I want to calculate the radius of an inverted circle.
I managed to implement everything but, after hours of struggle, I could not find a formula to calculate the correct inverted radius.
More info about circle inversion:
http://en.wikipedia.org/wiki/Inversive_geometry
https://www.youtube.com/watch?v=sG_6nlMZ8f4
My code so far: http://codepen.io/rafaelcastrocouto/pen/Mwjdga
It seems to be working but you can easily tell it's totally wrong.
var c = $('#c'),
b = $('body'),
canvas = c[0],
ctx = canvas.getContext('2d'),
pi = Math.PI,
r = 100,
mr = 30,
width, height, hw, hh;
var setup = function() {
width = b.width();
height = b.height();
hw = width/2;
hh = height/2;
canvas.width = width;
canvas.height = height;
mid();
};
var mid = function() {
circle(hw,hh,0.25);
circle(hw,hh,r);
}
var circle = function(x,y,r) {
ctx.beginPath();
ctx.arc(x,y,r,0,pi*2);
ctx.stroke();
ctx.closePath();
};
var move = function(evt) {
var x = evt.clientX,
y = evt.clientY;
ctx.clearRect(0,0,width,height);
mid();
circle(x,y,mr);
var dx = x-hw,
dy = y-hh,
d = dist(dx,dy),
nd = r*r/d,
nx = dx*nd/d,
ny = dy*nd/d,
nr = mr*mr*pi/d; // whats the correct formula?
console.log(nr);
circle(nx+hw, ny+hh, nr);
};
var dist = function(x,y) {
return Math.pow(x*x + y*y, 1/2);
};
$(setup);
$(window).resize(setup);
$(window).mousemove(move);
Need help from the math experts!
As you said, inverting the centre of a circle doesn't give you the centre of the other one. Likewise if we invert two oposite points of one circle, it doesn't mean they'll be opposing points on the inverted circle.
Since three points describe a unique circle we can use these to find the equation for the inverse circle. That gives us the centre of the inverse circle. We can then find the distance from the centre to one of the inverted points, that's the radius.
The following c++ code gives the centre. (I don't know javascript). The function v.norm2() gives the squared norm of the vector v.
Vector2D getcircle(Vector2D p1, Vector2D p2, Vector2D p3){
Vector2D result;
long double div = 2*(p1.x*(p2.y-p3.y)-p1.y*(p2.x-p3.x)+p2.x*p3.y-p3.x*p2.y);
result.x = (p1.norm2()*(p2.y-p3.y)+p2.norm2()*(p3.y-p1.y)+p3.norm2()*(p1.y-p2.y))/div;
result.y = (p1.norm2()*(p3.x-p2.x)+p2.norm2()*(p1.x-p3.x)+p3.norm2()*(p2.x-p1.x))/div;
return result;
}
So if you have a circle c of radius r, and you are inverting respect to another circle C and radius R, you could do something like
float getRadius(Vector2D C, float R, Vector2D c, float r){
Vector2D p1 = Vector2D(c.x + r, c.y).invert(C, R);
Vector2D p2 = Vector2D(c.x - r, c.y).invert(C, R);
Vector2D p3 = Vector2D(c.x, c.y + r).invert(C, R);
return (getcircle(p1, p2, p3) - p1).norm();
}
Here is an image of a circle with centre (130, -130) and radius 128, and it's inversion respect to another circle (not shown) of centre (0, 0) and radius 40.
The red points on the big circle are polar opposites. They are then inverted and shown on the little circle where you can see they are not polar opposites.
My error was that I was assuming that the center of the inverted circle also respected OP x OP' = r2, but as the image below shows, it clearly does not. The solution was to calculate two points on the circle and reflect each one, then use half the distance between this points to find the radius.
So this is the correct code:
var c = $('#c'),
b = $('body'),
canvas = c[0],
ctx = canvas.getContext('2d'),
fixedRadius = 100,
saved = [],
width, height,
half = {
w: 0,
h: 0
},
mouse = {
r: 31,
x: 0,
y: 0
},
reflect = {
x: 0,
y: 0,
r: 0
};
var setup = function() {
width = b.width();
height = b.height();
half.w = width/2;
half.h = height/2;
canvas.width = width;
canvas.height = height;
move();
};
var mid = function() {
circle(half.w,half.h,1.5);
circle(half.w,half.h,fixedRadius);
};
var circle = function(x,y,r,c) {
ctx.strokeStyle = c || 'black';
ctx.beginPath();
ctx.arc(x,y,r,0,Math.PI*2);
ctx.stroke();
ctx.closePath();
};
var line = function(x1,y1,x2,y2,c) {
ctx.strokeStyle = c || 'black';
ctx.beginPath();
ctx.moveTo(x1,y1);
ctx.lineTo(x2,y2);
ctx.stroke();
ctx.closePath();
};
var axis = function () {
line(half.w,0,half.w,height,'#ccc');
line(0,half.h,width,half.h,'#ccc');
};
var move = function(evt) {
mouse.x = evt ? evt.clientX : half.w;
mouse.y = evt ? evt.clientY : half.h + 11;
ctx.clearRect(0,0,width,height);
axis();
mid();
circle(mouse.x,mouse.y,mouse.r);
circle(mouse.x,mouse.y,1,'grey');
var di = {
x: mouse.x - half.w, // orange
y: mouse.y - half.h // green
}
di.v = dist(di.x,di.y);
var a = Math.atan2(di.y,di.x); // angle
line(mouse.x - di.x,mouse.y,mouse.x,mouse.y,'orange');
line(mouse.x,mouse.y - di.y,mouse.x,mouse.y,'green');
var p1 = {
v: di.v + mouse.r // cyan
};
p1.x = half.w + (Math.cos(a) * p1.v);
p1.y = half.h + (Math.sin(a) * p1.v);
circle(p1.x,p1.y,1.5,'cyan');
var p2 = {
v: di.v - mouse.r // red
};
p2.x = half.w+Math.cos(a)*p2.v;
p2.y = half.h+Math.sin(a)*p2.v;
circle(p2.x,p2.y,1.5,'red');
var rp1 = {
v: Math.pow(fixedRadius,2) / p1.v // cyan
};
rp1.x = Math.cos(a) * rp1.v,
rp1.y = Math.sin(a) * rp1.v;
circle(rp1.x+half.w,rp1.y+half.h,1.5,'cyan');
var rp2 = {
v: Math.pow(fixedRadius,2) / p2.v // red
};
rp2.x = Math.cos(a) * rp2.v,
rp2.y = Math.sin(a) * rp2.v;
circle(rp2.x+half.w,rp2.y+half.h,1.5,'red');
var newDi = {
v: dist(rp1.x - rp2.x, rp1.y - rp2.y)
};
newDi.r = newDi.v/2,
newDi.x = rp1.x + (Math.cos(a) * newDi.r), // yellow
newDi.y = rp1.y + (Math.sin(a) * newDi.r); // purple
if (p2.v < 0) {
newDi.x = rp1.x - (Math.cos(a) * newDi.r),
newDi.y = rp1.y - (Math.sin(a) * newDi.r);
}
reflect.x = half.w+newDi.x;
reflect.y = half.h+newDi.y
// reflected lines
if (di.v<fixedRadius) line(rp1.x+half.w,rp1.y+half.h,p1.x,p1.y,'cyan');
else line(rp2.x+half.w,rp2.y+half.h,p2.x,p2.y,'red');
line(p1.x,p1.y,half.w,half.h,'#ccc');
line(rp2.x+half.w,rp2.y+half.h,half.w,half.h,'#ccc');
line(reflect.x-newDi.x,reflect.y,reflect.x,reflect.y,'yellow');
line(reflect.x,reflect.y-newDi.y,reflect.x,reflect.y,'purple');
// reflected circle
circle(reflect.x, reflect.y, newDi.r);
circle(reflect.x,reflect.y,1,'grey');
circles(); // saved circles
reflect.r = newDi.r;
};
var dist = function(x,y) {
return Math.pow(x*x + y*y, 1/2);
};
var scroll = function(evt) {
if(evt.originalEvent.wheelDelta > 0) {
mouse.r++;
} else {
mouse.r--;
}
move(evt);
};
var click = function(evt) {
saved.push(['c',mouse.x,mouse.y,mouse.r]);
saved.push(['c',reflect.x,reflect.y,reflect.r]);
saved.push(['l',mouse.x,mouse.y,reflect.x,reflect.y]);
};
var circles = function() {
for(var i = 0; i < saved.length; i++) {
var s = saved[i];
if (s[0]=='c') circle(s[1],s[2],s[3],'grey');
if (s[0]=='l') line(s[1],s[2],s[3],s[4],'grey');
}
};
$(setup);
$(window)
.on('resize', setup)
.on('mousemove', move)
.on('mousewheel', scroll)
.on('click', click);
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<canvas id="c"></canvas>
Related
Hi I'm facing a problem with canvas.
I try to make a circle that can be reshape like this.
In the demo the circle can be reshape
the problem is to drag and drop the circle point to reshape it.
I know how to drag and drop point in the javascript canvas but how to reshape the cirle line to follow the point.
const DEBUG = true;
const WIDTH = window.innerWidth;
const HEIGHT = window.innerHeight;
const MIN_DIMENSION = WIDTH < HEIGHT ? WIDTH : HEIGHT;
const DEFAULT_RADIUS = MIN_DIMENSION * 0.45;
let canvas, ctx;
let cos = Math.cos;
let sin = Math.sin;
let pi = Math.PI;
let pi2 = pi * 2;
class Point {
constructor(x,y) {
this.x = x;
this.y = y;
}
}
function block(c, cb) {
c.save();
c.beginPath();
cb(c);
c.closePath();
c.restore();
}
function circle(c,r) {
c.arc(0, 0, r, 0, pi2);
}
function debugPoints(c, points) {
points.forEach((p,i) => {
if(i % 2 === 0) {
c.fillStyle = 'red';
} else {
c.fillStyle = 'black';
}
c.beginPath();
c.arc(p.x, p.y, 2, 0, pi2);
c.fill();
c.closePath();
})
}
function bezierCirclePoints(r, n) {
let a = pi2/(2*n);
let R = r/cos(a);
let points = new Array(2 * n);
console.log('n:', n);
console.log('a:', a);
console.log('r:', r);
console.log('R:', R);
// calculate even bezier points
for(let i = 0; i < n; i++) {
let i2 = 2*i;
let x = r * sin(i2 * a);
let y = -r * cos(i2 * a);
points[i2] = new Point(x, y);
}
// calculate odd bezier points
for(let i = 0; i < n; i++) {
let i2 = 2*i + 1;
let x = R * sin(i2 * a);
let y = -R * cos(i2 * a);
points[i2] = new Point(x, y);
}
points.push(points[0]);
return points;
}
function bezierCircle(c, r = DEFAULT_RADIUS, n = 7) {
let points = bezierCirclePoints(r,n);
c.translate(WIDTH * 0.5,HEIGHT * 0.5);
if(DEBUG) {
debugPoints(c, points);
}
c.fillStyle = 'red';
c.strokeStyle = 'red';
// draw circle
c.beginPath();
let p = points[0];
c.moveTo(p.x, p.y);
for(let i = 1; i < points.length; i+=2){
let p1 = points[i];
let i2 = i + 1;
if(i2 >= points.length) {
i2 = 0;
}
let p2 = points[i2];
c.quadraticCurveTo(p1.x, p1.y, p2.x, p2.y);
}
c.stroke();
c.closePath();
}
function redCircle(c) {
c.fillStyle = 'red';
c.translate(200,200);
circle(c, 100);
c.fill();
}
canvas = document.getElementById('circle');
canvas.width = WIDTH;
canvas.height = HEIGHT;
ctx = canvas.getContext('2d');
block(ctx, bezierCircle)
<canvas id="circle"></canvas>
As you already realized a circle can be composed out of four bézier curves. I'm going to use a cubic instead of a quadratic though since it offers two control points.
Let's start by looking at the following illustration:
As we can see the red curve consists of start point A, end point B and two control points c1 & c2 respectively.
So if we want to have a circle at x, y with a radius of r we can say:
Ax = x ; Ay = y - r
Bx = x + r ; By = y
c1x = x + r / 2 ; c1y = y - r
c2x = x + r ; c2y = y - r / 2
Of course the missing three curves can be constructed in the same way.
What we can also see from the above illustration is that the start point for the red segment is also the end point for the orange segment. Likewise the orange segment's control point c8 is connected to the start point of the red segment.
So if we're about to move point A we need to move the orange segment's end point, the red segment's start point AND the two control points c8 and c1.
To do this I'd write a general Arc class which consists of the start point, the end point, the two control points and additionally to which arc the start point is connected to. Then it goes a little something like this:
if someone clicks on point A, B, C or D store the current mouse position
store the position of the arc's control point as well as the connected arc's control point
if the mouse is moved, move the start point, it's control point and the connected arc's end point and it's control point relative to the mouse movement
repaint the circle
Here's an example:
class Point {
constructor(x, y) {
this.x = x;
this.y = y;
}
}
class Arc {
constructor(pointA, pointB, controlPointA, controlPointB) {
this.pointA = pointA;
this.pointB = pointB;
this.controlPointA = controlPointA;
this.controlPointB = controlPointB;
this.controlPointOldA = null;
this.controlPointOldB = null;
}
update(x, y, x2, y2) {
this.pointA.x = x;
this.pointA.y = y;
this.connectedArc.pointB.x = x;
this.connectedArc.pointB.y = y;
this.controlPointA.x = this.controlPointOldA.x + x2;
this.controlPointA.y = this.controlPointOldA.y + y2;
this.connectedArc.controlPointB.x = this.controlPointOldB.x + x2;
this.connectedArc.controlPointB.y = this.controlPointOldB.y + y2;
}
connect(connectedArc) {
this.connectedArc = connectedArc;
}
saveControlPoints() {
this.controlPointOldA = new Point(this.controlPointA.x, this.controlPointA.y);
this.controlPointOldB = new Point(this.connectedArc.controlPointB.x, this.connectedArc.controlPointB.y);
}
}
class Circle {
constructor(x, y, radius) {
this.arcA = new Arc(new Point(x, y - radius), new Point(x + radius, y), new Point(x + radius / 2, y - radius), new Point(x + radius, y - radius / 2));
this.arcB = new Arc(new Point(x + radius, y), new Point(x, y + radius), new Point(x + radius, y + radius / 2), new Point(x + radius / 2, y + radius));
this.arcC = new Arc(new Point(x, y + radius), new Point(x - radius, y), new Point(x - radius / 2, y + radius), new Point(x - radius, y + radius / 2));
this.arcD = new Arc(new Point(x - radius, y), new Point(x, y - radius), new Point(x - radius, y - radius / 2), new Point(x - radius / 2, y - radius));
this.arcA.connect(this.arcD);
this.arcB.connect(this.arcA);
this.arcC.connect(this.arcB);
this.arcD.connect(this.arcC);
}
}
var circle = new Circle(150, 150, 75);
var mouseX, mouseY, selectedArc;
var width = 5;
var height = 5;
var dragging = false;
var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
var arcs = [circle.arcA, circle.arcB, circle.arcC, circle.arcD];
var points = document.getElementsByClassName("point");
var arc;
for (var a = 0; a < points.length; a++) {
arc = arcs[a];
points[a].setAttribute('data-linkedID', a);
points[a].style.left = (arc.pointA.x - width) + "px";
points[a].style.top = (arc.pointA.y - height) + "px";
points[a].addEventListener("mousedown", dragStarted);
}
document.addEventListener("mousemove", drag);
document.addEventListener("mouseup", dragStop);
function dragStarted(e) {
mouseX = e.pageX;
mouseY = e.pageY;
selectedArc = arcs[e.target.parentElement.getAttribute("data-linkedID")];
selectedArc.saveControlPoints();
dragging = true;
}
function drag(e) {
if (dragging) {
selectedArc.update(e.pageX - width, e.pageY - height, e.pageX - mouseX, e.pageY - mouseY);
update();
var arc;
for (var a = 0; a < points.length; a++) {
arc = arcs[a];
points[a].style.left = (arc.pointA.x - width) + "px";
points[a].style.top = (arc.pointA.y - height) + "px";
}
}
}
function dragStop(e) {
dragging = false;
}
function update() {
ctx.fillStyle = "#eeeeee";
ctx.fillRect(0, 0, canvas.width, canvas.height);
ctx.beginPath();
arcs.forEach(function(arc) {
ctx.moveTo(arc.pointA.x, arc.pointA.y);
ctx.bezierCurveTo(arc.controlPointA.x, arc.controlPointA.y, arc.controlPointB.x, arc.controlPointB.y, arc.pointB.x, arc.pointB.y);
});
ctx.stroke();
}
update();
#container {
position: absolute;
}
#canvas {
position: absolute;
top: 0px;
left: 0px;
}
.point {
position: absolute;
width: 10px;
height: 10px;
}
<div id="container">
<canvas id="canvas" width=300 height=300></canvas>
<svg class="point" id="pointA">
<circle cx="5" cy="5" r="5" fill="red" />
</svg>
<svg class="point" id="pointB">
<circle cx="5" cy="5" r="5" fill="red" />
</svg>
<svg class="point" id="pointC">
<circle cx="5" cy="5" r="5" fill="red" />
</svg>
<svg class="point" id="pointD">
<circle cx="5" cy="5" r="5" fill="red" />
</svg>
</div>
Sorry for the confusing title, I don't know how to succinctly describe my question.
I'm drawing an ellipse on a canvas element using javascript and I'm trying to figure out how to detect if the mouse is clicked inside of the ellipse or not. The way I'm trying to do this is by comparing the distance from the center of the ellipse to the mouse to the radius of the ellipse at the same angle as the mouse click. Here's a terrible picture representing what I just said if it's still confusing:
Obviously this isn't working, otherwise I wouldn't be asking this, so below is a picture of the computed radius line (in red) and the mouse line (in blue). In this picture, the mouse has been clicked at a 45° angle to the center of the ellipse and I've calculated that the radius line is being drawn at about a 34.99° angle.
And below is the calculation code:
//This would be the blue line in the picture above
var mouseToCenterDistance = distanceTo(centerX, centerY, mouseX, mouseY);
var angle = Math.acos((mouseX - centerX) / mouseToCenterDistance);
var radiusPointX = (radiusX * Math.cos(angle)) + centerX;
var radiusPointY = (radiusY * Math.sin(-angle)) + centerY;
//This would be the red line in the picture above
var radius = distanceTo(centerX, centerY, radiusPointX, radiusPointY);
var clickedInside = mouseToCenterDistance <= radius;
I'm really not sure why this isn't working, I've been staring at this math forever and it seems correct. Is it correct and there's something about drawing on the canvas that's making it not work? Please help!
Ellipse line intercept
Finding the intercept includes solving if the point is inside.
If it is the ellipse draw via the 2D context the solution is as follows
// defines the ellipse
var cx = 100; // center
var cy = 100;
var r1 = 20; // radius 1
var r2 = 100; // radius 2
var ang = 1; // angle in radians
// rendered with
ctx.beginPath();
ctx.ellipse(cx,cy,r1,r2,ang,0,Math.PI * 2,true)
ctx.stroke()
To find the point on the ellipse that intersects the line from the center to x,y. To solve I normalise the ellipse so that it is a circle (well the line is moved so that the ellipse is a circle in its coordinate space).
var x = 200;
var y = 200;
var ratio = r1 / r2; // need the ratio between the two radius
// get the vector from the ellipse center to end of line
var dx = x - cx;
var dy = y - cy;
// get the vector that will normalise the ellipse rotation
var vx = Math.cos(-ang);
var vy = Math.sin(-ang);
// use that vector to rotate the line
var ddx = dx * vx - dy * vy;
var ddy = (dx * vy + dy * vx) * ratio; // lengthen or shorten dy
// get the angle to the line in normalise circle space.
var c = Math.atan2(ddy,ddx);
// get the vector along the ellipse x axis
var eAx = Math.cos(ang);
var eAy = Math.sin(ang);
// get the intercept of the line and the normalised ellipse
var nx = Math.cos(c) * r1;
var ny = Math.sin(c) * r2;
// rotate the intercept to the ellipse space
var ix = nx * eAx - ny * eAy
var iy = nx * eAy + ny * eAx
// cx,cy to ix ,iy is from the center to the ellipse circumference
The procedure can be optimised but for now that will solve the problem as presented.
Is point inside
Then to determine if the point is inside just compare the distances of the mouse and the intercept point.
var x = 200; // point to test
var y = 200;
// get the vector from the ellipse center to point to test
var dx = x - cx;
var dy = y - cy;
// get the vector that will normalise the ellipse rotation
var vx = Math.cos(ang);
var vy = Math.sin(ang);
// use that vector to rotate the line
var ddx = dx * vx + dy * vy;
var ddy = -dx * vy + dy * vx;
if( 1 >= (ddx * ddx) / (r1 * r1) + (ddy * ddy) / (r2 * r2)){
// point on circumference or inside ellipse
}
Example use of method.
function path(path){
ctx.beginPath();
var i = 0;
ctx.moveTo(path[i][0],path[i++][1]);
while(i < path.length){
ctx.lineTo(path[i][0],path[i++][1]);
}
if(close){
ctx.closePath();
}
ctx.stroke();
}
function strokeCircle(x,y,r){
ctx.beginPath();
ctx.moveTo(x + r,y);
ctx.arc(x,y,r,0,Math.PI * 2);
ctx.stroke();
}
function display() {
ctx.setTransform(1, 0, 0, 1, 0, 0); // reset transform
ctx.globalAlpha = 1; // reset alpha
ctx.clearRect(0, 0, w, h);
var cx = w/2;
var cy = h/2;
var r1 = Math.abs(Math.sin(globalTime/ 4000) * w / 4);
var r2 = Math.abs(Math.sin(globalTime/ 4300) * h / 4);
var ang = globalTime / 1500;
// find the intercept from ellipse center to mouse on the ellipse
var ratio = r1 / r2
var dx = mouse.x - cx;
var dy = mouse.y - cy;
var dist = Math.hypot(dx,dy);
var ex = Math.cos(-ang);
var ey = Math.sin(-ang);
var c = Math.atan2((dx * ey + dy * ex) * ratio, dx * ex - dy * ey);
var nx = Math.cos(c) * r1;
var ny = Math.sin(c) * r2;
var ix = nx * ex + ny * ey;
var iy = -nx * ey + ny * ex;
var dist = Math.hypot(dx,dy);
var dist2Inter = Math.hypot(ix,iy);
ctx.strokeStyle = "Blue";
ctx.lineWidth = 4;
ctx.beginPath();
ctx.ellipse(cx,cy,r1,r2,ang,0,Math.PI * 2,true)
ctx.stroke();
if(dist2Inter > dist){
ctx.fillStyle = "#7F7";
ctx.globalAlpha = 0.5;
ctx.fill();
ctx.globalAlpha = 1;
}
// Display the intercept
ctx.strokeStyle = "black";
ctx.lineWidth = 2;
path([[cx,cy],[mouse.x,mouse.y]])
ctx.strokeStyle = "red";
ctx.lineWidth = 5;
path([[cx,cy],[cx + ix,cy+iy]])
ctx.strokeStyle = "red";
ctx.lineWidth = 4;
strokeCircle(cx + ix, cy + iy, 6)
ctx.fillStyle = "white";
ctx.fill();
ctx.strokeStyle = "red";
ctx.lineWidth = 4;
strokeCircle(cx, cy, 6)
ctx.fillStyle = "white";
ctx.fill();
ctx.strokeStyle = "black";
ctx.lineWidth = 2;
strokeCircle(mouse.x, mouse.y, 4)
ctx.fillStyle = "white";
ctx.fill();
}
/** SimpleFullCanvasMouse.js begin **/
//==============================================================================
// Boilerplate code from here down and not related to the answer
//==============================================================================
var w, h, cw, ch, canvas, ctx, mouse, globalTime = 0, firstRun = true;
;(function(){
const RESIZE_DEBOUNCE_TIME = 100;
var createCanvas, resizeCanvas, setGlobals, resizeCount = 0;
createCanvas = function () {
var c,
cs;
cs = (c = document.createElement("canvas")).style;
cs.position = "absolute";
cs.top = cs.left = "0px";
cs.zIndex = 1000;
document.body.appendChild(c);
return c;
}
resizeCanvas = function () {
if (canvas === undefined) {
canvas = createCanvas();
}
canvas.width = innerWidth;
canvas.height = innerHeight;
ctx = canvas.getContext("2d");
if (typeof setGlobals === "function") {
setGlobals();
}
if (typeof onResize === "function") {
if(firstRun){
onResize();
firstRun = false;
}else{
resizeCount += 1;
setTimeout(debounceResize, RESIZE_DEBOUNCE_TIME);
}
}
}
function debounceResize() {
resizeCount -= 1;
if (resizeCount <= 0) {
onResize();
}
}
setGlobals = function () {
cw = (w = canvas.width) / 2;
ch = (h = canvas.height) / 2;
}
mouse = (function () {
function preventDefault(e) {
e.preventDefault();
}
var mouse = {
x : 0,
y : 0,
w : 0,
alt : false,
shift : false,
ctrl : false,
buttonRaw : 0,
over : false,
bm : [1, 2, 4, 6, 5, 3],
active : false,
bounds : null,
crashRecover : null,
mouseEvents : "mousemove,mousedown,mouseup,mouseout,mouseover,mousewheel,DOMMouseScroll".split(",")
};
var m = mouse;
function mouseMove(e) {
var t = e.type;
m.bounds = m.element.getBoundingClientRect();
m.x = e.pageX - m.bounds.left;
m.y = e.pageY - m.bounds.top;
m.alt = e.altKey;
m.shift = e.shiftKey;
m.ctrl = e.ctrlKey;
if (t === "mousedown") {
m.buttonRaw |= m.bm[e.which - 1];
} else if (t === "mouseup") {
m.buttonRaw &= m.bm[e.which + 2];
} else if (t === "mouseout") {
m.buttonRaw = 0;
m.over = false;
} else if (t === "mouseover") {
m.over = true;
} else if (t === "mousewheel") {
m.w = e.wheelDelta;
} else if (t === "DOMMouseScroll") {
m.w = -e.detail;
}
if (m.callbacks) {
m.callbacks.forEach(c => c(e));
}
if ((m.buttonRaw & 2) && m.crashRecover !== null) {
if (typeof m.crashRecover === "function") {
setTimeout(m.crashRecover, 0);
}
}
e.preventDefault();
}
m.addCallback = function (callback) {
if (typeof callback === "function") {
if (m.callbacks === undefined) {
m.callbacks = [callback];
} else {
m.callbacks.push(callback);
}
}
}
m.start = function (element) {
if (m.element !== undefined) {
m.removeMouse();
}
m.element = element === undefined ? document : element;
m.mouseEvents.forEach(n => {
m.element.addEventListener(n, mouseMove);
});
m.element.addEventListener("contextmenu", preventDefault, false);
m.active = true;
}
m.remove = function () {
if (m.element !== undefined) {
m.mouseEvents.forEach(n => {
m.element.removeEventListener(n, mouseMove);
});
m.element.removeEventListener("contextmenu", preventDefault);
m.element = m.callbacks = undefined;
m.active = false;
}
}
return mouse;
})();
// Clean up. Used where the IDE is on the same page.
var done = function () {
window.removeEventListener("resize", resizeCanvas)
mouse.remove();
document.body.removeChild(canvas);
canvas = ctx = mouse = undefined;
}
function update(timer) { // Main update loop
if(ctx === undefined){ return; }
globalTime = timer;
display(); // call demo code
requestAnimationFrame(update);
}
setTimeout(function(){
resizeCanvas();
mouse.start(canvas, true);
//mouse.crashRecover = done;
window.addEventListener("resize", resizeCanvas);
requestAnimationFrame(update);
},0);
})();
/** SimpleFullCanvasMouse.js end **/
If you have an ellipse of the form (x-x0)2/a2 + (y-y0)2/b2 = 1, then a point (x, y) is inside the ellipse if and only if (x-x0)2/a2 + (y-y0)2/b2 < 1. You can just test that inequality to see if the mouse is inside the ellipse.
To be able to draw a line to the edge of the ellipse: get the theta of the mouse with atan2 (don't use acos, you'll get incorrect results in quadrants III & IV), use the polar equation of the ellipse to solve for r, then convert back to rectangular coordinates and draw.
I implemented a zoom function in my canvas just like this one: Zoom in on a point (using scale and translate)
Now I need to calculate the position of the mouse in relation to the canvas, I first tried like this:
var rect = this._canvas.getBoundingClientRect();
var x = ((event.clientX - rect.left) / (rect.right - rect.left) * this._canvas.width);
var y = ((event.clientY - rect.top) / (rect.bottom - rect.top) * this._canvas.height);
This works excellent until I zoom... I tried to do it like this:
var x = ((event.clientX - rect.left) / (rect.right - rect.left) * this._canvas.width) - this._canvas.offsetLeft ;
var y = ((event.clientY - rect.top) / (rect.bottom - rect.top) * this._canvas.height) - offset.top this._canvas.offSetTop ;
Any hint ? Or should I better use a JS library to interact with the canvas element ? If so, do you have any experience ?
Inverse Matrix
This answer include rotation as well because the scale is part of the rotation in the matrix you can't really exclude one or the other. But you can ignore the rotation (set it as zero) and just set scale and translation and it does what you want.
The inverse transform. It basically does the reverse of the standard 2D transformations. It will require that you keep track of the transformations so you can create the inverse transform, this can prove problematic in complex transforms if you wish to use ctx.rotation, ctx.scale, ctx.translate or ctx.transform. As you requirements are simple I have created a simple function to do the minimum transformation.
The following creates both the transformation matrix and the inverse transform as two arrays called matrix and invMatrix. The arguments are translation x,y (in canvas coordinates), scale, and rotation.
var matrix = [1,0,0,1,0,0];
var invMatrix = [1,0,0,1];
function createMatrix(x, y, scale, rotate){
var m = matrix; // just to make it easier to type and read
var im = invMatrix; // just to make it easier to type and read
// create the rotation and scale parts of the matrix
m[3] = m[0] = Math.cos(rotate) * scale;
m[2] = -(m[1] = Math.sin(rotate) * scale);
// add the translation
m[4] = x;
m[5] = y;
// calculate the inverse transformation
// first get the cross product of x axis and y axis
cross = m[0] * m[3] - m[1] * m[2];
// now get the inverted axis
im[0] = m[3] / cross;
im[1] = -m[1] / cross;
im[2] = -m[2] / cross;
im[3] = m[0] / cross;
}
Using the function
To use the function is simple. Just call with the desired values for position, scale and rotation.
Applying the inverse
To get the world coordinates (the transformed coordinates) from a pixel space (screen x, y) you need to apply the inverse transform
function toWorld(x,y){
var xx, yy, m, result;
m = invMatrix;
xx = x - matrix[4]; // remove the translation
yy = y - matrix[5]; // by subtracting the origin
// return the point {x:?,y:?} by multiplying xx,yy by the inverse matrix
return {
x: xx * m[0] + yy * m[2],
y: xx * m[1] + yy * m[3]
}
}
So if you want the mouse position in world space
var mouseWorldSpace = toWorld(mouse.x,mouse.y); // get the world space coordinates of the mouse
The function will convert any coordinate that is in screen space to the correct coordinate in world space.
Setting the 2D context transform
To use the transform you can set the 2D context transformation directly with
var m = matrix;
ctx.setTransform(m[0], m[1], m[2], m[3], m[4], m[5]);
Demo
And a demo to show it in use. A lot of extra code but I am sure you can find the parts you need. The Demo animates the transformation by rotating, scaling, and translating using createMatrix then uses toWorld to convert the mouse coordinates to the world space.
// the demo function
var demo = function(){
/** fullScreenCanvas.js begin **/
// create a full document canvas on top
var canvas = (function(){
var canvas = document.getElementById("canv");
if(canvas !== null){
document.body.removeChild(canvas);
}
// creates a blank image with 2d context
canvas = document.createElement("canvas");
canvas.id = "canv";
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
canvas.style.position = "absolute";
canvas.style.top = "0px";
canvas.style.left = "0px";
canvas.style.zIndex = 1000;
canvas.ctx = canvas.getContext("2d");
document.body.appendChild(canvas);
return canvas;
})();
var ctx = canvas.ctx;
/** fullScreenCanvas.js end **/
/** MouseFull.js begin **/
// get the mouse data . This is a generic mouse handler I use so a little over kill for this example
var canvasMouseCallBack = undefined; // if needed
var mouse = (function(){
var mouse = {
x : 0, y : 0, w : 0, alt : false, shift : false, ctrl : false,
interfaceId : 0, buttonLastRaw : 0, buttonRaw : 0,
over : false, // mouse is over the element
bm : [1, 2, 4, 6, 5, 3], // masks for setting and clearing button raw bits;
getInterfaceId : function () { return this.interfaceId++; }, // For UI functions
startMouse:undefined,
};
function mouseMove(e) {
var t = e.type, m = mouse;
m.x = e.offsetX; m.y = e.offsetY;
if (m.x === undefined) { m.x = e.clientX; m.y = e.clientY; }
m.alt = e.altKey;m.shift = e.shiftKey;m.ctrl = e.ctrlKey;
if (t === "mousedown") { m.buttonRaw |= m.bm[e.which-1];
} else if (t === "mouseup") { m.buttonRaw &= m.bm[e.which + 2];
} else if (t === "mouseout") { m.buttonRaw = 0; m.over = false;
} else if (t === "mouseover") { m.over = true;
} else if (t === "mousewheel") { m.w = e.wheelDelta;
} else if (t === "DOMMouseScroll") { m.w = -e.detail;}
if (canvasMouseCallBack) { canvasMouseCallBack(m.x, m.y); }
e.preventDefault();
}
function startMouse(element){
if(element === undefined){
element = document;
}
"mousemove,mousedown,mouseup,mouseout,mouseover,mousewheel,DOMMouseScroll".split(",").forEach(
function(n){element.addEventListener(n, mouseMove);});
element.addEventListener("contextmenu", function (e) {e.preventDefault();}, false);
}
mouse.mouseStart = startMouse;
return mouse;
})();
if(typeof canvas === "undefined"){
mouse.mouseStart();
}else{
mouse.mouseStart(canvas);
}
/** MouseFull.js end **/
// some stuff to draw a grid
var gridStart= -(canvas.width/10)*4;
var gridEnd = (canvas.width/10)*14;
var gridStepMajor = canvas.width/10;
var gridStepMinor = canvas.width/20;
var minorCol = "#999";
var majorCol = "#000";
var minorWidth = 1;
var majorWidth = 3;
// some stuf to animate the transformation
var timer = 0;
var timerStep = 0.01;
//----------------------------------------------------------------------------
// the code from the answer
var matrix = [1, 0, 0, 1, 0, 0]; // normal matrix
var invMatrix = [1, 0, 0, 1]; // inverse matrix
function createMatrix(x, y, scale, rotate){
var m = matrix; // just to make it easier to type and read
var im = invMatrix; // just to make it easier to type and read
// create the scale and rotation part of the matrix
m[3] = m[0] = Math.cos(rotate) * scale;
m[2] = -(m[1] = Math.sin(rotate) * scale);
// translation
m[4] = x;
m[5] = y;
// calculate the inverse transformation
// first get the cross product of x axis and y axis
cross = m[0] * m[3] - m[1] * m[2];
// now get the inverted axies
im[0] = m[3] / cross;
im[1] = -m[1] / cross;
im[2] = -m[2] / cross;
im[3] = m[0] / cross;
}
// function to transform to world space
function toWorld(x,y){
var xx, yy, m;
m = invMatrix;
xx = x - matrix[4];
yy = y - matrix[5];
return {
x: xx * m[0] + yy * m[2] ,
y: xx * m[1] + yy * m[3]
}
}
//----------------------------------------------------------------------------
// center of canvas
var cw = canvas.width / 2;
var ch = canvas.height / 2;
// the main loop
function update(){
var i,x,y,s;
ctx.setTransform(1, 0, 0, 1, 0, 0); // reset the transform so we can clear
ctx.clearRect(0, 0, canvas.width, canvas.height); // clear the canvas
// animate the transformation
timer += timerStep;
x = Math.cos(timer) * gridStepMajor * 5 + cw; // position
y = Math.sin(timer) * gridStepMajor * 5 + ch;
s = Math.sin(timer/1.2) + 1.5; // scale
//----------------------------------------------------------------------
// create the matrix at x,y scale = s and rotation time/3
createMatrix(x,y,s,timer/3);
// use the created matrix to set the transformation
var m = matrix;
ctx.setTransform(m[0], m[1], m[2], m[3], m[4], m[5]);
//----------------------------------------------------------------------------
//draw a grid
ctx.lineWidth = 2;
ctx.beginPath();
ctx.strokeStyle = majorCol ;
ctx.lineWidth = majorWidth;
for(i = gridStart; i <= gridEnd; i+= gridStepMajor){
ctx.moveTo(gridStart, i);
ctx.lineTo(gridEnd, i);
ctx.moveTo(i, gridStart);
ctx.lineTo(i, gridEnd);
}
ctx.stroke();
ctx.strokeStyle = minorCol ;
ctx.lineWidth = minorWidth;
for(i = gridStart+gridStepMinor; i < gridEnd; i+= gridStepMinor){
ctx.moveTo(gridStart, i);
ctx.lineTo(gridEnd, i);
ctx.moveTo(i, gridStart);
ctx.lineTo(i, gridEnd);
}
ctx.stroke();
//---------------------------------------------------------------------
// get the mouse world coordinates
var mouseWorldPos = toWorld(mouse.x, mouse.y);
//---------------------------------------------------------------------
// marke the location with a cross and a circle;
ctx.strokeStyle = "red";
ctx.lineWidth = 3;
ctx.beginPath();
ctx.moveTo(mouseWorldPos.x - gridStepMajor, mouseWorldPos.y)
ctx.lineTo(mouseWorldPos.x + gridStepMajor, mouseWorldPos.y)
ctx.moveTo(mouseWorldPos.x, mouseWorldPos.y - gridStepMajor)
ctx.lineTo(mouseWorldPos.x, mouseWorldPos.y + gridStepMajor)
ctx.stroke();
ctx.fillStyle = "red";
ctx.strokeStyle = "yellow";
ctx.lineWidth = 4;
ctx.beginPath();
ctx.arc(mouseWorldPos.x, mouseWorldPos.y, 6, 0, Math.PI*2);
ctx.fill();
ctx.stroke();
ctx.fillStyle = "Blue";
ctx.setTransform(1,0,0,1,0,0);
ctx.font = "18px Arial";
var str = "Mouse canvas X: "+ mouse.x + " Y: " + mouse.y;
ctx.fillText(str , 10 ,18);
var str = "Mouse world X: "+ mouseWorldPos.x.toFixed(2) + " Y: " + mouseWorldPos.y.toFixed(2);
ctx.fillText(str , 10 ,36);
// if not over request a new animtion frame
if(!endItAll){
requestAnimationFrame(update);
}else{
// if done remove the canvas
var can = document.getElementById("canv");
if(can !== null){
document.body.removeChild(can);
}
// flag that we are ready to start again
endItAll = false;
}
}
update(); // start the animation
}
// Flag to indicate that the current execution should shut down
var endItAll = false;
// resizes but waits for the current running animnation to shut down
function resizeIt(){
endItAll = true;
function waitForIt(){
if(!endItAll){
demo();
}else{
setTimeout(waitForIt, 100);
}
}
setTimeout(waitForIt, 100);
}
// starts the demo
demo();
// listen to resize events and resize canvas if needed
window.addEventListener("resize",resizeIt)
Go step by step :
Find the coordinates of the mouse on the canvas:
var rect = canvas.getBoundingClientRect();
var xMouse = event.clientX - rect.left;
var yMouse = event.clientY - rect.top;
Normalize those coordinates so they are in [0;1] :
var relX = xMouse / canvas.width;
var relY = yMouse / canvas.height;
now say you view is defined by a rect called... well... viewRect, the position of the mouse in the view is :
var viewX = viewRect.left + relX*(viewRect.right-viewRect.left);
var viewY = viewRect.top + relY*(viewRect.bottom-viewRect.top);
When you launch your app your rect is 0,0,canvasWidth, canvasHeight.
When you click, you have to adjust your rect.
If clicking means zooming by zFactor at viewX, viewY, code will look like :
var newWidth = viewRect.width/zFactor;
var newHeight = viewRect.height/zFactor;
viewRect.left = viewX - newWidth/2;
viewRect.right = viewX + newWidth/2;
viewRect.top = viewY - newHeight/2;
viewRect.bottom = viewY + newHeight/2;
your draw method should look like :
context.save();
context.translate((viewRect.left+viewRect.right )/ 2, ...) ;
var scaleFactor = (viewRect.right+viewRect.left ) / canvasWidth;
context.scale(scaleFactor, scaleFactor);
... draw
context.restore();
Instead of keeping track of the various transformations, I inquired of the canvas for the current transform:
function mouseUp(canvas, event) {
const rect = canvas.getBoundingClientRect();
const transform = graphics.getTransform();
const canvasX = (event.clientX - rect.left - transform.e) / transform.a;
const canvasY = (event.clientY - rect.top - transform.f) / transform.d;
The doesn't deal with skew, but it gives a general idea of the approach I'm using.
so i'm trying to create a drawing tool in HTML5 canvas where the weight of the stroke increases the faster you move the mouse and decreases the slower you move. I'm using ctx.lineTo() but on my first attempt noticed that if i move too quickly the change in thickness is registered as obvious square increments ( rather than a smooth increase in weight )
so i changed the ctx.lineJoin and ctx.lineCap to "round" and it got a little better
but this is still not as smooth as i'd like. i'm shooting for something like this
any advice on how to make the change in weight a bit smoother would be great! here's a working demo: http://jsfiddle.net/0fhag522/1/
and here' a preview of my "dot" object ( the pen ) and my draw function:
var dot = {
start: false,
weight: 1,
open: function(x,y){
ctx.lineJoin = "round";
ctx.lineCap = "round";
ctx.beginPath();
ctx.moveTo(x,y);
},
connect: function(x,y){
ctx.lineWidth = this.weight;
ctx.lineTo(x,y);
ctx.stroke();
ctx.closePath();
ctx.beginPath();
ctx.moveTo(x,y);
},
close: function(){
ctx.closePath();
}
}
function draw(){
if(down){
if(!dot.start){
dot.close();
prevx = mx; prevy = my;
dot.open(mx,my);
dot.start=true;
}
else {
var dx = (prevx>mx) ? prevx-mx : mx-prevx;
var dy = (prevy>my) ? prevy-my : my-prevy;
dot.weight = Math.abs(dx-dy)/2;
dot.connect( mx,my );
prevx = mx; prevy = my;
}
}
}
Here is a simple function to create growing lines with a round line cap:
/*
* this function returns a Path2D object
* the path represents a growing line between two given points
*/
function createGrowingLine (x1, y1, x2, y2, startWidth, endWidth) {
// calculate direction vector of point 1 and 2
const directionVectorX = x2 - x1,
directionVectorY = y2 - y1;
// calculate angle of perpendicular vector
const perpendicularVectorAngle = Math.atan2(directionVectorY, directionVectorX) + Math.PI/2;
// construct shape
const path = new Path2D();
path.arc(x1, y1, startWidth/2, perpendicularVectorAngle, perpendicularVectorAngle + Math.PI);
path.arc(x2, y2, endWidth/2, perpendicularVectorAngle + Math.PI, perpendicularVectorAngle);
path.closePath();
return path;
}
const ctx = myCanvas.getContext('2d');
// create a growing line between P1(10, 10) and P2(250, 100)
// with a start line width of 10 and an end line width of 50
let line1 = createGrowingLine(10, 10, 250, 100, 10, 50);
ctx.fillStyle = 'green';
// draw growing line
ctx.fill(line1);
<canvas width="300" height="150" id="myCanvas"></canvas>
Explanation:
The function createGrowingLine constructs a shape between two given points by:
calculating the direction vector of the two points
calculating the angle in radians of the perpendicular vector
creating a semi circle path from the calculated angle to the calculated angle + 180 degree with the center and radius of the start point
creating another semi circle path from the calculated angle + 180 degree to the calculated angle with the center and radius of the end point
closing the path by connecting the start point of the first circle with the end point of the second circle
In case you do not want to have the rounded line cap use the following function:
/*
* this function returns a Path2D object
* the path represents a growing line between two given points
*/
function createGrowingLine (x1, y1, x2, y2, startWidth, endWidth) {
const startRadius = startWidth/2;
const endRadius = endWidth/2;
// calculate direction vector of point 1 and 2
let directionVectorX = x2 - x1,
directionVectorY = y2 - y1;
// calculate vector length
const directionVectorLength = Math.hypot(directionVectorX, directionVectorY);
// normalize direction vector (and therefore also the perpendicular vector)
directionVectorX = 1/directionVectorLength * directionVectorX;
directionVectorY = 1/directionVectorLength * directionVectorY;
// construct perpendicular vector
const perpendicularVectorX = -directionVectorY,
perpendicularVectorY = directionVectorX;
// construct shape
const path = new Path2D();
path.moveTo(x1 + perpendicularVectorX * startRadius, y1 + perpendicularVectorY * startRadius);
path.lineTo(x1 - perpendicularVectorX * startRadius, y1 - perpendicularVectorY * startRadius);
path.lineTo(x2 - perpendicularVectorX * endRadius, y2 - perpendicularVectorY * endRadius);
path.lineTo(x2 + perpendicularVectorX * endRadius, y2 + perpendicularVectorY * endRadius);
path.closePath();
return path;
}
const ctx = myCanvas.getContext('2d');
// create a growing line between P1(10, 10) and P2(250, 100)
// with a start line width of 10 and an end line width of 50
let line1 = createGrowingLine(10, 10, 250, 100, 10, 50);
ctx.fillStyle = 'green';
// draw growing line
ctx.fill(line1);
<canvas width="300" height="150" id="myCanvas"></canvas>
Since canvas does not have a variable width line you must draw closed paths between your line points.
However, this leaves a visible butt-joint.
To smooth the butt-joint, you can draw a circle at each joint.
Here is example code and a Demo:
var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
var cw = canvas.width;
var ch = canvas.height;
var $canvas = $("#canvas");
var canvasOffset = $canvas.offset();
var offsetX = canvasOffset.left;
var offsetY = canvasOffset.top;
var scrollX = $canvas.scrollLeft();
var scrollY = $canvas.scrollTop();
var isDown = false;
var startX;
var startY;
var PI = Math.PI;
var halfPI = PI / 2;
var points = [];
$("#canvas").mousedown(function(e) {
handleMouseDown(e);
});
function handleMouseDown(e) {
e.preventDefault();
e.stopPropagation();
mx = parseInt(e.clientX - offsetX);
my = parseInt(e.clientY - offsetY);
var pointsLength = points.length;
if (pointsLength == 0) {
points.push({
x: mx,
y: my,
width: Math.random() * 5 + 2
});
} else {
var p0 = points[pointsLength - 1];
var p1 = {
x: mx,
y: my,
width: Math.random() * 5 + 2
};
addAngle(p0, p1);
p0.angle = p1.angle;
addEndcap(p0);
addEndcap(p1);
points.push(p1);
extendLine(p0, p1);
}
}
function addAngle(p0, p1) {
var dx = p1.x - p0.x;
var dy = p1.y - p0.y;
p1.angle = Math.atan2(dy, dx);
}
function addEndcap(p) {
p.x0 = p.x + p.width * Math.cos(p.angle - halfPI);
p.y0 = p.y + p.width * Math.sin(p.angle - halfPI);
p.x1 = p.x + p.width * Math.cos(p.angle + halfPI);
p.y1 = p.y + p.width * Math.sin(p.angle + halfPI);
}
function extendLine(p0, p1) {
ctx.beginPath();
ctx.moveTo(p0.x0, p0.y0);
ctx.lineTo(p0.x1, p0.y1);
ctx.lineTo(p1.x1, p1.y1);
ctx.lineTo(p1.x0, p1.y0);
ctx.closePath();
ctx.fillStyle = 'blue';
ctx.fill();
// draw a circle to cover the butt-joint
ctx.beginPath();
ctx.moveTo(p1.x, p1.y);
ctx.arc(p1.x, p1.y, p1.width, 0, Math.PI * 2);
ctx.closePath();
ctx.fill();
}
body{ background-color: ivory; }
#canvas{border:1px solid red;}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>
<h4>Click to add line segments.</h4>
<canvas id="canvas" width=300 height=300></canvas>
This might be more a geometry related question, but I'm trying to constrain a controller within an area of a circle. I know I have to touch the Math.sin() and Math.cos() methods, but my attemps so far have been fruitless so far.
Here is the jsfiddle:
So far I've been able to constrain it to an invisible square. http://jsfiddle.net/maGVK/
So I finally was able to complete this with a bit of everyone's help.
var pointerEl = document.getElementById("pointer");
var canvasEl = document.getElementById("canvas");
var canvas = {
width: canvasEl.offsetWidth,
height: canvasEl.offsetHeight,
top: canvasEl.offsetTop,
left: canvasEl.offsetLeft
};
canvas.center = [canvas.left + canvas.width / 2, canvas.top + canvas.height / 2];
canvas.radius = canvas.width / 2;
window.onmousemove = function(e) {
var result = limit(e.x, e.y);
pointer.style.left = result.x + "px";
pointer.style.top = result.y + "px";
}
function limit(x, y) {
var dist = distance([x, y], canvas.center);
if (dist <= canvas.radius) {
return {x: x, y: y};
}
else {
x = x - canvas.center[0];
y = y - canvas.center[1];
var radians = Math.atan2(y, x)
return {
x: Math.cos(radians) * canvas.radius + canvas.center[0],
y: Math.sin(radians) * canvas.radius + canvas.center[1]
}
}
}
function distance(dot1, dot2) {
var x1 = dot1[0],
y1 = dot1[1],
x2 = dot2[0],
y2 = dot2[1];
return Math.sqrt(Math.pow(x1 - x2, 2) + Math.pow(y1 - y2, 2));
}
You can see the result here:
http://jsfiddle.net/7Asn6/
var pointerEl = document.getElementById("pointer");
var canvasEl = document.getElementById("canvas");
var canvas = {
width: canvasEl.offsetWidth,
height: canvasEl.offsetHeight,
top: canvasEl.offsetTop,
left: canvasEl.offsetLeft
};
canvas.center = [canvas.left + canvas.width / 2, canvas.top + canvas.height / 2];
canvas.radius = canvas.width / 2;
window.onmousemove = function(e) {
var result = limit(e.x, e.y);
if (!result.limit) {
pointer.style.left = result.x + "px";
pointer.style.top = result.y + "px";
}
}
function limit(x, y) {
var dist = distance([x, y], canvas.center);
if (dist <= canvas.radius) {
return {x: x, y: y};
} else {
return {limit: true};
}
}
function distance(dot1, dot2) {
var x1 = dot1[0],
y1 = dot1[1],
x2 = dot2[0],
y2 = dot2[1];
return Math.sqrt(Math.pow(x1 - x2, 2) + Math.pow(y1 - y2, 2));
}
this could do the work, though the movement is not smooth....that will need more geometry knowledge...
fiddle: http://jsfiddle.net/cRxMa/
This arithmetic is trivial as long as you normalize each data point (prospective position), which i have tried to do in the function below:
function locatePoint(canvas_size, next_position) {
// canvas_size & next_position are both 2-element arrays
// (w, h) & (x, y)
dist = function(x, y) {
return Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2));
};
x = next_position[0];
y = next_position[1];
rescaledX = x/(canvas_size[0]/2);
rescaledY = y/(canvas_size[1]/2);
if (distance(x, y) <= 1) {
// the base case; position is w/in the circle
}
else {
// position is outside the circle, so perhaps
// do something like random select a new position, then
// call this function again (recursively) passing in
// that new position
}
}
so in the simple diagram below, i have just inscribed a unit circle (r=1) inside a square whose sides are r*2. Your canvas dimensions do not have to be square though. To further simplify the calculation, you only need to consider one of the four quadrants--the upper right quadrant, let's say. The reason is that the Euclidean distance formula squares each coordinate value, so negative values become positive.
Put another way, the simplest way is to imagine a circle inscribed in your canvas and whose center is also the center of your canvas (so (0, 0) is the center not the upper left-hand corner); next, both canvas and circle are shrunk until the circle has radius = 1. Hopefully i have captured this in the function above.
Hi and thanks for sharing your solution.
Your jsfiddle helps me a lot to constraint the movement of a rotation handle.
Here's my solution using jQuery :
function getBall(xVal, yVal, dxVal, dyVal, rVal, colorVal) {
var ball = {
x: xVal,
lastX: xVal,
y: yVal,
lastY: yVal,
dx: dxVal,
dy: dyVal,
r: rVal,
color: colorVal,
normX: 0,
normY: 0
};
return ball;
}
var canvas = document.getElementById("myCanvas");
var xLabel = document.getElementById("x");
var yLabel = document.getElementById("y");
var dxLabel = document.getElementById("dx");
var dyLabel = document.getElementById("dy");
var ctx = canvas.getContext("2d");
var containerR = 200;
canvas.width = containerR * 2;
canvas.height = containerR * 2;
canvas.style["border-radius"] = containerR + "px";
var balls = [
getBall(containerR, containerR * 2 - 30, 2, -2, 20, "#0095DD"),
getBall(containerR, containerR * 2 - 50, 3, -3, 30, "#DD9500"),
getBall(containerR, containerR * 2 - 60, -3, 4, 10, "#00DD95"),
getBall(containerR, containerR * 2 / 5, -1.5, 3, 40, "#DD0095")
];
function draw() {
ctx.clearRect(0, 0, canvas.width, canvas.height);
for (var i = 0; i < balls.length; i++) {
var curBall = balls[i];
ctx.beginPath();
ctx.arc(curBall.x, curBall.y, curBall.r, 0, Math.PI * 2);
ctx.fillStyle = curBall.color;
ctx.fill();
ctx.closePath();
curBall.lastX = curBall.x;
curBall.lastY = curBall.y;
curBall.x += curBall.dx;
curBall.y += curBall.dy;
var dx = curBall.x - containerR;
var dy = curBall.y - containerR;
var distanceFromCenter = Math.sqrt(dx * dx + dy * dy);
if (distanceFromCenter >= containerR - curBall.r) {
var normalMagnitude = distanceFromCenter;
var normalX = dx / normalMagnitude;
var normalY = dy / normalMagnitude;
var tangentX = -normalY;
var tangentY = normalX;
var normalSpeed = -(normalX * curBall.dx + normalY * curBall.dy);
var tangentSpeed = tangentX * curBall.dx + tangentY * curBall.dy;
curBall.dx = normalSpeed * normalX + tangentSpeed * tangentX;
curBall.dy = normalSpeed * normalY + tangentSpeed * tangentY;
}
xLabel.innerText = "x: " + curBall.x;
yLabel.innerText = "y: " + curBall.y;
dxLabel.innerText = "dx: " + curBall.dx;
dyLabel.innerText = "dy: " + curBall.dy;
}
requestAnimationFrame(draw);
}
draw();
canvas { background: #eee; }
<div id="x"></div>
<div id="y"></div>
<div id="dx"></div>
<div id="dy"></div>
<canvas id="myCanvas"></canvas>
Hope this help someone.