
}
return start;
}
This is a binary search on the solution. For each candidate solution, we iterate over the whole array once, filling array blocks to the maximum sum the block can be before exceeding the candidate. If the sum is not achievable, there is no point in trying a smaller sum so we search the space of higher possible candidates. And if the sum is achievable, we try the space of lower candidates, while we can.
I have changed a little bit the code so it's more clear, but here is my explanation:
/*
K = numberOfBlocks
M = maxNumber
A = array
*/
function solution(numberOfBlocks, maxNumber, array) {
let begin = array.reduce((a, b) => (a + b), 0); // Calculate total sum of A
begin = Math.ceil(begin / numberOfBlocks); // Calculate the mean of each theorethical block
begin = Math.max(begin, Math.max(...array)); // Set begin to the highest number in array if > than the mean
// In short: begin is now the smallest possible block sum
// Calculate largest possible block sum
let end = begin + maxNumber + 1;
var result = 0;
while (begin <= end) {
// Calculate the midpoint, which is our result guess
const midpoint = (begin + end) / 2;
let currentBlockSum = 0;
let block = 1;
for (let number of array) {
currentBlockSum += number;
// If currentBlockSum > midpoint means that we are
// in a different block...
if (currentBlockSum > midpoint) {
++block;
// ...so we reset sum with the current number
currentBlockSum = number;
// but if we are out of blocks, our guess (midpoint) is incorrect
// and we will have to adjust it
if (block > numberOfBlocks)
break;
}
}
// If we are out of blocks
// it means that our guess (midpoint) is bigger than we thought
if (block > numberOfBlocks) {
begin = midpoint + 1;
// else, it's smaller
} else {
result = midpoint;
end = midpoint - 1;
}
}
return result;
}
Looking and testing at the solutions, none of them actually work.
I decided to spend some time on it, here is my solution (working for any use case with maximum performance).
using System;
using System.Linq;
class Solution
{
public int solution(int K, int M, int[] A)
{
int start = Math.Max((int)Math.Ceiling((decimal)A.Sum()/(decimal)K), A.Max());
int end = A.Sum();
int result = 0;
while(start <= end)
{
int dicotomie = (end + start) / 2;
if(calculateNbBlocks(dicotomie, A) <= K)
{
result = dicotomie;
end = dicotomie - 1;
}
else
start = dicotomie + 1;
}
return result;
}
public int calculateNbBlocks(int dicotomie, int[] A)
{
int nbBlocks = 1;
int sum = 0;
for(int i=0; i<A.Length; i++)
{
sum += A[i];
if(sum > dicotomie)
{
sum = A[i];
nbBlocks++;
}
}
return nbBlocks;
}
}
Scored 100% on Codility (https://app.codility.com/demo/results/trainingQYJ68K-KJR/) using const midpoint = Math.floor((begin + end) / 2);
instead of
const midpoint = (begin + end) / 2;
after copying Javascript code in answer by pytness (Nov 5, 2020 at 8:40).
/*
K = numberOfBlocks
M = maxNumber
A = array
*/
function solution(numberOfBlocks, maxNumber, array) {
let begin = array.reduce((a, b) => (a + b), 0); // Calculate total sum of A
// console.log("total sum of A: ", begin);
begin = Math.ceil(begin / numberOfBlocks); // Calculate the mean of each theoretical block
// console.log('Math.ceil(begin / numberOfBlocks): ', begin);
begin = Math.max(begin, Math.max(...array)); // Set begin to the highest number in array if > than the mean
// console.log('Math.max(begin, Math.max(...array)): ', begin);
// In short: begin is now the smallest possible block sum
// Calculate largest possible block sum
let end = begin + maxNumber + 1;
// console.log("end: ", end);
var result = 0;
while (begin <= end) {
// Calculate the midpoint, which is our result guess
const midpoint = Math.floor((begin + end) / 2);
// console.log("midpoint: ", midpoint);
let currentBlockSum = 0;
let block = 1;
for (let number of array) {
currentBlockSum += number;
// console.log("currentBlockSum: ", currentBlockSum);
// If currentBlockSum > midpoint means that we are
// in a different block...
if (currentBlockSum > midpoint) {
// console.log("currentBlockSum > midpoint");
++block;
// console.log("block: ", block);
// ...so we reset sum with the current number
currentBlockSum = number;
// console.log("currentBlockSum: ", currentBlockSum);
// but if we are out of blocks, our guess (midpoint) is incorrect
// and we will have to adjust it
if (block > numberOfBlocks) {
// console.log("block > numberOfBlocks before break");
// console.log("block: ", block);
// console.log("break");
break;
}
}
}
// If we are out of blocks, it means that our guess for midpoint is too small.
if (block > numberOfBlocks) {
// console.log("block > numberOfBlocks before begin");
begin = midpoint + 1;
// console.log("begin: ", begin);
}
// Else, it's too big.
else {
// console.log("block <= numberOfBlocks");
result = midpoint;
// console.log("result: ", result);
end = midpoint - 1;
// console.log("end: ", end);
}
}
// console.log("result: ", result);
return result;
}
How can I generate some unique random numbers between 1 and 100 using JavaScript?
For example: To generate 8 unique random numbers and store them to an array, you can simply do this:
var arr = [];
while(arr.length < 8){
var r = Math.floor(Math.random() * 100) + 1;
if(arr.indexOf(r) === -1) arr.push(r);
}
console.log(arr);
Populate an array with the numbers 1 through 100.
Shuffle it.
Take the first 8 elements of the resulting array.
Modern JS Solution using Set (and average case O(n))
const nums = new Set();
while(nums.size !== 8) {
nums.add(Math.floor(Math.random() * 100) + 1);
}
console.log([...nums]);
Another approach is to generate an 100 items array with ascending numbers and sort it randomly. This leads actually to a really short and (in my opinion) simple snippet.
const numbers = Array(100).fill().map((_, index) => index + 1);
numbers.sort(() => Math.random() - 0.5);
console.log(numbers.slice(0, 8));
Generate permutation of 100 numbers and then choose serially.
Use Knuth Shuffle(aka the Fisher-Yates shuffle) Algorithm.
JavaScript:
function fisherYates ( myArray,stop_count ) {
var i = myArray.length;
if ( i == 0 ) return false;
int c = 0;
while ( --i ) {
var j = Math.floor( Math.random() * ( i + 1 ) );
var tempi = myArray[i];
var tempj = myArray[j];
myArray[i] = tempj;
myArray[j] = tempi;
// Edited thanks to Frerich Raabe
c++;
if(c == stop_count)return;
}
}
CODE COPIED FROM LINK.
EDIT:
Improved code:
function fisherYates(myArray,nb_picks)
{
for (i = myArray.length-1; i > 1 ; i--)
{
var r = Math.floor(Math.random()*i);
var t = myArray[i];
myArray[i] = myArray[r];
myArray[r] = t;
}
return myArray.slice(0,nb_picks);
}
Potential problem:
Suppose we have array of 100 numbers {e.g. [1,2,3...100]} and we stop swapping after 8 swaps;
then most of the times array will look like {1,2,3,76,5,6,7,8,...numbers here will be shuffled ...10}.
Because every number will be swapped with probability 1/100 so
prob. of swapping first 8 numbers is 8/100 whereas prob. of swapping other 92 is 92/100.
But if we run algorithm for full array then we are sure (almost)every entry is swapped.
Otherwise we face a question : which 8 numbers to choose?
The above techniques are good if you want to avoid a library, but depending if you would be alright with a library, I would suggest checking out Chance for generating random stuff in JavaScript.
Specifically to solve your question, using Chance it's as easy as:
// One line!
var uniques = chance.unique(chance.natural, 8, {min: 1, max: 100});
// Print it out to the document for this snippet so we can see it in action
document.write(JSON.stringify(uniques));
<script src="http://chancejs.com/chance.min.js"></script>
Disclaimer, as the author of Chance, I am a bit biased ;)
To avoid any long and unreliable shuffles, I'd do the following...
Generate an array that contains the number between 1 and 100, in order.
Generate a random number between 1 and 100
Look up the number at this index in the array and store in your results
Remove the elemnt from the array, making it one shorter
Repeat from step 2, but use 99 as the upper limit of the random number
Repeat from step 2, but use 98 as the upper limit of the random number
Repeat from step 2, but use 97 as the upper limit of the random number
Repeat from step 2, but use 96 as the upper limit of the random number
Repeat from step 2, but use 95 as the upper limit of the random number
Repeat from step 2, but use 94 as the upper limit of the random number
Repeat from step 2, but use 93 as the upper limit of the random number
Voila - no repeated numbers.
I may post some actual code later, if anybody is interested.
Edit: It's probably the competitive streak in me but, having seen the post by #Alsciende, I couldn't resist posting the code that I promised.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html>
<head>
<title>8 unique random number between 1 and 100</title>
<script type="text/javascript" language="Javascript">
function pick(n, min, max){
var values = [], i = max;
while(i >= min) values.push(i--);
var results = [];
var maxIndex = max;
for(i=1; i <= n; i++){
maxIndex--;
var index = Math.floor(maxIndex * Math.random());
results.push(values[index]);
values[index] = values[maxIndex];
}
return results;
}
function go(){
var running = true;
do{
if(!confirm(pick(8, 1, 100).sort(function(a,b){return a - b;}))){
running = false;
}
}while(running)
}
</script>
</head>
<body>
<h1>8 unique random number between 1 and 100</h1>
<p><button onclick="go()">Click me</button> to start generating numbers.</p>
<p>When the numbers appear, click OK to generate another set, or Cancel to stop.</p>
</body>
I would do this:
function randomInt(min, max) {
return Math.round(min + Math.random()*(max-min));
}
var index = {}, numbers = [];
for (var i=0; i<8; ++i) {
var number;
do {
number = randomInt(1, 100);
} while (index.hasOwnProperty("_"+number));
index["_"+number] = true;
numbers.push(number);
}
delete index;
This is a very generic function I have written to generate random unique/non-unique integers for an array. Assume the last parameter to be true in this scenario for this answer.
/* Creates an array of random integers between the range specified
len = length of the array you want to generate
min = min value you require
max = max value you require
unique = whether you want unique or not (assume 'true' for this answer)
*/
function _arrayRandom(len, min, max, unique) {
var len = (len) ? len : 10,
min = (min !== undefined) ? min : 1,
max = (max !== undefined) ? max : 100,
unique = (unique) ? unique : false,
toReturn = [], tempObj = {}, i = 0;
if(unique === true) {
for(; i < len; i++) {
var randomInt = Math.floor(Math.random() * ((max - min) + min));
if(tempObj['key_'+ randomInt] === undefined) {
tempObj['key_'+ randomInt] = randomInt;
toReturn.push(randomInt);
} else {
i--;
}
}
} else {
for(; i < len; i++) {
toReturn.push(Math.floor(Math.random() * ((max - min) + min)));
}
}
return toReturn;
}
Here the 'tempObj' is a very useful obj since every random number generated will directly check in this tempObj if that key already exists, if not, then we reduce the i by one since we need 1 extra run since the current random number already exists.
In your case, run the following
_arrayRandom(8, 1, 100, true);
That's all.
Shuffling the numbers from 1 to 100 is the right basic strategy, but if you need only 8 shuffled numbers, there's no need to shuffle all 100 numbers.
I don't know Javascript very well, but I believe it's easy to create an array of 100 nulls quickly. Then, for 8 rounds, you swap the n'th element of the array (n starting at 0) with a randomly selected element from n+1 through 99. Of course, any elements not populated yet mean that the element would really have been the original index plus 1, so that's trivial to factor in. When you're done with the 8 rounds, the first 8 elements of your array will have your 8 shuffled numbers.
var arr = []
while(arr.length < 8){
var randomnumber=Math.ceil(Math.random()*100)
if(arr.indexOf(randomnumber) === -1){arr.push(randomnumber)}
}
document.write(arr);
shorter than other answers I've seen
Implementing this as a generator makes it pretty nice to work with. Note, this implementation differs from ones that require the entire input array to be shuffled first.
This sample function works lazily, giving you 1 random item per iteration up to N items you ask for. This is nice because if you just want 3 items from a list of 1000, you don't have to touch all 1000 items first.
// sample :: Integer -> [a] -> [a]
const sample = n => function* (xs) {
let ys = xs.slice(0);
let len = xs.length;
while (n > 0 && len > 0) {
let i = (Math.random() * len) >> 0;
yield ys.splice(i,1)[0];
n--; len--;
}
}
// example inputs
let items = ['a', 'b', 'c', 'd', 'e', 'f', 'g'];
let numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
// get 3 random items
for (let i of sample(3) (items))
console.log(i); // f g c
// partial application
const lotto = sample(3);
for (let i of lotto(numbers))
console.log(i); // 3 8 7
// shuffle an array
const shuffle = xs => Array.from(sample (Infinity) (xs))
console.log(shuffle(items)) // [b c g f d e a]
I chose to implement sample in a way that does not mutate the input array, but you could easily argue that a mutating implementation is favourable.
For example, the shuffle function might wish to mutate the original input array. Or you might wish to sample from the same input at various times, updating the input each time.
// sample :: Integer -> [a] -> [a]
const sample = n => function* (xs) {
let len = xs.length;
while (n > 0 && len > 0) {
let i = (Math.random() * len) >> 0;
yield xs.splice(i,1)[0];
n--; len--;
}
}
// deal :: [Card] -> [Card]
const deal = xs => Array.from(sample (2) (xs));
// setup a deck of cards (13 in this case)
// cards :: [Card]
let cards = 'A234567890JQK'.split('');
// deal 6 players 2 cards each
// players :: [[Card]]
let players = Array.from(Array(6), $=> deal(cards))
console.log(players);
// [K, J], [6, 0], [2, 8], [Q, 7], [5, 4], [9, A]
// `cards` has been mutated. only 1 card remains in the deck
console.log(cards);
// [3]
sample is no longer a pure function because of the array input mutation, but in certain circumstances (demonstrated above) it might make more sense.
Another reason I chose a generator instead of a function that just returns an array is because you may want to continue sampling until some specific condition.
Perhaps I want the first prime number from a list of 1,000,000 random numbers.
"How many should I sample?" – you don't have to specify
"Do I have to find all the primes first and then select a random prime?" – Nope.
Because we're working with a generator, this task is trivial
const randomPrimeNumber = listOfNumbers => {
for (let x of sample(Infinity) (listOfNumbers)) {
if (isPrime(x))
return x;
}
return NaN;
}
This will continuously sample 1 random number at a time, x, check if it's prime, then return x if it is. If the list of numbers is exhausted before a prime is found, NaN is returned.
Note:
This answer was originally shared on another question that was closed as a duplicate of this one. Because it's very different from the other solutions provided here, I've decided to share it here as well
var numbers = [];
for (let i = 0; i < 8; i++) {
let a = true,
n;
while(a) {
n = Math.floor(Math.random() * 100) + 1;
a = numbers.includes(n);
}
numbers.push(n);
}
console.log(numbers);
Same permutation algorithm as The Machine Charmer, but with a prototyped implementation. Better suited to large number of picks. Uses js 1.7 destructuring assignment if available.
// swaps elements at index i and j in array this
// swapping is easy on js 1.7 (feature detection)
Array.prototype.swap = (function () {
var i=0, j=1;
try { [i,j]=[j,i]; }
catch (e) {}
if(i) {
return function(i,j) {
[this[i],this[j]] = [this[j],this[i]];
return this;
}
} else {
return function(i,j) {
var temp = this[i];
this[i] = this[j];
this[j] = temp;
return this;
}
}
})();
// shuffles array this
Array.prototype.shuffle = function() {
for(var i=this.length; i>1; i--) {
this.swap(i-1, Math.floor(i*Math.random()));
}
return this;
}
// returns n unique random numbers between min and max
function pick(n, min, max) {
var a = [], i = max;
while(i >= min) a.push(i--);
return a.shuffle().slice(0,n);
}
pick(8,1,100);
Edit:
An other proposition, better suited to small number of picks, based on belugabob's answer. To guarantee uniqueness, we remove the picked numbers from the array.
// removes n random elements from array this
// and returns them
Array.prototype.pick = function(n) {
if(!n || !this.length) return [];
var i = Math.floor(this.length*Math.random());
return this.splice(i,1).concat(this.pick(n-1));
}
// returns n unique random numbers between min and max
function pick(n, min, max) {
var a = [], i = max;
while(i >= min) a.push(i--);
return a.pick(n);
}
pick(8,1,100);
for arrays with holes like this [,2,,4,,6,7,,]
because my problem was to fill these holes. So I modified it as per my need :)
the following modified solution worked for me :)
var arr = [,2,,4,,6,7,,]; //example
while(arr.length < 9){
var randomnumber=Math.floor(Math.random()*9+1);
var found=false;
for(var i=0;i<arr.length;i++){
if(arr[i]==randomnumber){found=true;break;}
}
if(!found)
for(k=0;k<9;k++)
{if(!arr[k]) //if it's empty !!MODIFICATION
{arr[k]=randomnumber; break;}}
}
alert(arr); //outputs on the screen
The best earlier answer is the answer by sje397. You will get as good random numbers as you can get, as quick as possible.
My solution is very similar to his solution. However, sometimes you want the random numbers in random order, and that is why I decided to post an answer. In addition, I provide a general function.
function selectKOutOfN(k, n) {
if (k>n) throw "k>n";
var selection = [];
var sorted = [];
for (var i = 0; i < k; i++) {
var rand = Math.floor(Math.random()*(n - i));
for (var j = 0; j < i; j++) {
if (sorted[j]<=rand)
rand++;
else
break;
}
selection.push(rand);
sorted.splice(j, 0, rand);
}
return selection;
}
alert(selectKOutOfN(8, 100));
Here is my ES6 version I cobbled together. I'm sure it can be a little more consolidated.
function randomArray(i, min, max) {
min = Math.ceil(min);
max = Math.floor(max);
let arr = Array.from({length: i}, () => Math.floor(Math.random()* (max - min)) + min);
return arr.sort();
}
let uniqueItems = [...new Set(randomArray(8, 0, 100))]
console.log(uniqueItems);
How about using object properties as a hash table? This way your best scenario is to only randomize 8 times. It would only be effective if you want a small part of the range of numbers. It's also much less memory intensive than Fisher-Yates because you don't have to allocate space for an array.
var ht={}, i=rands=8;
while ( i>0 || keys(ht).length<rands) ht[Math.ceil(Math.random()*100)]=i--;
alert(keys(ht));
I then found out that Object.keys(obj) is an ECMAScript 5 feature so the above is pretty much useless on the internets right now. Fear not, because I made it ECMAScript 3 compatible by adding a keys function like this.
if (typeof keys == "undefined")
{
var keys = function(obj)
{
props=[];
for (k in ht) if (ht.hasOwnProperty(k)) props.push(k);
return props;
}
}
var bombout=0;
var checkArr=[];
var arr=[];
while(arr.length < 8 && bombout<100){
bombout++;
var randomNumber=Math.ceil(Math.random()*100);
if(typeof checkArr[randomNumber] == "undefined"){
checkArr[randomNumber]=1;
arr.push(randomNumber);
}
}
// untested - hence bombout
if you need more unique you must generate a array(1..100).
var arr=[];
function generateRandoms(){
for(var i=1;i<=100;i++) arr.push(i);
}
function extractUniqueRandom()
{
if (arr.length==0) generateRandoms();
var randIndex=Math.floor(arr.length*Math.random());
var result=arr[randIndex];
arr.splice(randIndex,1);
return result;
}
function extractUniqueRandomArray(n)
{
var resultArr=[];
for(var i=0;i<n;i++) resultArr.push(extractUniqueRandom());
return resultArr;
}
above code is faster:
extractUniqueRandomArray(50)=>
[2, 79, 38, 59, 63, 42, 52, 22, 78, 50, 39, 77, 1, 88, 40, 23, 48, 84, 91, 49, 4, 54, 93, 36, 100, 82, 62, 41, 89, 12, 24, 31, 86, 92, 64, 75, 70, 61, 67, 98, 76, 80, 56, 90, 83, 44, 43, 47, 7, 53]
Adding another better version of same code (accepted answer) with JavaScript 1.6 indexOf function. Do not need to loop thru whole array every time you are checking the duplicate.
var arr = []
while(arr.length < 8){
var randomnumber=Math.ceil(Math.random()*100)
var found=false;
if(arr.indexOf(randomnumber) > -1){found=true;}
if(!found)arr[arr.length]=randomnumber;
}
Older version of Javascript can still use the version at top
PS: Tried suggesting an update to the wiki but it was rejected. I still think it may be useful for others.
This is my personal solution :
<script>
var i, k;
var numbers = new Array();
k = Math.floor((Math.random()*8));
numbers[0]=k;
for (var j=1;j<8;j++){
k = Math.floor((Math.random()*8));
i=0;
while (i < numbers.length){
if (numbers[i] == k){
k = Math.floor((Math.random()*8));
i=0;
}else {i++;}
}
numbers[j]=k;
}
for (var j=0;j<8;j++){
alert (numbers[j]);
}
</script>
It randomly generates 8 unique array values (between 0 and 7), then displays them using an alert box.
function getUniqueRandomNos() {
var indexedArrayOfRandomNo = [];
for (var i = 0; i < 100; i++) {
var randNo = Math.random();
indexedArrayOfRandomNo.push([i, randNo]);
}
indexedArrayOfRandomNo.sort(function (arr1, arr2) {
return arr1[1] - arr2[1]
});
var uniqueRandNoArray = [];
for (i = 0; i < 8; i++) {
uniqueRandNoArray.push(indexedArrayOfRandomNo[i][0]);
}
return uniqueRandNoArray;
}
I think this method is different from methods given in most of the answers, so I thought I might add an answer here (though the question was asked 4 years ago).
We generate 100 random numbers, and tag each of them with numbers from 1 to 100. Then we sort these tagged random numbers, and the tags get shuffled randomly. Alternatively, as needed in this question, one could do away with just finding top 8 of the tagged random numbers. Finding top 8 items is cheaper than sorting the whole array.
One must note here, that the sorting algorithm influences this algorithm. If the sorting algorithm used is stable, there is slight bias in favor of smaller numbers. Ideally, we would want the sorting algorithm to be unstable and not even biased towards stability (or instability) to produce an answer with perfectly uniform probability distribution.
This can handle generating upto 20 digit UNIQUE random number
JS
var generatedNumbers = [];
function generateRandomNumber(precision) { // input --> number precision in integer
if (precision <= 20) {
var randomNum = Math.round(Math.random().toFixed(precision) * Math.pow(10, precision));
if (generatedNumbers.indexOf(randomNum) > -1) {
if (generatedNumbers.length == Math.pow(10, precision))
return "Generated all values with this precision";
return generateRandomNumber(precision);
} else {
generatedNumbers.push(randomNum);
return randomNum;
}
} else
return "Number Precision shoould not exceed 20";
}
generateRandomNumber(1);
jsFiddle
This solution uses the hash which is much more performant O(1) than checking if the resides in the array. It has extra safe checks too. Hope it helps.
function uniqueArray(minRange, maxRange, arrayLength) {
var arrayLength = (arrayLength) ? arrayLength : 10
var minRange = (minRange !== undefined) ? minRange : 1
var maxRange = (maxRange !== undefined) ? maxRange : 100
var numberOfItemsInArray = 0
var hash = {}
var array = []
if ( arrayLength > (maxRange - minRange) ) throw new Error('Cannot generate unique array: Array length too high')
while(numberOfItemsInArray < arrayLength){
// var randomNumber = Math.floor(Math.random() * (maxRange - minRange + 1) + minRange)
// following line used for performance benefits
var randomNumber = (Math.random() * (maxRange - minRange + 1) + minRange) << 0
if (!hash[randomNumber]) {
hash[randomNumber] = true
array.push(randomNumber)
numberOfItemsInArray++
}
}
return array
}
document.write(uniqueArray(1, 100, 8))
You can also do it with a one liner like this:
[...((add, set) => add(set, add))((set, add) => set.size < 8 ? add(set.add(Math.floor(Math.random()*100) + 1), add) : set, new Set())]
getRandom (min, max) {
return Math.floor(Math.random() * (max - min)) + min
}
getNRandom (min, max, n) {
const numbers = []
if (min > max) {
return new Error('Max is gt min')
}
if (min === max) {
return [min]
}
if ((max - min) >= n) {
while (numbers.length < n) {
let rand = this.getRandom(min, max + 1)
if (numbers.indexOf(rand) === -1) {
numbers.push(rand)
}
}
}
if ((max - min) < n) {
for (let i = min; i <= max; i++) {
numbers.push(i)
}
}
return numbers
}
Using a Set is your fastest option. Here is a generic function for getting a unique random that uses a callback generator. Now it's fast and reusable.
// Get a unique 'anything'
let unique = new Set()
function getUnique(generator) {
let number = generator()
while (!unique.add(number)) {
number = generator()
}
return number;
}
// The generator. Return anything, not just numbers.
const between_1_100 = () => 1 + Math.floor(Math.random() * 100)
// Test it
for (var i = 0; i < 8; i++) {
const aNumber = getUnique(between_1_100)
}
// Dump the 'stored numbers'
console.log(Array.from(unique))
This is a implementation of Fisher Yates/Durstenfeld Shuffle, but without actual creation of a array thus reducing space complexity or memory needed, when the pick size is small compared to the number of elements available.
To pick 8 numbers from 100, it is not necessary to create a array of 100 elements.
Assuming a array is created,
From the end of array(100), get random number(rnd) from 1 to 100
Swap 100 and the random number rnd
Repeat step 1 with array(99)
If a array is not created, A hashMap may be used to remember the actual swapped positions. When the second random number generated is equal to the one of the previously generated numbers, the map provides the current value in that position rather than the actual value.
const getRandom_ = (start, end) => {
return Math.floor(Math.random() * (end - start + 1)) + start;
};
const getRealValue_ = (map, rnd) => {
if (map.has(rnd)) {
return getRealValue_(map, map.get(rnd));
} else {
return rnd;
}
};
const getRandomNumbers = (n, start, end) => {
const out = new Map();
while (n--) {
const rnd = getRandom_(start, end--);
out.set(getRealValue_(out, rnd), end + 1);
}
return [...out.keys()];
};
console.info(getRandomNumbers(8, 1, 100));
console.info(getRandomNumbers(8, 1, Math.pow(10, 12)));
console.info(getRandomNumbers(800000, 1, Math.pow(10, 15)));
Here is an example of random 5 numbers taken from a range of 0 to 100 (both 0 and 100 included) with no duplication.
let finals = [];
const count = 5; // Considering 5 numbers
const max = 100;
for(let i = 0; i < max; i++){
const rand = Math.round(Math.random() * max);
!finals.includes(rand) && finals.push(rand)
}
finals = finals.slice(0, count)
I have an array of 10+ numbers. They represent coordinates on a circle - in degrees, i.e. each number is in between 0 and 359.999999...
The problem I am trying to solve is that when I draw my items on the circle (via html5 canvas api), sometimes they are clustered together and that results in items being drawn onto each other.
So I would like to create an algorithm which disperses items evenly around their initial cluster position. Let's say (and I'd like this to be a configurable option) the minimal distance between two items is 5 degrees.
So if the initial array is [5, 41, 97, 101, 103, 158, 201, 214, 216, 217, 320] then I would like the algorithm come up with something like [5, 41, 95, 100, 105, 158, 201, 211, 216, 221, 320]
(with bolded items being dispersed around their initial "gravity center" regardless whether those are 2 or more items).
Also what would be neccessary is that the algorithm recognizes 0 and 359 being just 1 unit (degree) apart and also spread such items evenly around.
Has anyone ever created such algorithm or have a good idea how it could be achieved? Even some general thoughts are welcome.
I'm sure I could achieve that with plenty of trial and error, but I'd like to hear some educated guesses, if you will, first.
var val = [5, 41, 96, 101, 103, 158, 201, 214, 216, 217, 320, 1201, 1213, 1214, 1216, 1217, 1320],
delta = Array.apply(null, { length: val.length }).map(function () { return 0 }),
result,
threshold = 5,
converged = false;
document.write('val: ' + val + '<br>');
while (!converged) {
converged = true;
delta = delta.map(function (d, i) {
if (i < delta.length - 1 && delta.length > 1) {
if (val[i + 1] + delta[i + 1] - val[i] - d < threshold) {
converged = false;
delta[i + 1] += 1;
return d - 1;
}
}
return d;
});
document.write('delta: ' + delta + '<br>');
}
result = val.map(function (v, i) {
return v + delta[i];
});
document.write('result: ' + result + '<br>');
// try to minimise difference
converged = false;
while (!converged) {
converged = true;
delta = delta.map(function (d, i) {
if (i < delta.length - 2) {
var space = val[i + 1] + delta[i + 1] - val[i] - d;
if (d < 0 && space > threshold) {
converged = false;
return d + space - threshold;
}
}
return d;
});
document.write('delta min: ' + delta + '<br>');
}
result = val.map(function (v, i) {
return v + delta[i];
});
document.write('result: ' + result + '<br>');
the code pushes two too close couples appart with one on each side. this is symetrically and results in sometimes to far pushed values, which can be corrected.
[not implemented!]
if the space of your values is not sufficient, [0..360[ or by more then 72 elements with a difference of 5 the the while loop may not come to an end.
edit: the minimise block should iterate until all values are correted.
To get that "evenly random" distribution, say you have N numbers - split the circle into N segments, then randomly place each number into its segment.
That way you won't even need to care about 0 and 359 being only 1 unit apart.
Here's an idea:
var numbers = 5;
var segment = 360/numbers;
var result = [];
for(var i = 0; i < numbers; i++) {
result.push(Math.round((Math.random() + i) * segment));
}
alert(result.join(','));
Here's a more graphical idea (imagine folding the rectangle into a cylinder):
var numbers = 5;
var segment = 360 / numbers;
var minimum = 15;
var div = document.getElementById('r');
function build() {
var result = [];
div.innerHTML = '';
for (var i = 0; i < numbers; i++) {
var current = 0;
while(current < minimum + (result[result.length - 1] || 0)) {
current = Math.round((Math.random() + i) * segment);
}
result.push(current);
var d = document.createElement('div');
d.className = 'segment';
d.style.left = (result[result.length - 2] || 0) + 'px';
d.style.width = (current - (result[result.length - 2] || 0) - 1) + 'px';
d.textContent = current;
div.appendChild(d);
}
console.log(result.join(','));
}
build();
.segment {
height: 100%;
position: absolute;
font-size: 12px;
text-align: right;
border-right: 1px solid black;
}
#r {
height: 100%;
width: 360px;
background: #eee;
}
html, body {
height: 100%;
margin: 0;
padding: 0;
}
button {
position: absolute;
right: 4px;
margin: 0;
}
<button onclick="build()">Rebuild</button>
<div id="r"></div>
Algorithms that pretty-print graphs use a system of springs to move vertices away from each other when they overlap. Here, you are dealing with just one dimension and may get away with iteratively adjusting nearby angles until all nodes are at least 5 degrees apart.
You can deal with the cyclic values by creating an auxiliary working array, such that the elements are reordered after the largest gap. This allows you to treat the array as linear values without having to care about wrapping:
[2, 7, 320, 359] -> [-40, -1, 2, 7]
The code below does this. The nodes are moved in a rather crude fashion, though: The code only looks at pairs of nodes that are too close. The code can probably be improved by loking at clusters of two or more nodes that are too close to each other:
function adjust(arr, dist)
{
var offset = 0;
var max = 360.0 + arr[0] - arr[arr.length - 1];
var min = max;
var mix = 0; // index of first elment after largest gap
// exit early if array can't be adjusted
if (dist * arr.length > 240.0) return arr;
// find largest gap
for (var i = 1; i < arr.length; i++) {
var d = arr[i] - arr[i - 1];
if (d > max) {
max = d;
mix = i;
}
if (d < min) min = d;
}
var x = []; // working array
var adj = []; // final, adjusted array
// create working array on greatest gap
for (var i = 0; i < arr.length; i++) {
if (i + mix < arr.length) {
x.push(arr[i + mix] - 360);
} else {
x.push(arr[i + mix - arr.length]);
}
}
// iteratively adjust angles
while (min < dist) {
min = dist;
for (var i = 1; i < x.length; i++) {
var d = x[i] - x[i - 1];
if (d < dist) {
if (d < min) min = d;
x[i - 1] -= (dist - d) / 2;
x[i] += (dist - d) / 2;
}
}
}
// create final array
for (var i = 0; i < x.length; i++) {
if (i - mix < 0) {
adj.push(x[i - mix + x.length]);
} else {
adj.push(x[i - mix] + 360);
}
}
return adj;
}
This question already has answers here:
Find the number in an array that is closest to a given number
(7 answers)
Closed 9 years ago.
I am fairly new to javascript and I'm having problems finding the most efficient way to calculate the problem below
I have an array of objects. Each object has a time stamp and a total field. I have a number saved as a variable and I want to loop through the array to find the timestamp of the object with the total field closest to my number.
This is a sorted array so the numbers are always increasing so for example the numbers could look like this:
Jan 125
Feb 150
Mar 200
Apr 275
If the number I have is 205 I would like to get the result Mar back.
They are objects taken from a mongoDb so look something like this
{TimeStamp: "2013-06-24 01:00", Delivered: 464, Queued: 39, Total: 503}
{TimeStamp: "2013-07-02 01:00", Delivered: 485, Queued: 37, Total: 522}
{TimeStamp: "2013-07-05 01:00", Delivered: 501, Queued: 41, Total: 542}
{TimeStamp: "2013-07-08 09:48", Delivered: 501, Queued: 64, Total: 565}
If the list is already sorted on the right field, you can use this code to find the minimum distance in O(n):
var data = [
{total: 125, name: 'Jan'},
{total: 150, name: 'Feb'},
{total: 200, name: 'Mar'},
{total: 275, name: 'Apr'}
];
function getClosest(arr, value)
{
var closest, mindiff = null;
for (var i = 0; i < arr.length; ++i) {
var diff = Math.abs(arr[i].total - value);
if (mindiff === null || diff < mindiff) {
// first value or trend decreasing
closest = i;
mindiff = diff;
} else {
// trend will increase from this point onwards
return arr[closest];
}
}
return null;
}
You keep track of the currently closest object and its corresponding (absolute) difference between the total and the searched value.
You keep updating those two values as long as the difference decreases. When that no longer happens you can return immediately, because you know it will never decrease afterwards.
To use it:
getClosest(data, 200);
I've got this helpful generic function:
function min(ary, key) {
return ary.map(function(x) {
return [key ? key(x) : x, x]
}).reduce(function(m, x) {
return x[0] < m[0] ? x : m;
})[1]
}
It finds a minimal element in the array using key as a comparison function. Applied to your problem:
number = ...
closestTimestamp = min(arrayOfRecords, function(record) {
return Math.abs(number - record.total)
}).TimeStamp;
var numbers = [122,231,323,53];
var myNumber = 200;
var difference = 9999;
var nearest = null;
for (i = 0 ; i < numbers.lenght; i++){
var candidate = numbers[i];
var currentDifference = Math.abs(myNumber - candidate);
if (currentDifference < difference) {
nearest = candidate; difference = currentDifference;
}
}
You can use a binary search for that value. Adapted from this answer:
function nearestIndex(arr, compare) { // binary search, with custom compare function
var l = 0,
r = arr.length - 1;
while (l <= r) {
var m = l + ((r - l) >> 1);
var comp = compare(arr[m]);
if (comp < 0) // arr[m] comes before the element
l = m + 1;
else if (comp > 0) // arr[m] comes after the element
r = m - 1;
else // this[m] equals the element
return m;
}
// now, l == r+1
// usually you would just return -1 in case nothing is found
if (l == arr.length) return r;
if (r == 0) return 0;
if (Math.abs(compare(arr[l])) > Math.abs(compare(arr[r]))) // "closer"
return r;
else
return l;
}
var items = […];
var i=nearestIndex(items, function(x){return x.Total-532;}); // compare against 532
console.log(items[i].TimeStamp);
How can I generate some unique random numbers between 1 and 100 using JavaScript?
For example: To generate 8 unique random numbers and store them to an array, you can simply do this:
var arr = [];
while(arr.length < 8){
var r = Math.floor(Math.random() * 100) + 1;
if(arr.indexOf(r) === -1) arr.push(r);
}
console.log(arr);
Populate an array with the numbers 1 through 100.
Shuffle it.
Take the first 8 elements of the resulting array.
Modern JS Solution using Set (and average case O(n))
const nums = new Set();
while(nums.size !== 8) {
nums.add(Math.floor(Math.random() * 100) + 1);
}
console.log([...nums]);
Another approach is to generate an 100 items array with ascending numbers and sort it randomly. This leads actually to a really short and (in my opinion) simple snippet.
const numbers = Array(100).fill().map((_, index) => index + 1);
numbers.sort(() => Math.random() - 0.5);
console.log(numbers.slice(0, 8));
Generate permutation of 100 numbers and then choose serially.
Use Knuth Shuffle(aka the Fisher-Yates shuffle) Algorithm.
JavaScript:
function fisherYates ( myArray,stop_count ) {
var i = myArray.length;
if ( i == 0 ) return false;
int c = 0;
while ( --i ) {
var j = Math.floor( Math.random() * ( i + 1 ) );
var tempi = myArray[i];
var tempj = myArray[j];
myArray[i] = tempj;
myArray[j] = tempi;
// Edited thanks to Frerich Raabe
c++;
if(c == stop_count)return;
}
}
CODE COPIED FROM LINK.
EDIT:
Improved code:
function fisherYates(myArray,nb_picks)
{
for (i = myArray.length-1; i > 1 ; i--)
{
var r = Math.floor(Math.random()*i);
var t = myArray[i];
myArray[i] = myArray[r];
myArray[r] = t;
}
return myArray.slice(0,nb_picks);
}
Potential problem:
Suppose we have array of 100 numbers {e.g. [1,2,3...100]} and we stop swapping after 8 swaps;
then most of the times array will look like {1,2,3,76,5,6,7,8,...numbers here will be shuffled ...10}.
Because every number will be swapped with probability 1/100 so
prob. of swapping first 8 numbers is 8/100 whereas prob. of swapping other 92 is 92/100.
But if we run algorithm for full array then we are sure (almost)every entry is swapped.
Otherwise we face a question : which 8 numbers to choose?
The above techniques are good if you want to avoid a library, but depending if you would be alright with a library, I would suggest checking out Chance for generating random stuff in JavaScript.
Specifically to solve your question, using Chance it's as easy as:
// One line!
var uniques = chance.unique(chance.natural, 8, {min: 1, max: 100});
// Print it out to the document for this snippet so we can see it in action
document.write(JSON.stringify(uniques));
<script src="http://chancejs.com/chance.min.js"></script>
Disclaimer, as the author of Chance, I am a bit biased ;)
To avoid any long and unreliable shuffles, I'd do the following...
Generate an array that contains the number between 1 and 100, in order.
Generate a random number between 1 and 100
Look up the number at this index in the array and store in your results
Remove the elemnt from the array, making it one shorter
Repeat from step 2, but use 99 as the upper limit of the random number
Repeat from step 2, but use 98 as the upper limit of the random number
Repeat from step 2, but use 97 as the upper limit of the random number
Repeat from step 2, but use 96 as the upper limit of the random number
Repeat from step 2, but use 95 as the upper limit of the random number
Repeat from step 2, but use 94 as the upper limit of the random number
Repeat from step 2, but use 93 as the upper limit of the random number
Voila - no repeated numbers.
I may post some actual code later, if anybody is interested.
Edit: It's probably the competitive streak in me but, having seen the post by #Alsciende, I couldn't resist posting the code that I promised.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html>
<head>
<title>8 unique random number between 1 and 100</title>
<script type="text/javascript" language="Javascript">
function pick(n, min, max){
var values = [], i = max;
while(i >= min) values.push(i--);
var results = [];
var maxIndex = max;
for(i=1; i <= n; i++){
maxIndex--;
var index = Math.floor(maxIndex * Math.random());
results.push(values[index]);
values[index] = values[maxIndex];
}
return results;
}
function go(){
var running = true;
do{
if(!confirm(pick(8, 1, 100).sort(function(a,b){return a - b;}))){
running = false;
}
}while(running)
}
</script>
</head>
<body>
<h1>8 unique random number between 1 and 100</h1>
<p><button onclick="go()">Click me</button> to start generating numbers.</p>
<p>When the numbers appear, click OK to generate another set, or Cancel to stop.</p>
</body>
I would do this:
function randomInt(min, max) {
return Math.round(min + Math.random()*(max-min));
}
var index = {}, numbers = [];
for (var i=0; i<8; ++i) {
var number;
do {
number = randomInt(1, 100);
} while (index.hasOwnProperty("_"+number));
index["_"+number] = true;
numbers.push(number);
}
delete index;
This is a very generic function I have written to generate random unique/non-unique integers for an array. Assume the last parameter to be true in this scenario for this answer.
/* Creates an array of random integers between the range specified
len = length of the array you want to generate
min = min value you require
max = max value you require
unique = whether you want unique or not (assume 'true' for this answer)
*/
function _arrayRandom(len, min, max, unique) {
var len = (len) ? len : 10,
min = (min !== undefined) ? min : 1,
max = (max !== undefined) ? max : 100,
unique = (unique) ? unique : false,
toReturn = [], tempObj = {}, i = 0;
if(unique === true) {
for(; i < len; i++) {
var randomInt = Math.floor(Math.random() * ((max - min) + min));
if(tempObj['key_'+ randomInt] === undefined) {
tempObj['key_'+ randomInt] = randomInt;
toReturn.push(randomInt);
} else {
i--;
}
}
} else {
for(; i < len; i++) {
toReturn.push(Math.floor(Math.random() * ((max - min) + min)));
}
}
return toReturn;
}
Here the 'tempObj' is a very useful obj since every random number generated will directly check in this tempObj if that key already exists, if not, then we reduce the i by one since we need 1 extra run since the current random number already exists.
In your case, run the following
_arrayRandom(8, 1, 100, true);
That's all.
Shuffling the numbers from 1 to 100 is the right basic strategy, but if you need only 8 shuffled numbers, there's no need to shuffle all 100 numbers.
I don't know Javascript very well, but I believe it's easy to create an array of 100 nulls quickly. Then, for 8 rounds, you swap the n'th element of the array (n starting at 0) with a randomly selected element from n+1 through 99. Of course, any elements not populated yet mean that the element would really have been the original index plus 1, so that's trivial to factor in. When you're done with the 8 rounds, the first 8 elements of your array will have your 8 shuffled numbers.
var arr = []
while(arr.length < 8){
var randomnumber=Math.ceil(Math.random()*100)
if(arr.indexOf(randomnumber) === -1){arr.push(randomnumber)}
}
document.write(arr);
shorter than other answers I've seen
Implementing this as a generator makes it pretty nice to work with. Note, this implementation differs from ones that require the entire input array to be shuffled first.
This sample function works lazily, giving you 1 random item per iteration up to N items you ask for. This is nice because if you just want 3 items from a list of 1000, you don't have to touch all 1000 items first.
// sample :: Integer -> [a] -> [a]
const sample = n => function* (xs) {
let ys = xs.slice(0);
let len = xs.length;
while (n > 0 && len > 0) {
let i = (Math.random() * len) >> 0;
yield ys.splice(i,1)[0];
n--; len--;
}
}
// example inputs
let items = ['a', 'b', 'c', 'd', 'e', 'f', 'g'];
let numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
// get 3 random items
for (let i of sample(3) (items))
console.log(i); // f g c
// partial application
const lotto = sample(3);
for (let i of lotto(numbers))
console.log(i); // 3 8 7
// shuffle an array
const shuffle = xs => Array.from(sample (Infinity) (xs))
console.log(shuffle(items)) // [b c g f d e a]
I chose to implement sample in a way that does not mutate the input array, but you could easily argue that a mutating implementation is favourable.
For example, the shuffle function might wish to mutate the original input array. Or you might wish to sample from the same input at various times, updating the input each time.
// sample :: Integer -> [a] -> [a]
const sample = n => function* (xs) {
let len = xs.length;
while (n > 0 && len > 0) {
let i = (Math.random() * len) >> 0;
yield xs.splice(i,1)[0];
n--; len--;
}
}
// deal :: [Card] -> [Card]
const deal = xs => Array.from(sample (2) (xs));
// setup a deck of cards (13 in this case)
// cards :: [Card]
let cards = 'A234567890JQK'.split('');
// deal 6 players 2 cards each
// players :: [[Card]]
let players = Array.from(Array(6), $=> deal(cards))
console.log(players);
// [K, J], [6, 0], [2, 8], [Q, 7], [5, 4], [9, A]
// `cards` has been mutated. only 1 card remains in the deck
console.log(cards);
// [3]
sample is no longer a pure function because of the array input mutation, but in certain circumstances (demonstrated above) it might make more sense.
Another reason I chose a generator instead of a function that just returns an array is because you may want to continue sampling until some specific condition.
Perhaps I want the first prime number from a list of 1,000,000 random numbers.
"How many should I sample?" – you don't have to specify
"Do I have to find all the primes first and then select a random prime?" – Nope.
Because we're working with a generator, this task is trivial
const randomPrimeNumber = listOfNumbers => {
for (let x of sample(Infinity) (listOfNumbers)) {
if (isPrime(x))
return x;
}
return NaN;
}
This will continuously sample 1 random number at a time, x, check if it's prime, then return x if it is. If the list of numbers is exhausted before a prime is found, NaN is returned.
Note:
This answer was originally shared on another question that was closed as a duplicate of this one. Because it's very different from the other solutions provided here, I've decided to share it here as well
var numbers = [];
for (let i = 0; i < 8; i++) {
let a = true,
n;
while(a) {
n = Math.floor(Math.random() * 100) + 1;
a = numbers.includes(n);
}
numbers.push(n);
}
console.log(numbers);
Same permutation algorithm as The Machine Charmer, but with a prototyped implementation. Better suited to large number of picks. Uses js 1.7 destructuring assignment if available.
// swaps elements at index i and j in array this
// swapping is easy on js 1.7 (feature detection)
Array.prototype.swap = (function () {
var i=0, j=1;
try { [i,j]=[j,i]; }
catch (e) {}
if(i) {
return function(i,j) {
[this[i],this[j]] = [this[j],this[i]];
return this;
}
} else {
return function(i,j) {
var temp = this[i];
this[i] = this[j];
this[j] = temp;
return this;
}
}
})();
// shuffles array this
Array.prototype.shuffle = function() {
for(var i=this.length; i>1; i--) {
this.swap(i-1, Math.floor(i*Math.random()));
}
return this;
}
// returns n unique random numbers between min and max
function pick(n, min, max) {
var a = [], i = max;
while(i >= min) a.push(i--);
return a.shuffle().slice(0,n);
}
pick(8,1,100);
Edit:
An other proposition, better suited to small number of picks, based on belugabob's answer. To guarantee uniqueness, we remove the picked numbers from the array.
// removes n random elements from array this
// and returns them
Array.prototype.pick = function(n) {
if(!n || !this.length) return [];
var i = Math.floor(this.length*Math.random());
return this.splice(i,1).concat(this.pick(n-1));
}
// returns n unique random numbers between min and max
function pick(n, min, max) {
var a = [], i = max;
while(i >= min) a.push(i--);
return a.pick(n);
}
pick(8,1,100);
for arrays with holes like this [,2,,4,,6,7,,]
because my problem was to fill these holes. So I modified it as per my need :)
the following modified solution worked for me :)
var arr = [,2,,4,,6,7,,]; //example
while(arr.length < 9){
var randomnumber=Math.floor(Math.random()*9+1);
var found=false;
for(var i=0;i<arr.length;i++){
if(arr[i]==randomnumber){found=true;break;}
}
if(!found)
for(k=0;k<9;k++)
{if(!arr[k]) //if it's empty !!MODIFICATION
{arr[k]=randomnumber; break;}}
}
alert(arr); //outputs on the screen
The best earlier answer is the answer by sje397. You will get as good random numbers as you can get, as quick as possible.
My solution is very similar to his solution. However, sometimes you want the random numbers in random order, and that is why I decided to post an answer. In addition, I provide a general function.
function selectKOutOfN(k, n) {
if (k>n) throw "k>n";
var selection = [];
var sorted = [];
for (var i = 0; i < k; i++) {
var rand = Math.floor(Math.random()*(n - i));
for (var j = 0; j < i; j++) {
if (sorted[j]<=rand)
rand++;
else
break;
}
selection.push(rand);
sorted.splice(j, 0, rand);
}
return selection;
}
alert(selectKOutOfN(8, 100));
Here is my ES6 version I cobbled together. I'm sure it can be a little more consolidated.
function randomArray(i, min, max) {
min = Math.ceil(min);
max = Math.floor(max);
let arr = Array.from({length: i}, () => Math.floor(Math.random()* (max - min)) + min);
return arr.sort();
}
let uniqueItems = [...new Set(randomArray(8, 0, 100))]
console.log(uniqueItems);
How about using object properties as a hash table? This way your best scenario is to only randomize 8 times. It would only be effective if you want a small part of the range of numbers. It's also much less memory intensive than Fisher-Yates because you don't have to allocate space for an array.
var ht={}, i=rands=8;
while ( i>0 || keys(ht).length<rands) ht[Math.ceil(Math.random()*100)]=i--;
alert(keys(ht));
I then found out that Object.keys(obj) is an ECMAScript 5 feature so the above is pretty much useless on the internets right now. Fear not, because I made it ECMAScript 3 compatible by adding a keys function like this.
if (typeof keys == "undefined")
{
var keys = function(obj)
{
props=[];
for (k in ht) if (ht.hasOwnProperty(k)) props.push(k);
return props;
}
}
var bombout=0;
var checkArr=[];
var arr=[];
while(arr.length < 8 && bombout<100){
bombout++;
var randomNumber=Math.ceil(Math.random()*100);
if(typeof checkArr[randomNumber] == "undefined"){
checkArr[randomNumber]=1;
arr.push(randomNumber);
}
}
// untested - hence bombout
if you need more unique you must generate a array(1..100).
var arr=[];
function generateRandoms(){
for(var i=1;i<=100;i++) arr.push(i);
}
function extractUniqueRandom()
{
if (arr.length==0) generateRandoms();
var randIndex=Math.floor(arr.length*Math.random());
var result=arr[randIndex];
arr.splice(randIndex,1);
return result;
}
function extractUniqueRandomArray(n)
{
var resultArr=[];
for(var i=0;i<n;i++) resultArr.push(extractUniqueRandom());
return resultArr;
}
above code is faster:
extractUniqueRandomArray(50)=>
[2, 79, 38, 59, 63, 42, 52, 22, 78, 50, 39, 77, 1, 88, 40, 23, 48, 84, 91, 49, 4, 54, 93, 36, 100, 82, 62, 41, 89, 12, 24, 31, 86, 92, 64, 75, 70, 61, 67, 98, 76, 80, 56, 90, 83, 44, 43, 47, 7, 53]
Adding another better version of same code (accepted answer) with JavaScript 1.6 indexOf function. Do not need to loop thru whole array every time you are checking the duplicate.
var arr = []
while(arr.length < 8){
var randomnumber=Math.ceil(Math.random()*100)
var found=false;
if(arr.indexOf(randomnumber) > -1){found=true;}
if(!found)arr[arr.length]=randomnumber;
}
Older version of Javascript can still use the version at top
PS: Tried suggesting an update to the wiki but it was rejected. I still think it may be useful for others.
This is my personal solution :
<script>
var i, k;
var numbers = new Array();
k = Math.floor((Math.random()*8));
numbers[0]=k;
for (var j=1;j<8;j++){
k = Math.floor((Math.random()*8));
i=0;
while (i < numbers.length){
if (numbers[i] == k){
k = Math.floor((Math.random()*8));
i=0;
}else {i++;}
}
numbers[j]=k;
}
for (var j=0;j<8;j++){
alert (numbers[j]);
}
</script>
It randomly generates 8 unique array values (between 0 and 7), then displays them using an alert box.
function getUniqueRandomNos() {
var indexedArrayOfRandomNo = [];
for (var i = 0; i < 100; i++) {
var randNo = Math.random();
indexedArrayOfRandomNo.push([i, randNo]);
}
indexedArrayOfRandomNo.sort(function (arr1, arr2) {
return arr1[1] - arr2[1]
});
var uniqueRandNoArray = [];
for (i = 0; i < 8; i++) {
uniqueRandNoArray.push(indexedArrayOfRandomNo[i][0]);
}
return uniqueRandNoArray;
}
I think this method is different from methods given in most of the answers, so I thought I might add an answer here (though the question was asked 4 years ago).
We generate 100 random numbers, and tag each of them with numbers from 1 to 100. Then we sort these tagged random numbers, and the tags get shuffled randomly. Alternatively, as needed in this question, one could do away with just finding top 8 of the tagged random numbers. Finding top 8 items is cheaper than sorting the whole array.
One must note here, that the sorting algorithm influences this algorithm. If the sorting algorithm used is stable, there is slight bias in favor of smaller numbers. Ideally, we would want the sorting algorithm to be unstable and not even biased towards stability (or instability) to produce an answer with perfectly uniform probability distribution.
This can handle generating upto 20 digit UNIQUE random number
JS
var generatedNumbers = [];
function generateRandomNumber(precision) { // input --> number precision in integer
if (precision <= 20) {
var randomNum = Math.round(Math.random().toFixed(precision) * Math.pow(10, precision));
if (generatedNumbers.indexOf(randomNum) > -1) {
if (generatedNumbers.length == Math.pow(10, precision))
return "Generated all values with this precision";
return generateRandomNumber(precision);
} else {
generatedNumbers.push(randomNum);
return randomNum;
}
} else
return "Number Precision shoould not exceed 20";
}
generateRandomNumber(1);
jsFiddle
This solution uses the hash which is much more performant O(1) than checking if the resides in the array. It has extra safe checks too. Hope it helps.
function uniqueArray(minRange, maxRange, arrayLength) {
var arrayLength = (arrayLength) ? arrayLength : 10
var minRange = (minRange !== undefined) ? minRange : 1
var maxRange = (maxRange !== undefined) ? maxRange : 100
var numberOfItemsInArray = 0
var hash = {}
var array = []
if ( arrayLength > (maxRange - minRange) ) throw new Error('Cannot generate unique array: Array length too high')
while(numberOfItemsInArray < arrayLength){
// var randomNumber = Math.floor(Math.random() * (maxRange - minRange + 1) + minRange)
// following line used for performance benefits
var randomNumber = (Math.random() * (maxRange - minRange + 1) + minRange) << 0
if (!hash[randomNumber]) {
hash[randomNumber] = true
array.push(randomNumber)
numberOfItemsInArray++
}
}
return array
}
document.write(uniqueArray(1, 100, 8))
You can also do it with a one liner like this:
[...((add, set) => add(set, add))((set, add) => set.size < 8 ? add(set.add(Math.floor(Math.random()*100) + 1), add) : set, new Set())]
getRandom (min, max) {
return Math.floor(Math.random() * (max - min)) + min
}
getNRandom (min, max, n) {
const numbers = []
if (min > max) {
return new Error('Max is gt min')
}
if (min === max) {
return [min]
}
if ((max - min) >= n) {
while (numbers.length < n) {
let rand = this.getRandom(min, max + 1)
if (numbers.indexOf(rand) === -1) {
numbers.push(rand)
}
}
}
if ((max - min) < n) {
for (let i = min; i <= max; i++) {
numbers.push(i)
}
}
return numbers
}
Using a Set is your fastest option. Here is a generic function for getting a unique random that uses a callback generator. Now it's fast and reusable.
// Get a unique 'anything'
let unique = new Set()
function getUnique(generator) {
let number = generator()
while (!unique.add(number)) {
number = generator()
}
return number;
}
// The generator. Return anything, not just numbers.
const between_1_100 = () => 1 + Math.floor(Math.random() * 100)
// Test it
for (var i = 0; i < 8; i++) {
const aNumber = getUnique(between_1_100)
}
// Dump the 'stored numbers'
console.log(Array.from(unique))
This is a implementation of Fisher Yates/Durstenfeld Shuffle, but without actual creation of a array thus reducing space complexity or memory needed, when the pick size is small compared to the number of elements available.
To pick 8 numbers from 100, it is not necessary to create a array of 100 elements.
Assuming a array is created,
From the end of array(100), get random number(rnd) from 1 to 100
Swap 100 and the random number rnd
Repeat step 1 with array(99)
If a array is not created, A hashMap may be used to remember the actual swapped positions. When the second random number generated is equal to the one of the previously generated numbers, the map provides the current value in that position rather than the actual value.
const getRandom_ = (start, end) => {
return Math.floor(Math.random() * (end - start + 1)) + start;
};
const getRealValue_ = (map, rnd) => {
if (map.has(rnd)) {
return getRealValue_(map, map.get(rnd));
} else {
return rnd;
}
};
const getRandomNumbers = (n, start, end) => {
const out = new Map();
while (n--) {
const rnd = getRandom_(start, end--);
out.set(getRealValue_(out, rnd), end + 1);
}
return [...out.keys()];
};
console.info(getRandomNumbers(8, 1, 100));
console.info(getRandomNumbers(8, 1, Math.pow(10, 12)));
console.info(getRandomNumbers(800000, 1, Math.pow(10, 15)));
Here is an example of random 5 numbers taken from a range of 0 to 100 (both 0 and 100 included) with no duplication.
let finals = [];
const count = 5; // Considering 5 numbers
const max = 100;
for(let i = 0; i < max; i++){
const rand = Math.round(Math.random() * max);
!finals.includes(rand) && finals.push(rand)
}
finals = finals.slice(0, count)