Snap.svg Getting rotation from slope in point difference - javascript

I am working through an animation where I need to make this plane follow the path given and appear to be "circling" the earth. Here is the codePen, which as you can see is fairly simple.
My problem is with angles, I am trying to see how much should I rotate the plane as it moves through the path by calculating the slope of two points, and turning it into degrees.
Even though I have added an epsilon to safe-check for consistent differences across the points and every other safe-check, I am getting that as it approaches +-90 degrees, it changes signs, instead of passing to the other quadrant 120 degrees, etc.
I can understand that this is caused by the fact that
You can see this happening in the console right in the mid point (displays: slope, arctangent, degrees).
To solve this, I am recurring to Math.atan2(), by using newPoint.x - firstPoint.x, newPoint.y - firstPoint.y as its arguments. It starts off with the right values (CodePen here). But it still does a funky rotation.
Here is the code (I'm not posting the SVG image because it's very large):
JS
var snap = Snap('#Globe_1_');
// Trail 1
var trail1 = snap.path('M354.3,707.9c13.9,14.5,27.9,27.2,41.7,38c13.9,10.9,27.2,19.3,39.3,25.4 c12.6,6.1,24.8,9,35.7,10.3c10.9,1.2,21.1-1.2,30.2-5.4c17-7.8,29-24.8,35.7-48.3c7.2-23.5,9-55,5.4-91.8 c-3.7-36.8-12-77.9-24.8-120.9c-12.6-43-30.2-87.6-51.9-131.7c-21.1-44.1-45.2-85.8-70.7-122.7s-50.8-69.5-77.3-95.5 c-27.2-26-52.5-43.6-75.6-53.2c-22.9-9.7-43.6-10.3-60.4-2.5c-16.3,7.8-27.9,24.2-35.1,47.7c-7.2,23.5-9.7,53.8-6.6,88.8')
.attr({
id: 'trail1',
fill:'none',
stroke: '#C25353',
strokeMiterLimit: 10
});
var len = trail1.getTotalLength();
var plane1 = snap.path('M375.7,708.4c0.1,0.8-0.7,1.8-1.6,1.9l-10.4,0.2l-8.4,15.1l-4,0l4.1-14.6l-7.8-0.2l-2.7,3.2L342,714 l1.6-4.9l-1.7-5.4l3.1,0.1l2.5,3.6l7.8,0.2l-4.3-14.6l4,0l8.3,14.7l10.4-0.2C375.5,706.7,376,707.1,375.7,708.4z') .attr({fill: '#CDCCCC' });
var initPoint = trail1.getPointAtLength( 1 ),
lastPoint,
slope = 0,
lastLen = 0;
Snap.animate(0, len, function( value ) {
movePoint = trail1.getPointAtLength( value );
if (lastPoint && ( Math.abs(lastPoint.y - movePoint.y) > 1 || Math.abs(lastPoint.x - movePoint.x) > 1 )) {
var slope_val = (lastPoint.y - movePoint.y) / (lastPoint.x - movePoint.x),
slope_atan = Math.atan2(movePoint.x - initPoint.x, movePoint.y - initPoint.y),
slope_deg = Snap.deg(slope_atan);
slope = slope_deg;
console.log('Capturing rotation', slope_val, slope_atan, slope_deg);
lastLen = value;
}
plane1.transform( 't' + parseInt(movePoint.x - 350) + ',' + parseInt( movePoint.y - 700) + 'r' + slope);
lastPoint = movePoint;
}, 5000, mina.linear);
Can you please help me out, thank you

I'm not sure of the full effect you are after, if its purely 2d angle, Snap already has this built in (returning angle from point along line), so no need to work too hard...
element.getPointAtLength() returns an angle alpha, so movePoint.alpha can be used...
relevant line below, and other calculation lines removed.
plane1.transform( 't' + parseInt(movePoint.x - 350) + ',' + parseInt( movePoint.y - 700) + 'r' + (180 + movePoint.alpha));
codepen

Related

Three.js OrthographicCamera -- Zoom to cursor

My Three.js project uses and OrthographicCamera and OrthographicTrackBallControls for zoom/pan. I'm trying to add functionality to zoom to the cursor position with no luck. First things first, here's how I'm getting mouse position:
var mX = ((event.clientX - offset.left) / renderer.domElement.clientWidth) * 2 - 1;
var mY = -((event.clientY - offset.top) / renderer.domElement.clientHeight) * 2 + 1;
var vector = new THREE.Vector3(mX, mY, 0.5);
vector.unproject(camera);
vector.sub(camera.position);
Through looking on StackOverflow, there seems to be a lot of information on how to do this with PerspectiveCamera, but these methods don't work with OrthographicCamera. I was able to find this example:
https://htmlpreview.github.io/?https://github.com/w3dot0/three.js/blob/973bf1d40ef552dbf19c19654a79f70e2882563d/examples/misc_controls_zoom_to_mouse.html
Which does precisely what I am trying to accomplish, but the code that achieves this is hidden, though I am able to discern that the camera position is being changed.
Another SO question which is similar suggests changing camera.left, camera.right, camera.top and camera.bottom, but I have had no luck with this approach. This approach seems like a possibility, but I dont understand the calculations necessary to get the correct left, right, top and bottom values.
So the way I see it I have two possibilities:
Change camera's left/right/top/bottom to get the correct view rectangle.
Change camera position.
But I don't know how to get the values I need to accomplish either, let alone which is the better approach.
UPDATE 11/16/2018:
I've updated my function to this ( based on https://github.com/w3dot0/three.js/blob/973bf1d40ef552dbf19c19654a79f70e2882563d/examples/misc_controls_zoom_to_mouse.html):
zoomDirection = new THREE.Vector3();
function mousewheel(event) {
event.preventDefault();
var amount = event.deltaY / 100;
var zoom = camera.zoom - amount;
var offset = el.offset();
;
var mX = amount > 0 ? 0 : ((event.clientX - offset.left) / renderer.domElement.clientWidth) * 2 - 1;
var mY = amount > 0 ? 0 : -((event.clientY - offset.top) / renderer.domElement.clientHeight) * 2 + 1;
zoomDirection.set(mX, mY, 0.001)
.unproject(camera)
.sub(camera.position)
.multiplyScalar(amount / zoom);
camera.position.subVectors(camera.position, zoomDirection);
orthographictrackBallControls.target.subVectors(orthographictrackBallControls.target, webGl.zoomDirection);
camera.zoom = zoom;
camera.updateProjectionMatrix();
}
This seems to work at first: the camera zooms into the mouse point, but then the camera starts to "jump" around after a bit of zooming, with the mesh no longer visible on screen.
Something that might help: I have an axis helper in the screen as well that "flips" when it stops working as expected. When the scene is loaded, the X-axis helper point due left, but when I get to the point where the camera jumps and I no longer see the mesh, the X-axis helper flips to point due right.
Also, if I zoom OUT first, I can zoom in further before the mesh disappears. I'm not sure what this all adds up to but I would appreciate any help.
First week back after New Year and it's taken too long to fix this. Six sides of A4 covered with linear algebra results in
if ( factor !== 1.0 && factor > 0.0 ) {
const mX = (event.offsetX / event.target.width ) * 2 - 1;
const mY = -(event.offsetY / event.target.height) * 2 + 1;
const vector1 = new THREE.Vector3(mX, mY, 0);
const vector2 = new THREE.Vector3(0, 0, 0);
vector1.unproject(this.camera);
vector2.unproject(this.camera);
vector1.subVectors(vector1, vector2);
this.camera.zoom /= factor;
vector1.multiplyScalar(factor - 1.0);
this.camera.position.subVectors(this.camera.position, vector1);
this.controls.target.subVectors(this.controls.target, vector1);
this.camera.updateProjectionMatrix();
this.camera.updateMatrix();
}
Note the different calculation of mX, mY so that it is valid for a viewport.
Implementing the D3-library with its zoom function may seem like a good idea for this case. But giving up the three-controls is in a lot of cases not a deal.
If you want a zoom-behavior like in Google Maps, the following code could be helpful:
const cameraPosition = camera.position.clone();
// my camera.zoom starts with 0.2
if (zoomOld !== 0.2) {
const xNew = this.curserVector.x + (((cameraPosition.x - this.curserVector.x) * camera.zoom) /zoomOld);
const yNew = this.curserVector.y + (((cameraPosition.y - this.curserVector.y) * camera.zoom) /zoomOld);
const diffX = cameraPosition.x - xNew;
const diffY = cameraPosition.y - yNew;
camera.position.x += diffX;
camera.position.y += diffY;
controls.target.x += diffX;
controls.target.y += diffY;
}
zoomOld = camera.zoom;
Your other problem could be caused by the frustum. But I don't know, I'm still a newbie with Three xD

Accurate pan and zoom to svg node

I am trying to pan and zoom to a svg node using d3js. But I cannot get my head around the math here.
If I force the desired zoom level to be 1, then I seem to get it right.
Here's an example:
let svg = d3.select('svg'),
svgW = svg.node().getBoundingClientRect().width,
svgH = svg.node().getBoundingClientRect().height,
svgCentroid = {
x : svgW / 2,
y : svgH / 2
};
// zoom functionality has been applied to this one
let selector = d3.select('#container');
let elem = d3.select('[id="6"]'),
elemBounds = elem.node().getBBox(),
elemCentroid = {
x : elemBounds.x + (elemBounds.width / 2),
y : elemBounds.y + (elemBounds.height / 2)
};
let position = {
x : svgCentroid.x - elemCentroid.x,
y : svgCentroid.y - elemCentroid.y
};
selector.transition()
.duration(750)
.call(this.zoom.transform, d3.zoomIdentity
.translate(position.x, position.y)
// set scale to 1
.scale(1)
);
My first naive thought was "piece of cake". I will just multiply the calculated positions with desired zoom level. But, surprise surprise, that got me terribly wrong.
// failed miserably
selector.transition()
.duration(750)
.call(this.zoom.transform, d3.zoomIdentity
.translate(position.x * 5, position.y * 5)
.scale(5)
);
I've been trying to play around with this example:
https://bl.ocks.org/smithant/664d6cf86e53442d09687b154a9a411d
It pretty much sums up my intentions, but even though it's right there I don't fully understand it and thus it does not work properly with the rest of my code. I guess what confuses me most about this particular example are how the variables have their names declared.
I'd be grateful if someone could point me in the right direction here. How can I achieve this? What is the appropriate math to correctly zoom and pan within an SVG?
Thanks :)
I think that what you're looking for is:
function () {
var t = d3.transform(d3.select(this).attr("transform")),
x = t.translate[0],
y = t.translate[1];
var scale = 10;
svg.transition().duration(3000)
.call(zoom.translate([((x * -scale) + (svgWidth / 2)), ((y * -scale) + svgHeight / 2)])
.scale(scale).event);
}
Where this represents the element. Have a look here for a working example. In the example you'll be able to zoom to element after pressing on it. Also if panning and zooming an svg is all you need to do check out this library. It just works, no maths required :).

svg.js animated rotation of elements gives unexpected results (visible "jiggling")

I am using svg.js to create an animation of a bicyle rider. Semi-complete version here: https://pedalfuriously.neocities.org/. I'm running in to a bit of a problem with moving and rotating svg elements during animation created with requestAnimationFrame (rather than the svg.js built in animation).
If you take a look at the link, and use the cadence slider to make the rider pedal very fast, and then flip the slider quickly all the way back to zero, you can see that his lower leg "jiggles" in a disconnected way. What's really doing my head in is that the postion of the legs are determined in each frame based on an absolute relation to the rotation of the cranks (rather than taking some delta time value to determine movement over that frame).
I think I've been able to confirm what aspect of my code is causing the problem. Here is a minimal example that doesn't exhibit the exact behaviour, but I think illustrates the kind of thing I think is responsible:
var draw = SVG("drawing").viewbox(0, 0, 400, 400)
var origin = {
x: 70,
y: 70
}
var length = 60
var blueLine = draw.group()
blueLine.line(0, 0, 0 + length, 0).move(origin.x, origin.y)
.stroke({
color: "#00f",
width: 4
})
blueLine.angle = 0
var greenLine = draw.group()
greenLine.line(0, 0, 0 + length, 0).move(origin.x, origin.y)
.stroke({
color: "#0f0",
width: 4
})
greenLine.angle = 0
var previous = 0
var dt = 0
var step = function(timestamp) {
dt = timestamp - previous
previous = timestamp
blueLine.angle += 0.18 * dt
blueLine.rotate(blueLine.angle, origin.x, origin.y)
var endX = Math.cos(toRad(blueLine.angle)) * length
var endY = Math.sin(toRad(blueLine.angle)) * length
// Comment out this line, and rotation works fine
greenLine.move(endX, endY)
greenLine.angle = blueLine.angle - 10
// Comment out this line, and movement works fine
greenLine.rotate(greenLine.angle, origin.x, origin.y)
// But they don't work together. If I both move and rotate
// the green line, it goes in this crazy huge arc, rather
// than rotating neatly around the end of the blue line
// as expected.
window.requestAnimationFrame(step)
}
window.requestAnimationFrame(step)
function toRad(deg) {
return deg * (Math.PI / 180)
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/svg.js/2.6.4/svg.js"></script>
<div id="drawing"></div>
Something else I noticed with my actual code is that if I move the position of the legs, it changes the severity of the problem, or even stops it altogether. If the hips are positioned all the way near the front of the bicycle, the problem is not nearly as bad. Also, if I disable rotation on the lower legs, there is no jiggling. In some positions, the lower leg will just rotate out of the screen instantly on load, even before any motion has been started.
I'm hoping for some guidance on wether I'm misunderstanding the way manipulating elements works, either in svg.js in particular, or SVG in general.
Thank you kind vector graphics experts!
Here is the actual code for the legs. The step() function would probably be the most relevant. Not sure if it will be helpful:
Rider.Leg = function(foot, front, xOffset, yOffset) {
var upper = front ? SVGE.upperLeg : SVGE.upperLegBack
var lower = front ? SVGE.lowerLeg : SVGE.lowerLegBack
this.foot = foot
this.draw = foot.draw
this.geo = {
upper: {
x: this.foot.pedal.gear.x + 150,
y: this.foot.pedal.gear.y - 750,
length: 396
},
lower: {
length: 390
}
}
this.upper = this.draw.group().svg(upper).move(this.geo.upper.x, this.geo.upper.y)
.transform({ scale: 0.95, cx: 0, cy: 0 })
this.lower = this.draw.group().svg(lower).move(this.geo.upper.x, this.geo.upper.y)
}
// Step function does not take in a time argument. Positioning of legs is based only on
// the absolute position of other elements, none of which jiggle.
Rider.Leg.prototype.step = function () {
var angle = this.pedalAngle() - Math.PI
var ha = this.scaleneAngle(this.geo.lower.length, this.geo.upper.length, this.pedalDistance())
var ka = this.scaleneAngle(this.pedalDistance(), this.geo.lower.length, this.geo.upper.length)
var x = this.geo.upper.length * Math.cos(ha + angle)
var y = this.geo.upper.length * Math.sin(ha + angle)
this.upper.rotate(Drive.toDeg(angle + ha), 0, 0)
this.lower.move(this.geo.upper.x + x, + this.geo.upper.y + y)
this.lower.rotate(Drive.toDeg(angle + ha + ka - Math.PI), 0, 0)
}
// Gets the distance between the hip joint and the pedal
Rider.Leg.prototype.pedalDistance = function () {
var pos = this.foot.getPos()
var xDist = this.geo.upper.x - pos.x
var yDist = this.geo.upper.y - pos.y
return Math.hypot(xDist, yDist)
}
// Gets the angle between the hip joint and the pedal
Rider.Leg.prototype.pedalAngle = function () {
var pos = this.foot.getPos()
var xDist = this.geo.upper.x - pos.x
var yDist = this.geo.upper.y - pos.y
return Math.atan2(yDist, xDist)
}
Rider.Leg.prototype.scaleneAngle = function (a, b, c) {
return Math.acos(((b * b) + (c * c) - (a * a)) / (2 * b * c))
}
When you call move() on a group it is internally represented as a translation. svg.js figures out crazy ways to translate the object to the new place without changing any other transformations. That often does not work out. Especially not, when you rotate.
Thats why you should avoid these absolute transformations and go with relative ones. Just call untransform before every move and go from zero. Then you can do:
greenLine.transform({x:endX, y:endY, relative: true})
To move the line by a certain amount. That should work way better.

Need to find a (x,y) coordinate based on an angle

So I'm stumped. I didn't know trigonometry before this, and I've been learning but nothing seems to be working.
So a few things to note: In html, cartesian origin(0,0) is the top left corner of the screen. DIVS natural rotation is 0deg or ---->this way.
I need to find the x,y point noted by the ? mark in the problem.
$('#wrapper').on('click', function(e){
mouseX = e.pageX;
mouseY= e.pageY;
var angle = getAngle(mouseX,Rocket.centerX,mouseY,Rocket.centerY);
var angleDistance = Math.sqrt((Math.pow((mouseX - (Rocket.left+Rocket.halfX)),2)) + (Math.pow((mouseY-(Rocket.top+Rocket.halfY)),2)));
var cp2Angle = -90 +(angle*2);
var invCP2Angle = 90+ angle;
var cp2Distance = angleDistance*.5;
//Red Line
$(this).append('<div class="line" style="transform-origin:left center;width:'+(Math.round(angleDistance))+'px;top:'+(Rocket.top+Rocket.halfY)+'px;left:'+(Rocket.left+Rocket.halfX)+'px;transform:rotate('+(Math.round(angle))+'deg);"></div>');
//Blue Line
$(this).append('<div class="line" style="background:#0000FF;transform-origin:left center;width:'+Math.round(cp2Distance)+'px;top:'+(mouseY)+'px;left:'+(mouseX)+'px;transform:rotate('+(Math.round(cp2Angle))+'deg);"></div>');
}
function getAngle(x2,x1,y2,y1){
var angle = Math.degrees(Math.atan2(y2-y1,x2-x1));
return angle;
}
Math.degrees = function(radians) {
return (radians * 180) / Math.PI;
};
So this might be confusing. Basically when I click on the page, i calculate the angle between my custom origin and the mouse points using Math.atan2(); I also calculate the distance using Math.sqrt((Math.pow((x2 - x1),2)) + (Math.pow((y2-y1),2)));
The blue line length is half the length of the red line, but the angle changes, based on the angle of the red line.
When the red line angle = 0deg(a flat line), the blue line angle will be -90(or straight up, at red line -45 deg, the blue line will be -180(or flat), and at Red Line -90, the blue line will be -270 deg(or straight down). The formula is -90 +(angle*2)
I need to know the other end point of the blue line. The lines only exist to debug, but the point is needed because I have an animation where I animate a rocket on a bezier curve, and I need to change the control point based on the angle of the mouse click, if there's abetter way to calculate that without trigonometry, then let me know.
I read that the angle is the same as the slope of the line and to find it by using Math.tan(angle in radians). Sometimes the triangle will be a right triangle for instance if the first angle is 0 deg, sometimes it won't be a triangle at all, but a straight line down, for instance if they click -90.
I've also tried polar coordinates thought I wasn't sure which angle to use:
var polarX = mouseX-(cp2Distance * Math.cos(Math.radians(invCP2Angle)));
var polarY = mouseY- (cp2Distance * Math.sin(Math.radians(invCP2Angle)));
I do not know javascript well, so instead of giving you code, I'll just give you the formulae. On the figure below, I give you the conventions used.
x3 = x2 + cos(brownAngle + greenAngle) * d2
y3 = y2 + sin(brownAngle + greenAngle) * d2
If I understand you correctly, you have already d2 = 0.5 * d1, d1, (x2, y2) as well as the angles. This should then just be a matter of plugging these values into the above formulae.
Let A, B and C be the three points.
AB = ( cos(angle1), sin(angle1) ) * length1
B = A + B
BC = ( cos(angle1+angle2), sin(angle1+angle2) ) * length2
C = B + BC
In your case,
A = ( 0, 0 )
angle1 = 31°
length1 = 655
angle2 = 152°
length2 = 328
Then,
C = ( Math.cos(31*Math.PI/180), Math.sin(31*Math.PI/180) ) * 655 +
( Math.cos(152*Math.PI/180), Math.sin(152*Math.PI/180) ) * 328
= ( Math.cos(31*Math.PI/180) * 655 + Math.cos(183*Math.PI/180) * 328,
Math.sin(31*Math.PI/180) * 655 + Math.sin(183*Math.PI/180) * 328 )
= ( 233.8940945603834, 320.1837454184)

Rotating around a point gets closer and closer to it

I'm creating a web-application that's going to display 3D objects in a canvas. Now I came across this problem:
I am slowly rotating the camera around the scene so the 3D object can be looked at from all sides. For this I use this code (JavaScript):
var step = 0.1*Math.PI/180;
scene.camera.position.x = Math.cos(step) * (scene.camera.position.x - 0) - Math.sin(step) * (scene.camera.position.z - 0) + 0;
scene.camera.position.z = Math.sin(step) * (scene.camera.position.x - 0) + Math.cos(step) * (scene.camera.position.z - 0) + 0;
Those zeroes are the center of the scene, I leave them there in case we decide to use another base-origin.
This code will make the camera rotate around point 0,0, but it slowly gets closer and closer to it. Here are some screenshots to show you what it does:
There are no other parameters that have impact on the camera's position. I don't understand why it's doing this and what the problem could be.
I found what was causing this issue: I change the camera's X position, then I change the camera's Z position with the new value of it's X position. Because this will be different the origin no longer is relatively at the same position for both calculations.
This was easy to fix, just by storing them into two new variables and then assigning them
var posx = Math.cos(step) * (scene.camera.position.x - 0) - Math.sin(step) * (scene.camera.position.z - 0) + 0;
var posz = Math.sin(step) * (scene.camera.position.x - 0) + Math.cos(step) * (scene.camera.position.z - 0) + 0;
scene.camera.position.x = posx;
scene.camera.position.z = posz;

Categories