Manipulate input string [duplicate] - javascript

Can anyone help me with a javascript regular expression that I can use to compare strings that are the same, taking into acccount their non-Umlaut-ed versions.
for example, in German the word Grüße can also be written Gruesse. These two strings are to be considered identical. The mappings (ignoring casings for the moment) are:
ä = ae
ü = ue
ö = oe
ß = ss
As there are not many "couplets" to consider I could do a replace for each variation, but I'm wondering if there is a more elegant way, especially as this use case might need to be extended in future to include e.g. Scandanavian characters...

something like
tr = {"ä":"ae", "ü":"ue", "ö":"oe", "ß":"ss" }
replaceUmlauts = function(s) {
return s.replace(/[äöüß]/g, function($0) { return tr[$0] })
}
compare = function(a, b) {
return replaceUmlauts(a) == replaceUmlauts(b)
}
alert(compare("grüße", "gruesse"))
you can easily extends this by adding more entries to "tr"
not quite elegant, but works

Regular expressions aren't quite powerful enough to do this properly, though you could hack it into almost working with them.
What you want is called Unicode Normalization. A Normalized string is one converted to a common form so you can compare them. You tagged your post "javascript", however, Javascript doesn't have a built in standard library to do this, and I am not aware of one offhand.
Most server-side languages do have one, though. For example, the Normalizer Class in PHP. Python and Perl have equivalents, as do Microsoft stuff, I'm sure.
Check out the wikipedia article on Unicode Equivalence for more information.

In addition to stereofrogs answer:
tr = {"\u00e4":"ae", "\u00fc":"ue", "\u00f6":"oe", "\u00df":"ss" }
ersetzeUmlauts = function(s) {
return s.replace(/[\u00e4|\u00fc|\u00f6|\u00df]/g, function($0) { return tr[$0] })
}
I was dealing with Umlauts in an Aptana/Eclipse script and the normal characters ('ä' etc.) didn't do the trick for me.

I have another way : ( purpose : sorting arrays )
function umlaut(str) {
return str
.replace(/Â|À|Å|Ã/g, "A")
.replace(/â|à|å|ã/g, "a")
.replace(/Ä/g, "AE")
.replace(/ä/g, "ae")
.replace(/Ç/g, "C")
.replace(/ç/g, "c")
.replace(/É|Ê|È|Ë/g, "E")
.replace(/é|ê|è|ë/g, "e")
.replace(/Ó|Ô|Ò|Õ|Ø/g, "O")
.replace(/ó|ô|ò|õ/g, "o")
.replace(/Ö/g, "OE")
.replace(/ö/g, "oe")
.replace(/Š/g, "S")
.replace(/š/g, "s")
.replace(/ß/g, "ss")
.replace(/Ú|Û|Ù/g, "U")
.replace(/ú|û|ù/g, "u")
.replace(/Ü/g, "UE")
.replace(/ü/g, "ue")
.replace(/Ý|Ÿ/g, "Y")
.replace(/ý|ÿ/g, "y")
.replace(/Ž/g, "Z")
.replace(/ž/, "z");
}

You can use pipe as an or in a group for each matching like this (ä|ae).

One way is to process your regexp 'input' so that it replaces for example 'ä' with (ae|ä)' - not hardcode the mappings to your regexps. I am completely ignorant to javascript (ok, i know document.write() but that's about it) - but here is the same in pseudo code;
instead of doing
regexp_match("Grüße|Gruesse",somestring)
You should do something like:
mappings = (("ä","ae"),("ö","oe"),("ü","ue"))
def my_regexp_match(regexp,input) {
for key,value in mappings {
new_regexp = regexp.replace(key,"("+key+"|"+value+")")
}
regexp_match(new_regexp,input)
}
my_regexp_match("Grüße",somestring)
Sorry for being so "pythonic" - I do not know if you have re.compile() -like structure in javascript, but if you do - you should do the for -loop when compiling the matcher, not in my_regexp_match()

Regex isn't better technology to solve this problem.
You should consider to create a dictionary to store your Umlaut character as key and non-Umlaut as value; Then you can to iterate over yourdictionary, check if it exists on your string and take appropriate action.

Related

Capitalise first letter in the one line code [duplicate]

How do I make the first character of a string uppercase if it's a letter, but not change the case of any of the other letters?
For example:
"this is a test" → "This is a test"
"the Eiffel Tower" → "The Eiffel Tower"
"/index.html" → "/index.html"
function capitalizeFirstLetter(string) {
return string.charAt(0).toUpperCase() + string.slice(1);
}
Some other answers modify String.prototype (this answer used to as well), but I would advise against this now due to maintainability (hard to find out where the function is being added to the prototype and could cause conflicts if other code uses the same name/a browser adds a native function with that same name in future).
Edited to add this DISCLAIMER: please read the comments to understand the risks of editing JS basic types.
Here's a more object-oriented approach:
Object.defineProperty(String.prototype, 'capitalize', {
value: function() {
return this.charAt(0).toUpperCase() + this.slice(1);
},
enumerable: false
});
You'd call the function, like this:
"hello, world!".capitalize();
With the expected output being:
"Hello, world!"
In CSS:
p::first-letter {
text-transform:capitalize;
}
Here is a shortened version of the popular answer that gets the first letter by treating the string as an array:
function capitalize(s)
{
return s[0].toUpperCase() + s.slice(1);
}
Update
According to the comments below this doesn't work in IE 7 or below.
Update 2:
To avoid undefined for empty strings (see #njzk2's comment below), you can check for an empty string:
function capitalize(s)
{
return s && s[0].toUpperCase() + s.slice(1);
}
ES version
const capitalize = s => s && s[0].toUpperCase() + s.slice(1)
// to always return type string event when s may be falsy other than empty-string
const capitalize = s => (s && s[0].toUpperCase() + s.slice(1)) || ""
If you're interested in the performance of a few different methods posted:
Here are the fastest methods based on this jsperf test (ordered from fastest to slowest).
As you can see, the first two methods are essentially comparable in terms of performance, whereas altering the String.prototype is by far the slowest in terms of performance.
// 10,889,187 operations/sec
function capitalizeFirstLetter(string) {
return string[0].toUpperCase() + string.slice(1);
}
// 10,875,535 operations/sec
function capitalizeFirstLetter(string) {
return string.charAt(0).toUpperCase() + string.slice(1);
}
// 4,632,536 operations/sec
function capitalizeFirstLetter(string) {
return string.replace(/^./, string[0].toUpperCase());
}
// 1,977,828 operations/sec
String.prototype.capitalizeFirstLetter = function() {
return this.charAt(0).toUpperCase() + this.slice(1);
}
I didn’t see any mention in the existing answers of issues related to astral plane code points or internationalization. “Uppercase” doesn’t mean the same thing in every language using a given script.
Initially I didn’t see any answers addressing issues related to astral plane code points. There is one, but it’s a bit buried (like this one will be, I guess!)
Overview of the hidden problem and various approaches to it
Most of the proposed functions look like this:
function capitalizeFirstLetter(str) {
return str[0].toUpperCase() + str.slice(1);
}
However, some cased characters fall outside the BMP (basic multilingual plane, code points U+0 to U+FFFF). For example take this Deseret text:
capitalizeFirstLetter("𐐶𐐲𐑌𐐼𐐲𐑉"); // "𐐶𐐲𐑌𐐼𐐲𐑉"
The first character here fails to capitalize because the array-indexed properties of strings don’t access “characters” or code points*. They access UTF-16 code units. This is true also when slicing — the index values point at code units.
It happens to be that UTF-16 code units are 1:1 with USV code points within two ranges, U+0 to U+D7FF and U+E000 to U+FFFF inclusive. Most cased characters fall into those two ranges, but not all of them.
From ES2015 on, dealing with this became a bit easier. String.prototype[##iterator] yields strings corresponding to code points**. So for example, we can do this:
function capitalizeFirstLetter([ first='', ...rest ]) {
return [ first.toUpperCase(), ...rest ].join('');
}
capitalizeFirstLetter("𐐶𐐲𐑌𐐼𐐲𐑉") // "𐐎𐐲𐑌𐐼𐐲𐑉"
For longer strings, this is probably not terribly efficient*** — we don’t really need to iterate the remainder. We could use String.prototype.codePointAt to get at that first (possible) letter, but we’d still need to determine where the slice should begin. One way to avoid iterating the remainder would be to test whether the first codepoint is outside the BMP; if it isn’t, the slice begins at 1, and if it is, the slice begins at 2.
function capitalizeFirstLetter(str) {
if (!str) return '';
const firstCP = str.codePointAt(0);
const index = firstCP > 0xFFFF ? 2 : 1;
return String.fromCodePoint(firstCP).toUpperCase() + str.slice(index);
}
capitalizeFirstLetter("𐐶𐐲𐑌𐐼𐐲𐑉") // "𐐎𐐲𐑌𐐼𐐲𐑉"
You could use bitwise math instead of > 0xFFFF there, but it’s probably easier to understand this way and either would achieve the same thing.
We can also make this work in ES5 and below by taking that logic a bit further if necessary. There are no intrinsic methods in ES5 for working with codepoints, so we have to manually test whether the first code unit is a surrogate****:
function capitalizeFirstLetter(str) {
if (!str) return '';
var firstCodeUnit = str[0];
if (firstCodeUnit < '\uD800' || firstCodeUnit > '\uDFFF') {
return str[0].toUpperCase() + str.slice(1);
}
return str.slice(0, 2).toUpperCase() + str.slice(2);
}
capitalizeFirstLetter("𐐶𐐲𐑌𐐼𐐲𐑉") // "𐐎𐐲𐑌𐐼𐐲𐑉"
Deeper into internationalization (whose capitalization?)
At the start I also mentioned internationalization considerations. Some of these are very difficult to account for because they require knowledge not only of what language is being used, but also may require specific knowledge of the words in the language. For example, the Irish digraph "mb" capitalizes as "mB" at the start of a word. Another example, the German eszett, never begins a word (afaik), but still helps illustrate the problem. The lowercase eszett (“ß”) capitalizes to “SS,” but “SS” could lowercase to either “ß” or “ss” — you require out-of-band knowledge of the German language to know which is correct!
The most famous example of these kinds of issues, probably, is Turkish. In Turkish Latin, the capital form of i is İ, while the lowercase form of I is ı — they’re two different letters. Fortunately we do have a way to account for this:
function capitalizeFirstLetter([ first='', ...rest ], locale) {
return [ first.toLocaleUpperCase(locale), ...rest ].join('');
}
capitalizeFirstLetter("italy", "en") // "Italy"
capitalizeFirstLetter("italya", "tr") // "İtalya"
In a browser, the user’s most-preferred language tag is indicated by navigator.language, a list in order of preference is found at navigator.languages, and a given DOM element’s language can be obtained (usually) with Object(element.closest('[lang]')).lang || YOUR_DEFAULT_HERE in multilanguage documents.
In agents which support Unicode property character classes in RegExp, which were introduced in ES2018, we can clean stuff up further by directly expressing what characters we’re interested in:
function capitalizeFirstLetter(str, locale=navigator.language) {
return str.replace(/^\p{CWU}/u, char => char.toLocaleUpperCase(locale));
}
This could be tweaked a bit to also handle capitalizing multiple words in a string with fairly good accuracy for at least some languages, though outlying cases will be hard to avoid completely if doing so no matter what the primary language is.
The CWU or Changes_When_Uppercased character property matches all code points which change when uppercased in the generic case where specific locale data is absent. There are other interesting case-related Unicode character properties that you may wish to play around with. It’s a cool zone to explore but we’d go on all day if we enumerated em all here. Here’s something to get your curiosity going if you’re unfamiliar, though: \p{Lower} is a larger group than \p{LowercaseLetter} (aka \p{Ll}) — conveniently illustrated by the default character set comparison in this tool provided by Unicode. (NB: not everything you can reference there is also available in ES regular expressions, but most of the stuff you’re likely to want is).
Alternatives to case-mapping in JS (Firefox & CSS love the Dutch!)
If digraphs with unique locale/language/orthography capitalization rules happen to have a single-codepoint “composed” representation in Unicode, these might be used to make one’s capitalization expectations explicit even in the absence of locale data. For example, we could prefer the composed i-j digraph, ij / U+133, associated with Dutch, to ensure a case-mapping to uppercase IJ / U+132:
capitalizeFirstLetter('ijsselmeer'); // "IJsselmeer"
On the other hand, precomposed digraphs and similar are sometimes deprecated (like that one, it seems!) and may be undesirable in interchanged text regardless due to the potential copypaste nuisance if that’s not the normal way folks type the sequence in practice. Unfortunately, in the absence of the precomposition “hint,” an explicit locale won’t help here (at least as far as I know). If we spell ijsselmeer with an ordinary i + j, capitalizeFirstLetter will produce the wrong result even if we explicitly indicate nl as the locale:
capitalizeFirstLetter('ijsselmeer', 'nl'); // "Ijsselmeer" :(
(I’m not entirely sure whether there are some such cases where the behavior comes down to ICU data availability — perhaps someone else could say.)
If the point of the transformation is to display textual content in a web browser, though, you have an entirely different option available that will likely be your best bet: leveraging features of the web platform’s other core languages, HTML and CSS. Armed with HTML’s lang=... and CSS’s text-transform:..., you’ve got a (pseudo-)declarative solution that leaves extra room for the user agent to be “smart.” A JS API needs to have predictable outcomes across all browsers (generally) and isn’t free to experiment with heuristics. The user-agent itself is obligated only to its user, though, and heuristic solutions are fair game when the output is for a human being. If we tell it “this text is Dutch, but please display it capitalized,” the particular outcome might now vary between browsers, but it’s likely going to be the best each of them could do. Let’s see:
<!DOCTYPE html>
<dl>
<dt>Untransformed
<dd>ijsselmeer
<dt>Capitalized with CSS and <code>lang=en</code>
<dd lang="en" style="text-transform: capitalize">ijsselmeer
<dt>Capitalized with CSS and <code>lang=nl</code>
<dd lang="nl" style="text-transform: capitalize">ijsselmeer
In Chromium at the time of writing, both the English and Dutch lines come out as Ijsselmeer — so it does no better than JS. But try it in current Firefox! The element that we told the browser contains Dutch will be correctly rendered as IJsselmeer there.
This solution is purpose-specific (it’s not gonna help you in Node, anyway) but it was silly of me not to draw attention to it previously given some folks might not realize they’re googling the wrong question. Thanks #paul23 for clarifying more about the nature of the IJ digraph in practice and prompting further investigation!
As of January 2021, all major engines have implemented the Unicode property character class feature, but depending on your target support range you may not be able to use it safely yet. The last browser to introduce support was Firefox (78; June 30, 2020). You can check for support of this feature with the Kangax compat table. Babel can be used to compile RegExp literals with property references to equivalent patterns without them, but be aware that the resulting code can sometimes be enormous. You probably would not want to do this unless you’re certain the tradeoff is justified for your use case.
In all likelihood, people asking this question will not be concerned with Deseret capitalization or internationalization. But it’s good to be aware of these issues because there’s a good chance you’ll encounter them eventually even if they aren’t concerns presently. They’re not “edge” cases, or rather, they’re not by-definition edge cases — there’s a whole country where most people speak Turkish, anyway, and conflating code units with codepoints is a fairly common source of bugs (especially with regard to emoji). Both strings and language are pretty complicated!
* The code units of UTF-16 / UCS2 are also Unicode code points in the sense that e.g. U+D800 is technically a code point, but that’s not what it “means” here ... sort of ... though it gets pretty fuzzy. What the surrogates definitely are not, though, is USVs (Unicode scalar values).
** Though if a surrogate code unit is “orphaned” — i.e., not part of a logical pair — you could still get surrogates here, too.
*** maybe. I haven’t tested it. Unless you have determined capitalization is a meaningful bottleneck, I probably wouldn’t sweat it — choose whatever you believe is most clear and readable.
**** such a function might wish to test both the first and second code units instead of just the first, since it’s possible that the first unit is an orphaned surrogate. For example the input "\uD800x" would capitalize the X as-is, which may or may not be expected.
For another case I need it to capitalize the first letter and lowercase the rest. The following cases made me change this function:
//es5
function capitalize(string) {
return string.charAt(0).toUpperCase() + string.slice(1).toLowerCase();
}
capitalize("alfredo") // => "Alfredo"
capitalize("Alejandro")// => "Alejandro
capitalize("ALBERTO") // => "Alberto"
capitalize("ArMaNdO") // => "Armando"
// es6 using destructuring
const capitalize = ([first,...rest]) => first.toUpperCase() + rest.join('').toLowerCase();
This is the 2018 ECMAScript 6+ Solution:
const str = 'the Eiffel Tower';
const newStr = `${str[0].toUpperCase()}${str.slice(1)}`;
console.log('Original String:', str); // the Eiffel Tower
console.log('New String:', newStr); // The Eiffel Tower
If you're already (or considering) using Lodash, the solution is easy:
_.upperFirst('fred');
// => 'Fred'
_.upperFirst('FRED');
// => 'FRED'
_.capitalize('fred') //=> 'Fred'
See their documentation: https://lodash.com/docs#capitalize
_.camelCase('Foo Bar'); //=> 'fooBar'
https://lodash.com/docs/4.15.0#camelCase
_.lowerFirst('Fred');
// => 'fred'
_.lowerFirst('FRED');
// => 'fRED'
_.snakeCase('Foo Bar');
// => 'foo_bar'
Vanilla JavaScript for first upper case:
function upperCaseFirst(str){
return str.charAt(0).toUpperCase() + str.substring(1);
}
There is a very simple way to implement it by replace. For ECMAScript 6:
'foo'.replace(/^./, str => str.toUpperCase())
Result:
'Foo'
Capitalize the first letter of all words in a string:
function ucFirstAllWords( str )
{
var pieces = str.split(" ");
for ( var i = 0; i < pieces.length; i++ )
{
var j = pieces[i].charAt(0).toUpperCase();
pieces[i] = j + pieces[i].substr(1);
}
return pieces.join(" ");
}
CSS only
If the transformation is needed only for displaying on a web page:
p::first-letter {
text-transform: uppercase;
}
Despite being called "::first-letter", it applies to the first character, i.e. in case of string %a, this selector would apply to % and as such a would not be capitalized.
In IE9+ or IE5.5+ it's supported in legacy notation with only one colon (:first-letter).
ES2015 one-liner
const capitalizeFirstChar = str => str.charAt(0).toUpperCase() + str.substring(1);
Remarks
In the benchmark I performed, there was no significant difference between string.charAt(0) and string[0]. Note however, that string[0] would be undefined for an empty string, so the function would have to be rewritten to use "string && string[0]", which is way too verbose, compared to the alternative.
string.substring(1) is faster than string.slice(1).
Benchmark between substring() and slice()
The difference is rather minuscule nowadays (run the test yourself):
21,580,613.15 ops/s ±1.6% for substring(),
21,096,394.34 ops/s ±1.8% (2.24% slower) for slice().
It's always better to handle these kinds of stuff using CSS first, in general, if you can solve something using CSS, go for that first, then try JavaScript to solve your problems, so in this case try using :first-letter in CSS and apply text-transform:capitalize;
So try creating a class for that, so you can use it globally, for example: .first-letter-uppercase and add something like below in your CSS:
.first-letter-uppercase:first-letter {
text-transform:capitalize;
}
Also the alternative option is JavaScript, so the best gonna be something like this:
function capitalizeTxt(txt) {
return txt.charAt(0).toUpperCase() + txt.slice(1); //or if you want lowercase the rest txt.slice(1).toLowerCase();
}
and call it like:
capitalizeTxt('this is a test'); // return 'This is a test'
capitalizeTxt('the Eiffel Tower'); // return 'The Eiffel Tower'
capitalizeTxt('/index.html'); // return '/index.html'
capitalizeTxt('alireza'); // return 'Alireza'
capitalizeTxt('dezfoolian'); // return 'Dezfoolian'
If you want to reuse it over and over, it's better attach it to javascript native String, so something like below:
String.prototype.capitalizeTxt = String.prototype.capitalizeTxt || function() {
return this.charAt(0).toUpperCase() + this.slice(1);
}
and call it as below:
'this is a test'.capitalizeTxt(); // return 'This is a test'
'the Eiffel Tower'.capitalizeTxt(); // return 'The Eiffel Tower'
'/index.html'.capitalizeTxt(); // return '/index.html'
'alireza'.capitalizeTxt(); // return 'Alireza'
String.prototype.capitalize = function(allWords) {
return (allWords) ? // If all words
this.split(' ').map(word => word.capitalize()).join(' ') : // Break down the phrase to words and then recursive
// calls until capitalizing all words
this.charAt(0).toUpperCase() + this.slice(1); // If allWords is undefined, capitalize only the first word,
// meaning the first character of the whole string
}
And then:
"capitalize just the first word".capitalize(); ==> "Capitalize just the first word"
"capitalize all words".capitalize(true); ==> "Capitalize All Words"
Update November 2016 (ES6), just for fun:
const capitalize = (string = '') => [...string].map( // Convert to array with each item is a char of
// string by using spread operator (...)
(char, index) => index ? char : char.toUpperCase() // Index true means not equal 0, so (!index) is
// the first character which is capitalized by
// the `toUpperCase()` method
).join('') // Return back to string
then capitalize("hello") // Hello
SHORTEST 3 solutions, 1 and 2 handle cases when s string is "", null and undefined:
s&&s[0].toUpperCase()+s.slice(1) // 32 char
s&&s.replace(/./,s[0].toUpperCase()) // 36 char - using regexp
'foo'.replace(/./,x=>x.toUpperCase()) // 31 char - direct on string, ES6
let s='foo bar';
console.log( s&&s[0].toUpperCase()+s.slice(1) );
console.log( s&&s.replace(/./,s[0].toUpperCase()) );
console.log( 'foo bar'.replace(/./,x=>x.toUpperCase()) );
We could get the first character with one of my favorite RegExp, looks like a cute smiley: /^./
String.prototype.capitalize = function () {
return this.replace(/^./, function (match) {
return match.toUpperCase();
});
};
And for all coffee-junkies:
String::capitalize = ->
#replace /^./, (match) ->
match.toUpperCase()
...and for all guys who think that there's a better way of doing this, without extending native prototypes:
var capitalize = function (input) {
return input.replace(/^./, function (match) {
return match.toUpperCase();
});
};
Here is a function called ucfirst()(short for "upper case first letter"):
function ucfirst(str) {
var firstLetter = str.substr(0, 1);
return firstLetter.toUpperCase() + str.substr(1);
}
You can capitalise a string by calling ucfirst("some string") -- for example,
ucfirst("this is a test") --> "This is a test"
It works by splitting the string into two pieces. On the first line it pulls out firstLetter and then on the second line it capitalises firstLetter by calling firstLetter.toUpperCase() and joins it with the rest of the string, which is found by calling str.substr(1).
You might think this would fail for an empty string, and indeed in a language like C you would have to cater for this. However in JavaScript, when you take a substring of an empty string, you just get an empty string back.
Use:
var str = "ruby java";
console.log(str.charAt(0).toUpperCase() + str.substring(1));
It will output "Ruby java" to the console.
If you use Underscore.js or Lodash, the underscore.string library provides string extensions, including capitalize:
_.capitalize(string) Converts first letter of the string to
uppercase.
Example:
_.capitalize("foo bar") == "Foo bar"
If you're ok with capitalizing the first letter of every word, and your usecase is in HTML, you can use the following CSS:
<style type="text/css">
p.capitalize {text-transform:capitalize;}
</style>
<p class="capitalize">This is some text.</p>
This is from CSS text-transform Property (at W3Schools).
var capitalized = yourstring[0].toUpperCase() + yourstring.substr(1);
If you are wanting to reformat all-caps text, you might want to modify the other examples as such:
function capitalize (text) {
return text.charAt(0).toUpperCase() + text.slice(1).toLowerCase();
}
This will ensure that the following text is changed:
TEST => Test
This Is A TeST => This is a test
String.prototype.capitalize = function(){
return this.replace(/(^|\s)([a-z])/g,
function(m, p1, p2) {
return p1 + p2.toUpperCase();
});
};
Usage:
capitalizedString = someString.capitalize();
This is a text string => This Is A Text String
function capitalize(s) {
// returns the first letter capitalized + the string from index 1 and out aka. the rest of the string
return s[0].toUpperCase() + s.substr(1);
}
// examples
capitalize('this is a test');
=> 'This is a test'
capitalize('the Eiffel Tower');
=> 'The Eiffel Tower'
capitalize('/index.html');
=> '/index.html'
yourString.replace(/\w/, c => c.toUpperCase())
I found this arrow function easiest. Replace matches the first letter character (\w) of your string and converts it to uppercase. Nothing fancier is necessary.
var str = "test string";
str = str.substring(0,1).toUpperCase() + str.substring(1);
𝗔 𝗦𝗼𝗹𝘂𝘁𝗶𝗼𝗻 𝗧𝗵𝗮𝘁 𝗪𝗼𝗿𝗸𝘀 𝗙𝗼𝗿 𝗔𝗹𝗹 𝗨𝗻𝗶𝗰𝗼𝗱𝗲 𝗖𝗵𝗮𝗿𝗮𝗰𝘁𝗲𝗿𝘀
57 81 different answers for this question, some off-topic, and yet none of them raise the important issue that none of the solutions listed will work with Asian characters, emoji's, and other high Unicode-point-value characters in many browsers. Here is a solution that will:
const consistantCapitalizeFirstLetter = "\uD852\uDF62".length === 1 ?
function(S) {
"use-strict"; // Hooray! The browser uses UTF-32!
return S.charAt(0).toUpperCase() + S.substring(1);
} : function(S) {
"use-strict";
// The browser is using UCS16 to store UTF-16
var code = S.charCodeAt(0)|0;
return (
code >= 0xD800 && code <= 0xDBFF ? // Detect surrogate pair
S.slice(0,2).toUpperCase() + S.substring(2) :
S.charAt(0).toUpperCase() + S.substring(1)
);
};
const prettyCapitalizeFirstLetter = "\uD852\uDF62".length === 1 ?
function(S) {
"use-strict"; // Hooray! The browser uses UTF-32!
return S.charAt(0).toLocaleUpperCase() + S.substring(1);
} : function(S) {
"use-strict";
// The browser is using UCS16 to store UTF-16
var code = S.charCodeAt(0)|0;
return (
code >= 0xD800 && code <= 0xDBFF ? // Detect surrogate pair
S.slice(0,2).toLocaleUpperCase() + S.substring(2) :
S.charAt(0).toLocaleUpperCase() + S.substring(1)
);
};
Do note that the above solution tries to account for UTF-32. However, the specification officially states that browsers are required to do everything in UTF-16 mapped into UCS2. Nevertheless, if we all come together, do our part, and start preparing for UTF32, then there is a chance that the TC39 may allow browsers to start using UTF-32 (like how Python uses 24-bits for each character of the string). This must seem silly to an English speaker: no one who uses only latin-1 has ever had to deal with Mojibake because Latin-I is supported by all character encodings. But, users in other countries (such as China, Japan, Indonesia, etc.) are not so fortunate. They constantly struggle with encoding problems not just from the webpage, but also from the JavaScript: many Chinese/Japanese characters are treated as two letters by JavaScript and thus may be broken apart in the middle, resulting in � and � (two question-marks that make no sense to the end user). If we could start getting ready for UTF-32, then the TC39 might just allow browsers do what Python did many years ago which had made Python very popular for working with high Unicode characters: using UTF-32.
consistantCapitalizeFirstLetter works correctly in Internet Explorer 3+ (when the const is changed to var). prettyCapitalizeFirstLetter requires Internet Explorer 5.5+ (see the top of page 250 of this document). However, these fact are more of just jokes because it is very likely that the rest of the code on your webpage will not even work in Internet Explorer 8 - because of all the DOM and JScript bugs and lack of features in these older browsers. Further, no one uses Internet Explorer 3 or Internet Explorer 5.5 any more.
Check out this solution:
var stringVal = 'master';
stringVal.replace(/^./, stringVal[0].toUpperCase()); // Returns Master
Only because this is really a one-liner I will include this answer. It's an ES6-based interpolated string one-liner.
let setStringName = 'the Eiffel Tower';
setStringName = `${setStringName[0].toUpperCase()}${setStringName.substring(1)}`;
with arrow function
let fLCapital = s => s.replace(/./, c => c.toUpperCase())
fLCapital('this is a test') // "This is a test"
with arrow function, another solution
let fLCapital = s => s = s.charAt(0).toUpperCase() + s.slice(1);
fLCapital('this is a test') // "This is a test"
with array and map()
let namesCapital = names => names.map(name => name.replace(/./, c => c.toUpperCase()))
namesCapital(['james', 'robert', 'mary']) // ["James", "Robert", "Mary"]

jQuery Multiple Strings Case and Accent Insensitive

My first post on here. I have a function on a website whereby a randomly generated French phrase is displayed, challenging the reader to translate it into English in a text box. On clicking on a button, the text entered is compared to all the possible answers (there are multiple correct translations for a given phrase). I've looked around for answers on this but nothing seems to suit my situation.
Here's the jQuery:
var correctAnswer = function(){$('#correctmessage').show('fast');$('#errormessage').hide('fast');}
var wrongAnswer = function(){$('#errormessage').show('fast');$('#correctmessage').hide('fast');}
$('#1').find('button').on('click', function(){
var text = $(this).parent().find('.translatefield').val();
var compareText = "I went to the cinema";
var compareText2 = "I have been to the cinema";
if (text == compareText || text == compareText2) {
correctAnswer();
}
else {
wrongAnswer();
}
});
So I wondered if I can put the 'compare' variables into one variable i.e. 'I went to the cinema OR I have been to the cinema OR etc etc' within one variable for tidiness. But mainly I need to know how I can call that variable within the if so that it also accepts the answer without accented characters and regardless of upper or lower case... I hope this is clear! Thanks for any help you can give, this has been irritating me for a while!
As commented by Mark Holland, use arrays for the compare phrases.
If you are using jQuery anyway, you could use jQuery.inArray().
https://api.jquery.com/jQuery.inArray/
var compareText = ['i went to the cinema','i have been to the cinema'];
if ($.inArray(text.toLowerCase(), compareText)) {
... do stuff
}
To ignore the accents, use a solution like this:
String.prototype.removeAccents = function(){
return this
.replace(/[áàãâä]/gi,"a")
.replace(/[éè¨ê]/gi,"e")
.replace(/[íìïî]/gi,"i")
.replace(/[óòöôõ]/gi,"o")
.replace(/[úùüû]/gi, "u")
.replace(/[ç]/gi, "c")
.replace(/[ñ]/gi, "n")
.replace(/[^a-zA-Z0-9]/g," ");
}
Credits to Luan Castro
Perform a find/match with javascript, ignoring special language characters (accents, for example)?
As mentionned by Mark Holland, arrays would answer your first question.
JS arrays
To ignore accents, a quick search gave me this answer:
Replace accents
And to ignore lower/uppercase, a quick search gave me this answer.
Ignore case
How about setting the strings into one array and iterate this array to compare with the answer?

How to make indexOf only match 'hi' as a match and not 'hirandomstuffhere'?

Basically I was playing around with an Steam bot for some time ago, and made it auto-reply when you said things in an array, I.E an 'hello-triggers' array, which would contain things like "hi", "hello" and such. I made so whenever it received an message, it would check for matches using indexOf() and everything worked fine, until I noticed it would notice 'hiasodkaso', or like, 'hidemyass' as an "hi" trigger.
So it would match anything that contained the word even if it was in the middle of a word.
How would I go about making indexOf only notice it if it's the exact word, and not something else in the same word?
I do not have the script that I use but I will make an example that is pretty much like it:
var hiTriggers = ['hi', 'hello', 'yo'];
// here goes the receiving message function and what not, then:
for(var i = 0; i < hiTriggers.length; i++) {
if(message.indexOf(hiTriggers[i]) >= 0) {
bot.sendMessage(SteamID, randomHelloMsg[Math stuff here blabla]); // randomHelloMsg is already defined
}
}
Regex wouldn't be used for this, right? As it is to be used for expressions or whatever. (my English isn't awesome, ikr)
Thanks in advance. If I wasn't clear enough on something, please let me know and I'll edit/formulate it in another way! :)
You can extend prototype:
String.prototype.regexIndexOf = function(regex, startpos) {
var indexOf = this.substring(startpos || 0).search(regex);
return (indexOf >= 0) ? (indexOf + (startpos || 0)) : indexOf;
}
and do:
var foo = "hia hi hello";
foo.regexIndexOf(/hi\b/);
Or if you don't want to extend the string object:
foo.substr(i).search(/hi\b/);
both examples where taken from the top answers of Is there a version of JavaScript's String.indexOf() that allows for regular expressions?
Regex wouldn't be used for this, right? As it is to be used for expressions or whatever. (my > English isn't awesome, ikr)
Actually, regex is for any old pattern matching. It's absolutely useful for this.
fmsf's answer should work for what you're trying to do, however, in general extending native objects prototypes is frowned upon afik. You can easily break libraries by doing so. I'd avoid it when possible. In this case you could use his regexIndexOf function by itself or in concert with something like:
//takes a word and searches for it using regexIndexOf
function regexIndexWord(word){
return regexIndexOf("/"+word+"\b/");
}
Which would let you search based on your array of words without having to add the special symbols to each one.

CSS Style property names -- going from the regular version to the JS property camelCase version and vice versa

Does there exist a provision for obtaining the corresponding names?
A function I'm writing has to both set the style via element.style[propnameCamelCase] and retrieve the existing rendered value via document.defaultView.getComputedStyle(element,'').getPropertyValue(propname-regular), and I can hardly justify having to pass two separate but semantically identical arguments to this function.
I know that for most of them it's a fairly straightforward transcription between camelCase and hyphen-delimited with the same words, so I can use regexes to convert them. But maybe there are a few that are not like this?
Off the top of my head I'm having a hard time figuring out how to deal with the capitalized letters for camel case with regular expressions.
edit: Ah, I could use a function for regex replace, each time I see a hyphen, convert next letter to upper case.
So you're basically reinventing jQuery.css(). Maybe a look at how jQuery solved the camelCase problem might help: https://github.com/jquery/jquery/blob/master/src/core.js#L600
I was about to ask question about the same thing (and I intended to name it "Translate css names to\from javascript counterparts"). Somehow I ended up writing my own solution.
function cssNameToJsName(name)
{
var split = name.split("-");
var output = "";
for(var i = 0; i < split.length; i++)
{
if (i > 0 && split[i].length > 0 && !(i == 1 && split[i] == "ms"))
{
split[i] = split[i].substr(0, 1).toUpperCase() + split[i].substr(1);
}
output += split[i];
}
return output;
}
function jsNameToCssName(name)
{
return name.replace(/([A-Z])/g, "-$1").toLowerCase();
}
I'd like to mention that CSSStyleDeclaration.style.setProperty accepts css/hyphen type property names without conversion, as documented here
Try this hyphenated property, for example:
document.body.style.setProperty("background-color", "red");
You can also do this:
document.body.style["background-color"] = "silver";
These approaches - if you can use them - may be simpler.

How do I make the first letter of a string uppercase in JavaScript?

How do I make the first character of a string uppercase if it's a letter, but not change the case of any of the other letters?
For example:
"this is a test" → "This is a test"
"the Eiffel Tower" → "The Eiffel Tower"
"/index.html" → "/index.html"
function capitalizeFirstLetter(string) {
return string.charAt(0).toUpperCase() + string.slice(1);
}
Some other answers modify String.prototype (this answer used to as well), but I would advise against this now due to maintainability (hard to find out where the function is being added to the prototype and could cause conflicts if other code uses the same name/a browser adds a native function with that same name in future).
Edited to add this DISCLAIMER: please read the comments to understand the risks of editing JS basic types.
Here's a more object-oriented approach:
Object.defineProperty(String.prototype, 'capitalize', {
value: function() {
return this.charAt(0).toUpperCase() + this.slice(1);
},
enumerable: false
});
You'd call the function, like this:
"hello, world!".capitalize();
With the expected output being:
"Hello, world!"
In CSS:
p::first-letter {
text-transform:capitalize;
}
Here is a shortened version of the popular answer that gets the first letter by treating the string as an array:
function capitalize(s)
{
return s[0].toUpperCase() + s.slice(1);
}
Update
According to the comments below this doesn't work in IE 7 or below.
Update 2:
To avoid undefined for empty strings (see #njzk2's comment below), you can check for an empty string:
function capitalize(s)
{
return s && s[0].toUpperCase() + s.slice(1);
}
ES version
const capitalize = s => s && s[0].toUpperCase() + s.slice(1)
// to always return type string event when s may be falsy other than empty-string
const capitalize = s => (s && s[0].toUpperCase() + s.slice(1)) || ""
If you're interested in the performance of a few different methods posted:
Here are the fastest methods based on this jsperf test (ordered from fastest to slowest).
As you can see, the first two methods are essentially comparable in terms of performance, whereas altering the String.prototype is by far the slowest in terms of performance.
// 10,889,187 operations/sec
function capitalizeFirstLetter(string) {
return string[0].toUpperCase() + string.slice(1);
}
// 10,875,535 operations/sec
function capitalizeFirstLetter(string) {
return string.charAt(0).toUpperCase() + string.slice(1);
}
// 4,632,536 operations/sec
function capitalizeFirstLetter(string) {
return string.replace(/^./, string[0].toUpperCase());
}
// 1,977,828 operations/sec
String.prototype.capitalizeFirstLetter = function() {
return this.charAt(0).toUpperCase() + this.slice(1);
}
I didn’t see any mention in the existing answers of issues related to astral plane code points or internationalization. “Uppercase” doesn’t mean the same thing in every language using a given script.
Initially I didn’t see any answers addressing issues related to astral plane code points. There is one, but it’s a bit buried (like this one will be, I guess!)
Overview of the hidden problem and various approaches to it
Most of the proposed functions look like this:
function capitalizeFirstLetter(str) {
return str[0].toUpperCase() + str.slice(1);
}
However, some cased characters fall outside the BMP (basic multilingual plane, code points U+0 to U+FFFF). For example take this Deseret text:
capitalizeFirstLetter("𐐶𐐲𐑌𐐼𐐲𐑉"); // "𐐶𐐲𐑌𐐼𐐲𐑉"
The first character here fails to capitalize because the array-indexed properties of strings don’t access “characters” or code points*. They access UTF-16 code units. This is true also when slicing — the index values point at code units.
It happens to be that UTF-16 code units are 1:1 with USV code points within two ranges, U+0 to U+D7FF and U+E000 to U+FFFF inclusive. Most cased characters fall into those two ranges, but not all of them.
From ES2015 on, dealing with this became a bit easier. String.prototype[##iterator] yields strings corresponding to code points**. So for example, we can do this:
function capitalizeFirstLetter([ first='', ...rest ]) {
return [ first.toUpperCase(), ...rest ].join('');
}
capitalizeFirstLetter("𐐶𐐲𐑌𐐼𐐲𐑉") // "𐐎𐐲𐑌𐐼𐐲𐑉"
For longer strings, this is probably not terribly efficient*** — we don’t really need to iterate the remainder. We could use String.prototype.codePointAt to get at that first (possible) letter, but we’d still need to determine where the slice should begin. One way to avoid iterating the remainder would be to test whether the first codepoint is outside the BMP; if it isn’t, the slice begins at 1, and if it is, the slice begins at 2.
function capitalizeFirstLetter(str) {
if (!str) return '';
const firstCP = str.codePointAt(0);
const index = firstCP > 0xFFFF ? 2 : 1;
return String.fromCodePoint(firstCP).toUpperCase() + str.slice(index);
}
capitalizeFirstLetter("𐐶𐐲𐑌𐐼𐐲𐑉") // "𐐎𐐲𐑌𐐼𐐲𐑉"
You could use bitwise math instead of > 0xFFFF there, but it’s probably easier to understand this way and either would achieve the same thing.
We can also make this work in ES5 and below by taking that logic a bit further if necessary. There are no intrinsic methods in ES5 for working with codepoints, so we have to manually test whether the first code unit is a surrogate****:
function capitalizeFirstLetter(str) {
if (!str) return '';
var firstCodeUnit = str[0];
if (firstCodeUnit < '\uD800' || firstCodeUnit > '\uDFFF') {
return str[0].toUpperCase() + str.slice(1);
}
return str.slice(0, 2).toUpperCase() + str.slice(2);
}
capitalizeFirstLetter("𐐶𐐲𐑌𐐼𐐲𐑉") // "𐐎𐐲𐑌𐐼𐐲𐑉"
Deeper into internationalization (whose capitalization?)
At the start I also mentioned internationalization considerations. Some of these are very difficult to account for because they require knowledge not only of what language is being used, but also may require specific knowledge of the words in the language. For example, the Irish digraph "mb" capitalizes as "mB" at the start of a word. Another example, the German eszett, never begins a word (afaik), but still helps illustrate the problem. The lowercase eszett (“ß”) capitalizes to “SS,” but “SS” could lowercase to either “ß” or “ss” — you require out-of-band knowledge of the German language to know which is correct!
The most famous example of these kinds of issues, probably, is Turkish. In Turkish Latin, the capital form of i is İ, while the lowercase form of I is ı — they’re two different letters. Fortunately we do have a way to account for this:
function capitalizeFirstLetter([ first='', ...rest ], locale) {
return [ first.toLocaleUpperCase(locale), ...rest ].join('');
}
capitalizeFirstLetter("italy", "en") // "Italy"
capitalizeFirstLetter("italya", "tr") // "İtalya"
In a browser, the user’s most-preferred language tag is indicated by navigator.language, a list in order of preference is found at navigator.languages, and a given DOM element’s language can be obtained (usually) with Object(element.closest('[lang]')).lang || YOUR_DEFAULT_HERE in multilanguage documents.
In agents which support Unicode property character classes in RegExp, which were introduced in ES2018, we can clean stuff up further by directly expressing what characters we’re interested in:
function capitalizeFirstLetter(str, locale=navigator.language) {
return str.replace(/^\p{CWU}/u, char => char.toLocaleUpperCase(locale));
}
This could be tweaked a bit to also handle capitalizing multiple words in a string with fairly good accuracy for at least some languages, though outlying cases will be hard to avoid completely if doing so no matter what the primary language is.
The CWU or Changes_When_Uppercased character property matches all code points which change when uppercased in the generic case where specific locale data is absent. There are other interesting case-related Unicode character properties that you may wish to play around with. It’s a cool zone to explore but we’d go on all day if we enumerated em all here. Here’s something to get your curiosity going if you’re unfamiliar, though: \p{Lower} is a larger group than \p{LowercaseLetter} (aka \p{Ll}) — conveniently illustrated by the default character set comparison in this tool provided by Unicode. (NB: not everything you can reference there is also available in ES regular expressions, but most of the stuff you’re likely to want is).
Alternatives to case-mapping in JS (Firefox & CSS love the Dutch!)
If digraphs with unique locale/language/orthography capitalization rules happen to have a single-codepoint “composed” representation in Unicode, these might be used to make one’s capitalization expectations explicit even in the absence of locale data. For example, we could prefer the composed i-j digraph, ij / U+133, associated with Dutch, to ensure a case-mapping to uppercase IJ / U+132:
capitalizeFirstLetter('ijsselmeer'); // "IJsselmeer"
On the other hand, precomposed digraphs and similar are sometimes deprecated (like that one, it seems!) and may be undesirable in interchanged text regardless due to the potential copypaste nuisance if that’s not the normal way folks type the sequence in practice. Unfortunately, in the absence of the precomposition “hint,” an explicit locale won’t help here (at least as far as I know). If we spell ijsselmeer with an ordinary i + j, capitalizeFirstLetter will produce the wrong result even if we explicitly indicate nl as the locale:
capitalizeFirstLetter('ijsselmeer', 'nl'); // "Ijsselmeer" :(
(I’m not entirely sure whether there are some such cases where the behavior comes down to ICU data availability — perhaps someone else could say.)
If the point of the transformation is to display textual content in a web browser, though, you have an entirely different option available that will likely be your best bet: leveraging features of the web platform’s other core languages, HTML and CSS. Armed with HTML’s lang=... and CSS’s text-transform:..., you’ve got a (pseudo-)declarative solution that leaves extra room for the user agent to be “smart.” A JS API needs to have predictable outcomes across all browsers (generally) and isn’t free to experiment with heuristics. The user-agent itself is obligated only to its user, though, and heuristic solutions are fair game when the output is for a human being. If we tell it “this text is Dutch, but please display it capitalized,” the particular outcome might now vary between browsers, but it’s likely going to be the best each of them could do. Let’s see:
<!DOCTYPE html>
<dl>
<dt>Untransformed
<dd>ijsselmeer
<dt>Capitalized with CSS and <code>lang=en</code>
<dd lang="en" style="text-transform: capitalize">ijsselmeer
<dt>Capitalized with CSS and <code>lang=nl</code>
<dd lang="nl" style="text-transform: capitalize">ijsselmeer
In Chromium at the time of writing, both the English and Dutch lines come out as Ijsselmeer — so it does no better than JS. But try it in current Firefox! The element that we told the browser contains Dutch will be correctly rendered as IJsselmeer there.
This solution is purpose-specific (it’s not gonna help you in Node, anyway) but it was silly of me not to draw attention to it previously given some folks might not realize they’re googling the wrong question. Thanks #paul23 for clarifying more about the nature of the IJ digraph in practice and prompting further investigation!
As of January 2021, all major engines have implemented the Unicode property character class feature, but depending on your target support range you may not be able to use it safely yet. The last browser to introduce support was Firefox (78; June 30, 2020). You can check for support of this feature with the Kangax compat table. Babel can be used to compile RegExp literals with property references to equivalent patterns without them, but be aware that the resulting code can sometimes be enormous. You probably would not want to do this unless you’re certain the tradeoff is justified for your use case.
In all likelihood, people asking this question will not be concerned with Deseret capitalization or internationalization. But it’s good to be aware of these issues because there’s a good chance you’ll encounter them eventually even if they aren’t concerns presently. They’re not “edge” cases, or rather, they’re not by-definition edge cases — there’s a whole country where most people speak Turkish, anyway, and conflating code units with codepoints is a fairly common source of bugs (especially with regard to emoji). Both strings and language are pretty complicated!
* The code units of UTF-16 / UCS2 are also Unicode code points in the sense that e.g. U+D800 is technically a code point, but that’s not what it “means” here ... sort of ... though it gets pretty fuzzy. What the surrogates definitely are not, though, is USVs (Unicode scalar values).
** Though if a surrogate code unit is “orphaned” — i.e., not part of a logical pair — you could still get surrogates here, too.
*** maybe. I haven’t tested it. Unless you have determined capitalization is a meaningful bottleneck, I probably wouldn’t sweat it — choose whatever you believe is most clear and readable.
**** such a function might wish to test both the first and second code units instead of just the first, since it’s possible that the first unit is an orphaned surrogate. For example the input "\uD800x" would capitalize the X as-is, which may or may not be expected.
For another case I need it to capitalize the first letter and lowercase the rest. The following cases made me change this function:
//es5
function capitalize(string) {
return string.charAt(0).toUpperCase() + string.slice(1).toLowerCase();
}
capitalize("alfredo") // => "Alfredo"
capitalize("Alejandro")// => "Alejandro
capitalize("ALBERTO") // => "Alberto"
capitalize("ArMaNdO") // => "Armando"
// es6 using destructuring
const capitalize = ([first,...rest]) => first.toUpperCase() + rest.join('').toLowerCase();
This is the 2018 ECMAScript 6+ Solution:
const str = 'the Eiffel Tower';
const newStr = `${str[0].toUpperCase()}${str.slice(1)}`;
console.log('Original String:', str); // the Eiffel Tower
console.log('New String:', newStr); // The Eiffel Tower
If you're already (or considering) using Lodash, the solution is easy:
_.upperFirst('fred');
// => 'Fred'
_.upperFirst('FRED');
// => 'FRED'
_.capitalize('fred') //=> 'Fred'
See their documentation: https://lodash.com/docs#capitalize
_.camelCase('Foo Bar'); //=> 'fooBar'
https://lodash.com/docs/4.15.0#camelCase
_.lowerFirst('Fred');
// => 'fred'
_.lowerFirst('FRED');
// => 'fRED'
_.snakeCase('Foo Bar');
// => 'foo_bar'
Vanilla JavaScript for first upper case:
function upperCaseFirst(str){
return str.charAt(0).toUpperCase() + str.substring(1);
}
There is a very simple way to implement it by replace. For ECMAScript 6:
'foo'.replace(/^./, str => str.toUpperCase())
Result:
'Foo'
Capitalize the first letter of all words in a string:
function ucFirstAllWords( str )
{
var pieces = str.split(" ");
for ( var i = 0; i < pieces.length; i++ )
{
var j = pieces[i].charAt(0).toUpperCase();
pieces[i] = j + pieces[i].substr(1);
}
return pieces.join(" ");
}
CSS only
If the transformation is needed only for displaying on a web page:
p::first-letter {
text-transform: uppercase;
}
Despite being called "::first-letter", it applies to the first character, i.e. in case of string %a, this selector would apply to % and as such a would not be capitalized.
In IE9+ or IE5.5+ it's supported in legacy notation with only one colon (:first-letter).
ES2015 one-liner
const capitalizeFirstChar = str => str.charAt(0).toUpperCase() + str.substring(1);
Remarks
In the benchmark I performed, there was no significant difference between string.charAt(0) and string[0]. Note however, that string[0] would be undefined for an empty string, so the function would have to be rewritten to use "string && string[0]", which is way too verbose, compared to the alternative.
string.substring(1) is faster than string.slice(1).
Benchmark between substring() and slice()
The difference is rather minuscule nowadays (run the test yourself):
21,580,613.15 ops/s ±1.6% for substring(),
21,096,394.34 ops/s ±1.8% (2.24% slower) for slice().
It's always better to handle these kinds of stuff using CSS first, in general, if you can solve something using CSS, go for that first, then try JavaScript to solve your problems, so in this case try using :first-letter in CSS and apply text-transform:capitalize;
So try creating a class for that, so you can use it globally, for example: .first-letter-uppercase and add something like below in your CSS:
.first-letter-uppercase:first-letter {
text-transform:capitalize;
}
Also the alternative option is JavaScript, so the best gonna be something like this:
function capitalizeTxt(txt) {
return txt.charAt(0).toUpperCase() + txt.slice(1); //or if you want lowercase the rest txt.slice(1).toLowerCase();
}
and call it like:
capitalizeTxt('this is a test'); // return 'This is a test'
capitalizeTxt('the Eiffel Tower'); // return 'The Eiffel Tower'
capitalizeTxt('/index.html'); // return '/index.html'
capitalizeTxt('alireza'); // return 'Alireza'
capitalizeTxt('dezfoolian'); // return 'Dezfoolian'
If you want to reuse it over and over, it's better attach it to javascript native String, so something like below:
String.prototype.capitalizeTxt = String.prototype.capitalizeTxt || function() {
return this.charAt(0).toUpperCase() + this.slice(1);
}
and call it as below:
'this is a test'.capitalizeTxt(); // return 'This is a test'
'the Eiffel Tower'.capitalizeTxt(); // return 'The Eiffel Tower'
'/index.html'.capitalizeTxt(); // return '/index.html'
'alireza'.capitalizeTxt(); // return 'Alireza'
String.prototype.capitalize = function(allWords) {
return (allWords) ? // If all words
this.split(' ').map(word => word.capitalize()).join(' ') : // Break down the phrase to words and then recursive
// calls until capitalizing all words
this.charAt(0).toUpperCase() + this.slice(1); // If allWords is undefined, capitalize only the first word,
// meaning the first character of the whole string
}
And then:
"capitalize just the first word".capitalize(); ==> "Capitalize just the first word"
"capitalize all words".capitalize(true); ==> "Capitalize All Words"
Update November 2016 (ES6), just for fun:
const capitalize = (string = '') => [...string].map( // Convert to array with each item is a char of
// string by using spread operator (...)
(char, index) => index ? char : char.toUpperCase() // Index true means not equal 0, so (!index) is
// the first character which is capitalized by
// the `toUpperCase()` method
).join('') // Return back to string
then capitalize("hello") // Hello
SHORTEST 3 solutions, 1 and 2 handle cases when s string is "", null and undefined:
s&&s[0].toUpperCase()+s.slice(1) // 32 char
s&&s.replace(/./,s[0].toUpperCase()) // 36 char - using regexp
'foo'.replace(/./,x=>x.toUpperCase()) // 31 char - direct on string, ES6
let s='foo bar';
console.log( s&&s[0].toUpperCase()+s.slice(1) );
console.log( s&&s.replace(/./,s[0].toUpperCase()) );
console.log( 'foo bar'.replace(/./,x=>x.toUpperCase()) );
We could get the first character with one of my favorite RegExp, looks like a cute smiley: /^./
String.prototype.capitalize = function () {
return this.replace(/^./, function (match) {
return match.toUpperCase();
});
};
And for all coffee-junkies:
String::capitalize = ->
#replace /^./, (match) ->
match.toUpperCase()
...and for all guys who think that there's a better way of doing this, without extending native prototypes:
var capitalize = function (input) {
return input.replace(/^./, function (match) {
return match.toUpperCase();
});
};
Here is a function called ucfirst()(short for "upper case first letter"):
function ucfirst(str) {
var firstLetter = str.substr(0, 1);
return firstLetter.toUpperCase() + str.substr(1);
}
You can capitalise a string by calling ucfirst("some string") -- for example,
ucfirst("this is a test") --> "This is a test"
It works by splitting the string into two pieces. On the first line it pulls out firstLetter and then on the second line it capitalises firstLetter by calling firstLetter.toUpperCase() and joins it with the rest of the string, which is found by calling str.substr(1).
You might think this would fail for an empty string, and indeed in a language like C you would have to cater for this. However in JavaScript, when you take a substring of an empty string, you just get an empty string back.
Use:
var str = "ruby java";
console.log(str.charAt(0).toUpperCase() + str.substring(1));
It will output "Ruby java" to the console.
If you use Underscore.js or Lodash, the underscore.string library provides string extensions, including capitalize:
_.capitalize(string) Converts first letter of the string to
uppercase.
Example:
_.capitalize("foo bar") == "Foo bar"
If you're ok with capitalizing the first letter of every word, and your usecase is in HTML, you can use the following CSS:
<style type="text/css">
p.capitalize {text-transform:capitalize;}
</style>
<p class="capitalize">This is some text.</p>
This is from CSS text-transform Property (at W3Schools).
var capitalized = yourstring[0].toUpperCase() + yourstring.substr(1);
If you are wanting to reformat all-caps text, you might want to modify the other examples as such:
function capitalize (text) {
return text.charAt(0).toUpperCase() + text.slice(1).toLowerCase();
}
This will ensure that the following text is changed:
TEST => Test
This Is A TeST => This is a test
String.prototype.capitalize = function(){
return this.replace(/(^|\s)([a-z])/g,
function(m, p1, p2) {
return p1 + p2.toUpperCase();
});
};
Usage:
capitalizedString = someString.capitalize();
This is a text string => This Is A Text String
function capitalize(s) {
// returns the first letter capitalized + the string from index 1 and out aka. the rest of the string
return s[0].toUpperCase() + s.substr(1);
}
// examples
capitalize('this is a test');
=> 'This is a test'
capitalize('the Eiffel Tower');
=> 'The Eiffel Tower'
capitalize('/index.html');
=> '/index.html'
yourString.replace(/\w/, c => c.toUpperCase())
I found this arrow function easiest. Replace matches the first letter character (\w) of your string and converts it to uppercase. Nothing fancier is necessary.
var str = "test string";
str = str.substring(0,1).toUpperCase() + str.substring(1);
𝗔 𝗦𝗼𝗹𝘂𝘁𝗶𝗼𝗻 𝗧𝗵𝗮𝘁 𝗪𝗼𝗿𝗸𝘀 𝗙𝗼𝗿 𝗔𝗹𝗹 𝗨𝗻𝗶𝗰𝗼𝗱𝗲 𝗖𝗵𝗮𝗿𝗮𝗰𝘁𝗲𝗿𝘀
57 81 different answers for this question, some off-topic, and yet none of them raise the important issue that none of the solutions listed will work with Asian characters, emoji's, and other high Unicode-point-value characters in many browsers. Here is a solution that will:
const consistantCapitalizeFirstLetter = "\uD852\uDF62".length === 1 ?
function(S) {
"use-strict"; // Hooray! The browser uses UTF-32!
return S.charAt(0).toUpperCase() + S.substring(1);
} : function(S) {
"use-strict";
// The browser is using UCS16 to store UTF-16
var code = S.charCodeAt(0)|0;
return (
code >= 0xD800 && code <= 0xDBFF ? // Detect surrogate pair
S.slice(0,2).toUpperCase() + S.substring(2) :
S.charAt(0).toUpperCase() + S.substring(1)
);
};
const prettyCapitalizeFirstLetter = "\uD852\uDF62".length === 1 ?
function(S) {
"use-strict"; // Hooray! The browser uses UTF-32!
return S.charAt(0).toLocaleUpperCase() + S.substring(1);
} : function(S) {
"use-strict";
// The browser is using UCS16 to store UTF-16
var code = S.charCodeAt(0)|0;
return (
code >= 0xD800 && code <= 0xDBFF ? // Detect surrogate pair
S.slice(0,2).toLocaleUpperCase() + S.substring(2) :
S.charAt(0).toLocaleUpperCase() + S.substring(1)
);
};
Do note that the above solution tries to account for UTF-32. However, the specification officially states that browsers are required to do everything in UTF-16 mapped into UCS2. Nevertheless, if we all come together, do our part, and start preparing for UTF32, then there is a chance that the TC39 may allow browsers to start using UTF-32 (like how Python uses 24-bits for each character of the string). This must seem silly to an English speaker: no one who uses only latin-1 has ever had to deal with Mojibake because Latin-I is supported by all character encodings. But, users in other countries (such as China, Japan, Indonesia, etc.) are not so fortunate. They constantly struggle with encoding problems not just from the webpage, but also from the JavaScript: many Chinese/Japanese characters are treated as two letters by JavaScript and thus may be broken apart in the middle, resulting in � and � (two question-marks that make no sense to the end user). If we could start getting ready for UTF-32, then the TC39 might just allow browsers do what Python did many years ago which had made Python very popular for working with high Unicode characters: using UTF-32.
consistantCapitalizeFirstLetter works correctly in Internet Explorer 3+ (when the const is changed to var). prettyCapitalizeFirstLetter requires Internet Explorer 5.5+ (see the top of page 250 of this document). However, these fact are more of just jokes because it is very likely that the rest of the code on your webpage will not even work in Internet Explorer 8 - because of all the DOM and JScript bugs and lack of features in these older browsers. Further, no one uses Internet Explorer 3 or Internet Explorer 5.5 any more.
Check out this solution:
var stringVal = 'master';
stringVal.replace(/^./, stringVal[0].toUpperCase()); // Returns Master
Only because this is really a one-liner I will include this answer. It's an ES6-based interpolated string one-liner.
let setStringName = 'the Eiffel Tower';
setStringName = `${setStringName[0].toUpperCase()}${setStringName.substring(1)}`;
with arrow function
let fLCapital = s => s.replace(/./, c => c.toUpperCase())
fLCapital('this is a test') // "This is a test"
with arrow function, another solution
let fLCapital = s => s = s.charAt(0).toUpperCase() + s.slice(1);
fLCapital('this is a test') // "This is a test"
with array and map()
let namesCapital = names => names.map(name => name.replace(/./, c => c.toUpperCase()))
namesCapital(['james', 'robert', 'mary']) // ["James", "Robert", "Mary"]

Categories