How to find non-destroyed but GC'ed Javascript objects in Chrome? - javascript

I have an application with some objects (of type BaseTexture) on which an explicit destroy function should be called when they aren't of any more use. Otherwise they might leak some memory. This should be done before they are garbage collected (and obviously only can be done then), but it doesn't always happen.
In Java I would detect and log this using finalize, but such a thing does not exist in Javascript.
Can I detect this in Chrome (or in another browser)? I don't really care if it's buggy, requires flags, can only log a simple message, etc, as long as it works during development. The fact that a BaseTexture has been destroyed can be retrieved from its source property.

If the purpose of this is to check for memory leaks, then why cant you just run a chrome profile instead?
The Object allocation tracker can be used to find memory leaks at runtime, also the heap profiler can analyze memory graphs and compare snapshots to discover what objects are not being cleaned up by the gc.
Also the timeline memory view can help identify if you are forcing garbage collection too often by allocating too often (if thats of interest)
For more info, see:
https://developer.chrome.com/devtools/docs/javascript-memory-profiling
Also not sure if its helpful, but if you want to look at memory stats then you can enable memory info in chrome by running with the --enable-memory-info param, then you have access to window vars:
window.performance.memory.jsHeapSizeLimit
window.performance.memory.totalJSHeapSize
window.performance.memory.usedJSHeapSize

Related

ArrayBuffer memory leak and Firefox memory tool

I'm trying to debug a memory leak through the usage of Firefox memory tool.
What I was able to find is that an ArrayBuffer object keeps increasing its size second after second. This object is used to receive audio/video data. If not managed, this behaviour results into a out of memory condition in which the computer literally freezes. The feeling is that the object is not properly released or cleared.
Through the memory tool, however, is not possible to go back to the exact variable that is causing the issue. I've checked also with the "Record call stacks" option and grouping by call stacks, but unfortunately - exactly in corrispondence of the aforementioned element - the tool says "(no stack available)".
Does anyone know how would it be possible to retrieve additional information?
Thanks

How do I make use of weak references in javascript?

I have some very large objects that are used intensively, but occasionally in my Node.JS program. Loading these objects are expensive. In total they occupy more memory than I have in the system.
Is there any way to create a "weak reference" in JavaScript, so that the garbage collector will remove my objects when memory is low, and then I can check whether the object is and reload it again if it was garbage collected since my last access?
The particular use case I had in mind was cartographic reprojection and tiling of gigabytes of map imagery.
Is there any way to create a "weak reference" in Javascript, so that the garbage collector will remove my objects when memory is low?
No, Javascript does not have that.
I don't think a weakMap or weakSet will offer you anything useful here. They don't do what you're asking for. Instead, they allow you to have a reference to something that will NOT prohibit garbage collection. But, if there are no other references to the data, then it will be garbage collected immediately. So, they won't keep the data around for awhile like you want. If you have any other reference to those objects (to keep them around), then they will never get garbage collected. Javascript doesn't offer a weak reference that is only garbage collected when memory starts to get full. Something is either eligible for garbage collection or it isn't. If it's eligible, it will be freed in the next GC pass.
It sounds like what you probably want is a memory cache. You could decide how large you want the cache to be and then keep items in the cache based on some strategy. The most common strategy is LRU (least recently used) where you kick an item out of the cache when you reach the cache size limit and you need to load a new item in the cache. With LRU, you keep track of when an item was last used from the cache and you kick out the oldest one. If you are trying to manage the cache to a memory usage size, you will have to have some scheme for estimating the memory usage of your objects in the cache.
Note that many databases will essentially offer you this functionality as a built-in feature since they will usually contain some sort of caching themselves so if you request an item from the database that you have recently requested, it probably comes from a read cache. You don't really say what your objects are so it's hard for us to suggest exactly how they could be used from a database.

Does deleting variables before closing the tab/window help releasing memory?

I'm maintaining a JavaScript code where a function that does some heavy processing to generate arrays saves the results in a cache variable inside the function itself. It's implemented like this:
function heavyProcessingStuff(x) {
if(heavyProcessingStuff.cache == undefined)
heavyProcessingStuff.cache = [];
if(heavyProcessingStuff.cache[x] != undefined) {
return heavyProcessingStuff.cache[x]
} else {
return heavyProcessingStuff.cache[x] = x + 1
}
}
The weird thing is that there's a function executed when the page is unloaded that manually deletes every property of the cache variable, like this:
for (n in heavyProcessingStuff.cache) {
delete heavyProcessingStuff.cache[n]
}
I'm confused about why this was implemented this way.
Is this specific for some weird corner case? Is there any motivation to do so? Doesn't/shouldn't the browser garbage collect everything when the page closes?
Javascript uses garbage collection and it is best not to free memory explicitly. Good reading on this is in "De-referencing Misconceptions" in the article "Writing Fast, Memory-Efficient JavaScript".
A quote from the article:
It’s not possible to force garbage collection in JavaScript. You
wouldn’t want to do this, because the garbage collection process is
controlled by the runtime, and it generally knows best when things
should be cleaned up.
Without seeing the full context, there is one other possibility:
Earlier versions of IE (I know IE6 was susceptible), used a simple reference counting system for garbage collection. The trouble is that the DOM and JavaScript kept separate reference stacks.
This allowed for a situation to develop where the DOM (via an expando property) could hold onto a JavaScript reference -- and the JavaScript held onto a DOM reference.
This circular references would create a memory leak that lived on beyond the page, and the memory was only released when the page window was closed.
It was common to use the unload event to free memory and release any event handlers in an effort to avoid this.
In Chrome and Internet Explorer (or any browser that implements a process-per-tab model), you're right, there's absolutely no value. In fact, it's wasting CPU time to try and delete, since often when a tab is closed a process is killed, freeing up all non-shared resources.
For browsers that are a single process (Firefox still is, though progress is underway to change that), it's possible this could make the garbage collector do its work faster, if the reference counts get decremented to 0, but it's probably also pointless. Other than very old (IE6 for example) browsers, every modern garbage collector will probably sweep away everything on the next pass regardless of whether you explicitly remove references or not.

Javascript memory analyser: What does it mean if a Htmldiv element shows up in the heapsnapshot after the page is navigated away from?

So I am running javascript memory analyser in visual studio for my windows store app . I see that one of the div elements that belongs to a page is showing up on the heap snapshot after we navigate to a different page.
I suppose this is a memory leak? if yes, what could be the cause of it?
Not necessarily. Browsers (or the OS in your case?) are not necessarily in a rush to carry out their garbage collection. Try loading a page that is full of tons of memory intensive assets such as images/videos/flash. When memory is getting low garbage collection should become more aggressive.
If you still see the element then is there a common javascript file for the two pages? Does it reference the div? As long as there is a reference to the div it should not be garbage collected and that is the source of the leak. As javascript objects are always passed by reference rather than the actual object, it can sometimes be tricky to find and change / delete every reference. Particularly look out for any references in the global scope as these references exist (unless explicitly changed) for the lifetime of the script and so are often not garbage collected (depends on how clever the javascript environment is).

Can I trigger JavaScript's garbage collection?

I want to trigger JavaScript garbage collection. Is it possible? Why would I want to, or not want to, do this?
I went out on a small journey to seek an answer to one of your questions: Is it possible?
People all over town are saying that deleting the references will do the trick. Some people say that wiping the object is an extra guarantee (example). So I wrote a script that will try every trick in the book, and I was astonished to see that in Chrome (22.0.1229.79) and IE (9.0.8112.16421), garbage collection doesn't even seem to work. Firefox (15.0.1) managed without any major drawbacks apart from one (see case 4f down below).
In pseudo-code, the test goes something like this.
Create a container, an array, that will hold objects of some sort. We'll call this container Bertil here on.
Each and every object therein, as an element in Bertil, shall have his own array-container declared as a property. This array will hold a whole lot of bytes. We'll call any one of Bertil's elements, the object, Joshua. Each Joshua's byte array will be called Smith.
Here's a mind map for you to lean back on:
Bertil [Array of objects] -> Joshua [Object] -> Smith [Array of bytes] -> Unnamed [Bytes].
When we've made a mess out of our available memory, hang around for a sec or two and then execute any one of the following "destruction algorithms":
4a. Throw a delete operand on the main object container, Bertil.
4b. Throw a delete operand on each and every object in that container, kill every Joshua alive.
4c. Throw a delete operand on each and every array of bytes, the Smiths.
4d. Assign NULL to every Joshua.
4e. Assign UNDEFINED to every Joshua.
4f. Manually delete each and every byte that any Joshua holds.
4g. Do all of the above in a working order.
So what happened? In case 4a and 4b, no browser's garbage collector (GC) kicked in. In case 4c to 4e, Firefox did kick in and displayed some proof of concept. Memory was reclaimed shortly within the minute. With current hardcoded default values on some of the variables used as test configuration, case 4f and 4e caused Chrome to hang, so I can't draw any conclusions there. You are free to do your own testing with your own variables, links will be posted soon. IE survived case 4f and 4e but his GC was dead as usual. Unexpectedly, Firefox survived but didn't pass 4f. Firefox survived and passed 4g.
In all of the cases when a browser's GC failed to kick in, waiting around for at least 10 minutes didn't solve the problem. And reloading the entire page caused the memory footprint to double.
My conclusion is that I must have made a horrible error in the code or the answer to your question is: No we can't trigger the GC. Whenever we try to do so we will be punished severely and we should stick our heads in the sand. Please I encourage you to go ahead, try these test cases on your own. Have a look in the code were comment on the details. Also, download the page and rewrite the script and see if you can trigger the GC in a more proper way. I sure failed and I can't for the life of me believe that Chrome and IE doesn't have a working garbage collector.
http://martinandersson.com/dev/gc_test/?case=1
http://martinandersson.com/dev/gc_test/?case=2
http://martinandersson.com/dev/gc_test/?case=3
http://martinandersson.com/dev/gc_test/?case=4
http://martinandersson.com/dev/gc_test/?case=5
http://martinandersson.com/dev/gc_test/?case=6
http://martinandersson.com/dev/gc_test/?case=7
You can trigger manually JavaScript garbage collector in IE and Opera, but it's not recommended, so better don't use it at all. I give commands more just for information purpose.
Internet Explorer:
window.CollectGarbage()
Opera 7+:
window.opera.collect()
Garbage collection runs automatically. How and when it runs and actually frees up unreferenced objects is entirely implementation specific.
If you want something to get freed, you just need to clear any references to it from your javascript. The garbage collector will then free it.
If you explain why you even think you need to do this or want to do this and show us the relevant code, we might be able to help explain what your alternatives are.
Check your code for global variables. There may be data coming through an ajax call that is stored, and then referenced somewhere and you did not take this into account.
As a solution, you should wrap huge data processing into an anonymous function call and use inside this call only local variables to prevent referencing the data in a global scope.
Or you can assign to null all used global variables.
Also check out this question. Take a look at the third example in the answer. Your huge data object may still be referenced by async call closure.
This answer suggests the following garbage collection request code for Gecko based browsers:
window.QueryInterface(Components.interfaces.nsIInterfaceRequestor)
.getInterface(Components.interfaces.nsIDOMWindowUtils)
.garbageCollect();
Came across this question and decided to share with my recent findings.
I've looked to see a proper handling of a WeakMap in Chrome and it's actually looks okay:
1) var wm = new WeakMap()
2) var d = document.createElement('div')
3) wm.set(d, {})
at this stage weak map holds the entry cause d is still referencing the element
4) d = null
at this stage nothing references the element and it's weakly referenced object, and indeed after a couple of minutes entry disappeared and garbage collected.
when did the same but appended the element to the DOM, it was not reclaimed, which is correct, removed from the DOM and still waiting for it to be collected :)
Yes, you can trigger garbage collection by re-loading the page.
You might want to consider using a Factory Pattern to help re-use objects, which will greatly cut down on how many objects are created. Especially, if you are continuously creating objects that are the same.
If you need to read up on Factory Patterns then get yourself this book, "Pro Javascript Design Patterns" by Ross Harmes and Dustin Diaz and published by APress.
I was reading Trevor Prime's answer and it gave me a chuckle but then I realized he was on to something.
Reloading the page does 'garbage-collect'.
location.reload() or alternatives to refresh page.
JSON.parse/stringify and localStorage.getItem/setItem for persistence of needed data.
iframes as reloading pages for user experience.
All you need to do is run your code in an iframe and refresh the iframe page while saving useful information into localStorage. You'll have to make sure the iframe is on the same domain as main page to access its DOM.
You could do it without an iframe but user experience will no doubt suffer as the page will be visibly resetting.
If it is true that there is no way to trigger a GC, as implied by the other answers, then the solution would be for the appropriate browser standards group to add a new JavaScript function to window or document to do this. It is useful to allow the web page to trigger a GC at a time of its own choosing, so that animations and other high-priority operations (sound output?) will not be interrupted by a GC.
This might be another case of "we've always done it this way; don't rock the boat" syndrome.
ADDED:
MDN documents a function "Components.utils.schedulePreciseGC" that lets a page schedule a GC sometime in the future with a callback function that is called when the GC is complete. This may not exist in browsers other than Firefox; the documentation is unclear. This function might be usable prior to animations; it needs to be tested.

Categories