Check to see if all top-level objects have identical properties - javascript

Here is some JSON:
{
"environments":{
"production":{
"zmq_config":{
"host":"*",
"port":"7676"
},
"redis_server_config":{
"host":"localhost",
"port":"26379"
}
},
"dev_remote":{
"zmq_config":{
"host":"*",
"port":"5555"
},
"redis_server_config":{
"host":"localhost",
"port":"16379"
}
},
"dev_local":{
"zmq_config":{
"host":"*",
"port":"5555"
},
"redis_server_config":{
"host":"localhost",
"port":"6379"
}
}
}
}
I want to create a test in my test suite that ensures all of the properties have the same properties of their complements.
For example, for each property of "environments", I want to check that they have the same properties; in this case they do - they all have 2 properties "zmq_config" and "redis_server_config". Now I want to do at least one more level of checking. For properties "zmq_config" and "redis_server_config", I want to check that they in turn have the same properties "host" and "port".
You get the idea.
Is there a library that can do this? Is there some sort of JavaScript identity operator that check for this, just looking at the top level objects?
Now the easiest way I can think of doing this is simply to iterate through and look at each property with the same name (making the assumption that properties with the same name are in the same place in the object hierarchy), and then simply seeing if they have the same subproperties.
Is Underscore.js the best option? It seems Underscore has this functionality which might work:
_.isEqual(obj1, obj2);
from my research it looks like this is the best candidate:
_.isMatch(obj1,obj2);

For each object to test, you can use Object.keys function to extract the keys of the object and then compare them, because you only want to know if properties are equals, the value not matters.
Then, when you extract the keys of each object, you can compare using _.isEqual function by provided by lodash instead of underscore (usually lodash has better performance).
To automate as possible, you should create a recursive function to extract the keys and compare them.

Hacked this real quick but it should do you justice. It returns true if all nested object keys match. At each level it checks if the array of keys matches the other object's array of keys and it does that recursively.
function keysMatch(data1, data2) {
var result = null;
function check(d1, d2) {
if (result === false) {
return false;
}
if (_.isObject(d1) && _.isObject(d2)) {
if (allArraysAlike([_.keys(d1), _.keys(d2)])) {
result = true;
_.forOwn(d1, function (val, key) {
check(d1[key], d2[key]);
});
} else {
result = false;
}
}
return result;
}
return check(data1, data2);
}
function allArraysAlike(arrays) {
return _.all(arrays, function (array) {
return array.length == arrays[0].length && _.difference(array, arrays[0]).length == 0;
});
}
console.log(keysMatch(json1, json2));
http://jsfiddle.net/baafbjo8/2/

If you want a simple true/false answer, then a simple function can be created from basic javascript.
The function below uses ES5 features, but wouldn't be much more code using plain loops (and run a bit fast to boot, not that it's slow).
/**
* #param {Object} obj - Object to check properties of
* #param {Array} props - Array of properties to check
* #returns {boolean}
**/
function checkProps(obj, props) {
// List of members of obj
var memberNames = Object.keys(obj);
// Use keys of first object as base set
var baseKeys = Object.keys(obj[memberNames[0]]);
// Check every object in obj has base set of properties
// And each sub-object has props properties
return memberNames.every(function (memberName) {
// Get member
var member = obj[memberName];
// Get keys of this member
var memberKeys = Object.keys(member);
// First check that member has same keys as base, then that each sub-member
// has required properties
return memberKeys.length == baseKeys.length &&
baseKeys.every(function(key) {
return member.hasOwnProperty(key) &&
// Check sub-member properties
props.every(function(prop) {
return member[key].hasOwnProperty(prop);
});
});
});
}
console.log(checkProps(env,['host','port']));
For EcmaScript ed 4 compatability, requires polyfills for Array.prototype.every and Object.keys.

Related

Adding a custom compare function for sets (and other containers) [duplicate]

New ES 6 (Harmony) introduces new Set object. Identity algorithm used by Set is similar to === operator and so not much suitable for comparing objects:
var set = new Set();
set.add({a:1});
set.add({a:1});
console.log([...set.values()]); // Array [ Object, Object ]
How to customize equality for Set objects in order to do deep object comparison? Is there anything like Java equals(Object)?
Update 3/2022
There is currently a proposal to add Records and Tuples (basically immutable Objects and Arrays) to Javascript. In that proposal, it offers direct comparison of Records and Tuples using === or !== where it compares values, not just object references AND relevant to this answer both Set and Map objects would use the value of the Record or Tuple in key comparisons/lookups which would solve what is being asked for here.
Since the Records and Tuples are immutable (can't be modified) and because they are easily compared by value (by their contents, not just their object reference), it allows Maps and Sets to use object contents as keys and the proposed spec explicitly names this feature for Sets and Maps.
This original question asked for customizability of a Set comparison in order to support deep object comparison. This doesn't propose customizability of the Set comparison, but it directly supports deep object comparison if you use the new Record or a Tuple instead of an Object or an Array and thus would solve the original problem here.
Note, this proposal advanced to Stage 2 in mid-2021. It has been moving forward recently, but is certainly not done.
Mozilla work on this new proposal can be tracked here.
Original Answer
The ES6 Set object does not have any compare methods or custom compare extensibility.
The .has(), .add() and .delete() methods work only off it being the same actual object or same value for a primitive and don't have a means to plug into or replace just that logic.
You could presumably derive your own object from a Set and replace .has(), .add() and .delete() methods with something that did a deep object comparison first to find if the item is already in the Set, but the performance would likely not be good since the underlying Set object would not be helping at all. You'd probably have to just do a brute force iteration through all existing objects to find a match using your own custom compare before calling the original .add().
Here's some info from this article and discussion of ES6 features:
5.2 Why can’t I configure how maps and sets compare keys and values?
Question: It would be nice if there were a way to configure what map
keys and what set elements are considered equal. Why isn’t there?
Answer: That feature has been postponed, as it is difficult to
implement properly and efficiently. One option is to hand callbacks to
collections that specify equality.
Another option, available in Java, is to specify equality via a method
that object implement (equals() in Java). However, this approach is
problematic for mutable objects: In general, if an object changes, its
“location” inside a collection has to change, as well. But that’s not
what happens in Java. JavaScript will probably go the safer route of
only enabling comparison by value for special immutable objects
(so-called value objects). Comparison by value means that two values
are considered equal if their contents are equal. Primitive values are
compared by value in JavaScript.
As mentioned in jfriend00's answer customization of equality relation is probably not possible.
Following code presents an outline of computationally efficient (but memory expensive) workaround:
class GeneralSet {
constructor() {
this.map = new Map();
this[Symbol.iterator] = this.values;
}
add(item) {
this.map.set(item.toIdString(), item);
}
values() {
return this.map.values();
}
delete(item) {
return this.map.delete(item.toIdString());
}
// ...
}
Each inserted element has to implement toIdString() method that returns string. Two objects are considered equal if and only if their toIdString methods returns same value.
As the top answer mentions, customizing equality is problematic for mutable objects. The good news is (and I'm surprised no one has mentioned this yet) there's a very popular library called immutable-js that provides a rich set of immutable types which provide the deep value equality semantics you're looking for.
Here's your example using immutable-js:
const { Map, Set } = require('immutable');
var set = new Set();
set = set.add(Map({a:1}));
set = set.add(Map({a:1}));
console.log([...set.values()]); // [Map {"a" => 1}]
Maybe you can try to use JSON.stringify() to do deep object comparison.
for example :
const arr = [
{name:'a', value:10},
{name:'a', value:20},
{name:'a', value:20},
{name:'b', value:30},
{name:'b', value:40},
{name:'b', value:40}
];
const names = new Set();
const result = arr.filter(item => !names.has(JSON.stringify(item)) ? names.add(JSON.stringify(item)) : false);
console.log(result);
To add to the answers here, I went ahead and implemented a Map wrapper that takes a custom hash function, a custom equality function, and stores distinct values that have equivalent (custom) hashes in buckets.
Predictably, it turned out to be slower than czerny's string concatenation method.
Full source here: https://github.com/makoConstruct/ValueMap
Comparing them directly seems not possible, but JSON.stringify works if the keys just were sorted. As I pointed out in a comment
JSON.stringify({a:1, b:2}) !== JSON.stringify({b:2, a:1});
But we can work around that with a custom stringify method. First we write the method
Custom Stringify
Object.prototype.stringifySorted = function(){
let oldObj = this;
let obj = (oldObj.length || oldObj.length === 0) ? [] : {};
for (let key of Object.keys(this).sort((a, b) => a.localeCompare(b))) {
let type = typeof (oldObj[key])
if (type === 'object') {
obj[key] = oldObj[key].stringifySorted();
} else {
obj[key] = oldObj[key];
}
}
return JSON.stringify(obj);
}
The Set
Now we use a Set. But we use a Set of Strings instead of objects
let set = new Set()
set.add({a:1, b:2}.stringifySorted());
set.has({b:2, a:1}.stringifySorted());
// returns true
Get all the values
After we created the set and added the values, we can get all values by
let iterator = set.values();
let done = false;
while (!done) {
let val = iterator.next();
if (!done) {
console.log(val.value);
}
done = val.done;
}
Here's a link with all in one file
http://tpcg.io/FnJg2i
For Typescript users the answers by others (especially czerny) can be generalized to a nice type-safe and reusable base class:
/**
* Map that stringifies the key objects in order to leverage
* the javascript native Map and preserve key uniqueness.
*/
abstract class StringifyingMap<K, V> {
private map = new Map<string, V>();
private keyMap = new Map<string, K>();
has(key: K): boolean {
let keyString = this.stringifyKey(key);
return this.map.has(keyString);
}
get(key: K): V {
let keyString = this.stringifyKey(key);
return this.map.get(keyString);
}
set(key: K, value: V): StringifyingMap<K, V> {
let keyString = this.stringifyKey(key);
this.map.set(keyString, value);
this.keyMap.set(keyString, key);
return this;
}
/**
* Puts new key/value if key is absent.
* #param key key
* #param defaultValue default value factory
*/
putIfAbsent(key: K, defaultValue: () => V): boolean {
if (!this.has(key)) {
let value = defaultValue();
this.set(key, value);
return true;
}
return false;
}
keys(): IterableIterator<K> {
return this.keyMap.values();
}
keyList(): K[] {
return [...this.keys()];
}
delete(key: K): boolean {
let keyString = this.stringifyKey(key);
let flag = this.map.delete(keyString);
this.keyMap.delete(keyString);
return flag;
}
clear(): void {
this.map.clear();
this.keyMap.clear();
}
size(): number {
return this.map.size;
}
/**
* Turns the `key` object to a primitive `string` for the underlying `Map`
* #param key key to be stringified
*/
protected abstract stringifyKey(key: K): string;
}
Example implementation is then this simple: just override the stringifyKey method. In my case I stringify some uri property.
class MyMap extends StringifyingMap<MyKey, MyValue> {
protected stringifyKey(key: MyKey): string {
return key.uri.toString();
}
}
Example usage is then as if this was a regular Map<K, V>.
const key1 = new MyKey(1);
const value1 = new MyValue(1);
const value2 = new MyValue(2);
const myMap = new MyMap();
myMap.set(key1, value1);
myMap.set(key1, value2); // native Map would put another key/value pair
myMap.size(); // returns 1, not 2
A good stringification method for the special but frequent case of a TypedArray as Set/Map key is using
const key = String.fromCharCode(...new Uint16Array(myArray.buffer));
It generates the shortest possible unique string that can be easily converted back. However this is not always a valid UTF-16 string for display concerning Low and High Surrogates. Set and Map seem to ignore surrogate validity.
As measured in Firefox and Chrome, the spread operator performs slowly. If your myArray has fixed size, it executes faster when you write:
const a = new Uint16Array(myArray.buffer); // here: myArray = Uint32Array(2) = 8 bytes
const key = String.fromCharCode(a[0],a[1],a[2],a[3]); // 8 bytes too
Probably the most valuable advantage of this method of key-building: It works for Float32Array and Float64Array without any rounding side-effect. Note that +0 and -0 are then different. Infinities are same. Silent NaNs are same. Signaling NaNs are different depending on their signal (never seen in vanilla JavaScript).
As other guys said there is no native method can do it by far.
But if you would like to distinguish an array with your custom comparator, you can try to do it with the reduce method.
function distinct(array, equal) {
// No need to convert it to a Set object since it may give you a wrong signal that the set can work with your objects.
return array.reduce((p, c) => {
p.findIndex((element) => equal(element, c)) > -1 || p.push(c);
return p;
}, []);
}
// You can call this method like below,
const users = distinct(
[
{id: 1, name: "kevin"},
{id: 2, name: "sean"},
{id: 1, name: "jerry"}
],
(a, b) => a.id === b.id
);
...
As others have said, there is no way to do it with the current version of Set.
My suggestion is to do it using a combination of arrays and maps.
The code snipped below will create a map of unique keys based on your own defined key and then transform that map of unique items into an array.
const array =
[
{ "name": "Joe", "age": 17 },
{ "name": "Bob", "age": 17 },
{ "name": "Carl", "age": 35 }
]
const key = 'age';
const arrayUniqueByKey = [...new Map(array.map(item =>
[item[key], item])).values()];
console.log(arrayUniqueByKey);
/*OUTPUT
[
{ "name": "Bob", "age": 17 },
{ "name": "Carl", "age": 35 }
]
*/
// Note: this will pick the last duplicated item in the list.
To someone who found this question on Google (as me) wanting to get a value of a Map using an object as Key:
Warning: this answer will not work with all objects
var map = new Map<string,string>();
map.set(JSON.stringify({"A":2} /*string of object as key*/), "Worked");
console.log(map.get(JSON.stringify({"A":2}))||"Not worked");
Output:
Worked

Where can I see the source code for JavaScript methods, such as hasOwnProperty, in Node.js?

I have been studying JavaScript algorithms and Big O for interviews. I was told that knowing the runtimes of built-in methods, such as Object.prototype.hasOwnProperty and Array.prototype.map, is important.
What is a simple way to view the source code for these functions in node.js? I have a local copy of node.js, and I tried to search for these methods in my text editor, but it's not as straightforward as I thought.
Object.prototype.hasOwnProperty()
From a Javascript interview point of view, I would think you just need to fully understand what obj.hasOwnProperty() does at the Javascript level, not how it's implemented inside of V8.
To do that, you should fully understand this little snippet:
function MyConstructor() {
this.methodB = function() {}
}
MyConstructor.prototype = {
methodA: function() {}
};
var o = new MyConstructor();
log(o.hasOwnProperty("methodA")); // false
log(o.hasOwnProperty("methodB")); // true
o.methodA = function() {}; // assign "own" property, overrides prototype
log(o.hasOwnProperty("methodA")); // true
This is because .hasOwnProperty() looks only on the object itself and not on the prototype chain. So properties which are only on the prototype chain or do not exist at all will return false and properties which are directly on the object will return true.
Array.prototype.map()
A polyfill in Javascript for Array.prototype.map() is here on MDN which will show you exactly how it works. You can, of course, do the same type of search I did above in the Github repository to find the .map() implementation too if you want.
Array.prototype.map() is pretty simple really. Iterate over an array, calling a function for each item in the array. Each return value of that function will be used to construct a new array that will be returned from the call to .map(). So, conceptually, it's used to "map" one array to another by calling some transform function on each element of the original array.
In the simplest incarnation, you add 1 to each element of an array:
var origArray = [1,2,3];
var newArray = origArray.map(function(item, index, array) {
return item + 1;
});
console.log(newArray); // [2,3,4]
Actual V8 source code:
If you really want to see how it is implemented inside of V8, here are code snippets and links to the relevant actual code files. As you can see, most of it is in C++ and to understand it, you have to understand how objects are structured in memory and what C++ methods they have internally in V8. This is very V8-specific, not general Javascript knowledge.
I've included links to the relevant source files too so if you want to see other context in those files, you can click on the links to see that.
In v8.h:
V8_DEPRECATED("Use maybe version", bool HasOwnProperty(Local<String> key));
V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context, Local<Name> key);
In api.cc:
Maybe<bool> v8::Object::HasOwnProperty(Local<Context> context,
Local<Name> key) {
PREPARE_FOR_EXECUTION_PRIMITIVE(context, "v8::Object::HasOwnProperty()",
bool);
auto self = Utils::OpenHandle(this);
auto key_val = Utils::OpenHandle(*key);
auto result = i::JSReceiver::HasOwnProperty(self, key_val);
has_pending_exception = result.IsNothing();
RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool);
return result;
}
bool v8::Object::HasOwnProperty(Local<String> key) {
auto context = ContextFromHeapObject(Utils::OpenHandle(this));
return HasOwnProperty(context, key).FromMaybe(false);
}
In v8natives.js:
// ES6 7.3.11
function ObjectHasOwnProperty(value) {
var name = TO_NAME(value);
var object = TO_OBJECT(this);
return %HasOwnProperty(object, name);
}
In objects-inl.h:
Maybe<bool> JSReceiver::HasOwnProperty(Handle<JSReceiver> object,
Handle<Name> name) {
if (object->IsJSObject()) { // Shortcut
LookupIterator it = LookupIterator::PropertyOrElement(
object->GetIsolate(), object, name, LookupIterator::HIDDEN);
return HasProperty(&it);
}
Maybe<PropertyAttributes> attributes =
JSReceiver::GetOwnPropertyAttributes(object, name);
MAYBE_RETURN(attributes, Nothing<bool>());
return Just(attributes.FromJust() != ABSENT);
}
In runtime-object.cc:
static Object* HasOwnPropertyImplementation(Isolate* isolate,
Handle<JSObject> object,
Handle<Name> key) {
Maybe<bool> maybe = JSReceiver::HasOwnProperty(object, key);
if (!maybe.IsJust()) return isolate->heap()->exception();
if (maybe.FromJust()) return isolate->heap()->true_value();
// Handle hidden prototypes. If there's a hidden prototype above this thing
// then we have to check it for properties, because they are supposed to
// look like they are on this object.
if (object->map()->has_hidden_prototype()) {
PrototypeIterator iter(isolate, object);
DCHECK(!iter.IsAtEnd());
// TODO(verwaest): The recursion is not necessary for keys that are array
// indices. Removing this.
// Casting to JSObject is fine because JSProxies are never used as
// hidden prototypes.
return HasOwnPropertyImplementation(
isolate, PrototypeIterator::GetCurrent<JSObject>(iter), key);
}
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
return isolate->heap()->false_value();
}
RUNTIME_FUNCTION(Runtime_HasOwnProperty) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(Object, object, 0)
CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
uint32_t index;
const bool key_is_array_index = key->AsArrayIndex(&index);
// Only JS objects can have properties.
if (object->IsJSObject()) {
Handle<JSObject> js_obj = Handle<JSObject>::cast(object);
// Fast case: either the key is a real named property or it is not
// an array index and there are no interceptors or hidden
// prototypes.
// TODO(jkummerow): Make JSReceiver::HasOwnProperty fast enough to
// handle all cases directly (without this custom fast path).
Maybe<bool> maybe = Nothing<bool>();
if (key_is_array_index) {
LookupIterator it(js_obj->GetIsolate(), js_obj, index,
LookupIterator::HIDDEN);
maybe = JSReceiver::HasProperty(&it);
} else {
maybe = JSObject::HasRealNamedProperty(js_obj, key);
}
if (!maybe.IsJust()) return isolate->heap()->exception();
DCHECK(!isolate->has_pending_exception());
if (maybe.FromJust()) {
return isolate->heap()->true_value();
}
Map* map = js_obj->map();
if (!key_is_array_index && !map->has_named_interceptor() &&
!map->has_hidden_prototype()) {
return isolate->heap()->false_value();
}
// Slow case.
return HasOwnPropertyImplementation(isolate, Handle<JSObject>(js_obj),
Handle<Name>(key));
} else if (object->IsString() && key_is_array_index) {
// Well, there is one exception: Handle [] on strings.
Handle<String> string = Handle<String>::cast(object);
if (index < static_cast<uint32_t>(string->length())) {
return isolate->heap()->true_value();
}
} else if (object->IsJSProxy()) {
Maybe<bool> result =
JSReceiver::HasOwnProperty(Handle<JSProxy>::cast(object), key);
if (!result.IsJust()) return isolate->heap()->exception();
return isolate->heap()->ToBoolean(result.FromJust());
}
return isolate->heap()->false_value();
}
This is the node.js Github repository. If you know what to search for and have enough patience to wade through all the search hits, you can generally find anything you need. The unfortunate thing about searching on Github is I have not found any way to remove all the test sub-directories from the search so you end up with 95% of the search hits in the test code, not in the actual implementation code. But, with enough persistence, you can eventually find what you need.

How to customize object equality for JavaScript Set

New ES 6 (Harmony) introduces new Set object. Identity algorithm used by Set is similar to === operator and so not much suitable for comparing objects:
var set = new Set();
set.add({a:1});
set.add({a:1});
console.log([...set.values()]); // Array [ Object, Object ]
How to customize equality for Set objects in order to do deep object comparison? Is there anything like Java equals(Object)?
Update 3/2022
There is currently a proposal to add Records and Tuples (basically immutable Objects and Arrays) to Javascript. In that proposal, it offers direct comparison of Records and Tuples using === or !== where it compares values, not just object references AND relevant to this answer both Set and Map objects would use the value of the Record or Tuple in key comparisons/lookups which would solve what is being asked for here.
Since the Records and Tuples are immutable (can't be modified) and because they are easily compared by value (by their contents, not just their object reference), it allows Maps and Sets to use object contents as keys and the proposed spec explicitly names this feature for Sets and Maps.
This original question asked for customizability of a Set comparison in order to support deep object comparison. This doesn't propose customizability of the Set comparison, but it directly supports deep object comparison if you use the new Record or a Tuple instead of an Object or an Array and thus would solve the original problem here.
Note, this proposal advanced to Stage 2 in mid-2021. It has been moving forward recently, but is certainly not done.
Mozilla work on this new proposal can be tracked here.
Original Answer
The ES6 Set object does not have any compare methods or custom compare extensibility.
The .has(), .add() and .delete() methods work only off it being the same actual object or same value for a primitive and don't have a means to plug into or replace just that logic.
You could presumably derive your own object from a Set and replace .has(), .add() and .delete() methods with something that did a deep object comparison first to find if the item is already in the Set, but the performance would likely not be good since the underlying Set object would not be helping at all. You'd probably have to just do a brute force iteration through all existing objects to find a match using your own custom compare before calling the original .add().
Here's some info from this article and discussion of ES6 features:
5.2 Why can’t I configure how maps and sets compare keys and values?
Question: It would be nice if there were a way to configure what map
keys and what set elements are considered equal. Why isn’t there?
Answer: That feature has been postponed, as it is difficult to
implement properly and efficiently. One option is to hand callbacks to
collections that specify equality.
Another option, available in Java, is to specify equality via a method
that object implement (equals() in Java). However, this approach is
problematic for mutable objects: In general, if an object changes, its
“location” inside a collection has to change, as well. But that’s not
what happens in Java. JavaScript will probably go the safer route of
only enabling comparison by value for special immutable objects
(so-called value objects). Comparison by value means that two values
are considered equal if their contents are equal. Primitive values are
compared by value in JavaScript.
As mentioned in jfriend00's answer customization of equality relation is probably not possible.
Following code presents an outline of computationally efficient (but memory expensive) workaround:
class GeneralSet {
constructor() {
this.map = new Map();
this[Symbol.iterator] = this.values;
}
add(item) {
this.map.set(item.toIdString(), item);
}
values() {
return this.map.values();
}
delete(item) {
return this.map.delete(item.toIdString());
}
// ...
}
Each inserted element has to implement toIdString() method that returns string. Two objects are considered equal if and only if their toIdString methods returns same value.
As the top answer mentions, customizing equality is problematic for mutable objects. The good news is (and I'm surprised no one has mentioned this yet) there's a very popular library called immutable-js that provides a rich set of immutable types which provide the deep value equality semantics you're looking for.
Here's your example using immutable-js:
const { Map, Set } = require('immutable');
var set = new Set();
set = set.add(Map({a:1}));
set = set.add(Map({a:1}));
console.log([...set.values()]); // [Map {"a" => 1}]
Maybe you can try to use JSON.stringify() to do deep object comparison.
for example :
const arr = [
{name:'a', value:10},
{name:'a', value:20},
{name:'a', value:20},
{name:'b', value:30},
{name:'b', value:40},
{name:'b', value:40}
];
const names = new Set();
const result = arr.filter(item => !names.has(JSON.stringify(item)) ? names.add(JSON.stringify(item)) : false);
console.log(result);
To add to the answers here, I went ahead and implemented a Map wrapper that takes a custom hash function, a custom equality function, and stores distinct values that have equivalent (custom) hashes in buckets.
Predictably, it turned out to be slower than czerny's string concatenation method.
Full source here: https://github.com/makoConstruct/ValueMap
Comparing them directly seems not possible, but JSON.stringify works if the keys just were sorted. As I pointed out in a comment
JSON.stringify({a:1, b:2}) !== JSON.stringify({b:2, a:1});
But we can work around that with a custom stringify method. First we write the method
Custom Stringify
Object.prototype.stringifySorted = function(){
let oldObj = this;
let obj = (oldObj.length || oldObj.length === 0) ? [] : {};
for (let key of Object.keys(this).sort((a, b) => a.localeCompare(b))) {
let type = typeof (oldObj[key])
if (type === 'object') {
obj[key] = oldObj[key].stringifySorted();
} else {
obj[key] = oldObj[key];
}
}
return JSON.stringify(obj);
}
The Set
Now we use a Set. But we use a Set of Strings instead of objects
let set = new Set()
set.add({a:1, b:2}.stringifySorted());
set.has({b:2, a:1}.stringifySorted());
// returns true
Get all the values
After we created the set and added the values, we can get all values by
let iterator = set.values();
let done = false;
while (!done) {
let val = iterator.next();
if (!done) {
console.log(val.value);
}
done = val.done;
}
Here's a link with all in one file
http://tpcg.io/FnJg2i
For Typescript users the answers by others (especially czerny) can be generalized to a nice type-safe and reusable base class:
/**
* Map that stringifies the key objects in order to leverage
* the javascript native Map and preserve key uniqueness.
*/
abstract class StringifyingMap<K, V> {
private map = new Map<string, V>();
private keyMap = new Map<string, K>();
has(key: K): boolean {
let keyString = this.stringifyKey(key);
return this.map.has(keyString);
}
get(key: K): V {
let keyString = this.stringifyKey(key);
return this.map.get(keyString);
}
set(key: K, value: V): StringifyingMap<K, V> {
let keyString = this.stringifyKey(key);
this.map.set(keyString, value);
this.keyMap.set(keyString, key);
return this;
}
/**
* Puts new key/value if key is absent.
* #param key key
* #param defaultValue default value factory
*/
putIfAbsent(key: K, defaultValue: () => V): boolean {
if (!this.has(key)) {
let value = defaultValue();
this.set(key, value);
return true;
}
return false;
}
keys(): IterableIterator<K> {
return this.keyMap.values();
}
keyList(): K[] {
return [...this.keys()];
}
delete(key: K): boolean {
let keyString = this.stringifyKey(key);
let flag = this.map.delete(keyString);
this.keyMap.delete(keyString);
return flag;
}
clear(): void {
this.map.clear();
this.keyMap.clear();
}
size(): number {
return this.map.size;
}
/**
* Turns the `key` object to a primitive `string` for the underlying `Map`
* #param key key to be stringified
*/
protected abstract stringifyKey(key: K): string;
}
Example implementation is then this simple: just override the stringifyKey method. In my case I stringify some uri property.
class MyMap extends StringifyingMap<MyKey, MyValue> {
protected stringifyKey(key: MyKey): string {
return key.uri.toString();
}
}
Example usage is then as if this was a regular Map<K, V>.
const key1 = new MyKey(1);
const value1 = new MyValue(1);
const value2 = new MyValue(2);
const myMap = new MyMap();
myMap.set(key1, value1);
myMap.set(key1, value2); // native Map would put another key/value pair
myMap.size(); // returns 1, not 2
A good stringification method for the special but frequent case of a TypedArray as Set/Map key is using
const key = String.fromCharCode(...new Uint16Array(myArray.buffer));
It generates the shortest possible unique string that can be easily converted back. However this is not always a valid UTF-16 string for display concerning Low and High Surrogates. Set and Map seem to ignore surrogate validity.
As measured in Firefox and Chrome, the spread operator performs slowly. If your myArray has fixed size, it executes faster when you write:
const a = new Uint16Array(myArray.buffer); // here: myArray = Uint32Array(2) = 8 bytes
const key = String.fromCharCode(a[0],a[1],a[2],a[3]); // 8 bytes too
Probably the most valuable advantage of this method of key-building: It works for Float32Array and Float64Array without any rounding side-effect. Note that +0 and -0 are then different. Infinities are same. Silent NaNs are same. Signaling NaNs are different depending on their signal (never seen in vanilla JavaScript).
As other guys said there is no native method can do it by far.
But if you would like to distinguish an array with your custom comparator, you can try to do it with the reduce method.
function distinct(array, equal) {
// No need to convert it to a Set object since it may give you a wrong signal that the set can work with your objects.
return array.reduce((p, c) => {
p.findIndex((element) => equal(element, c)) > -1 || p.push(c);
return p;
}, []);
}
// You can call this method like below,
const users = distinct(
[
{id: 1, name: "kevin"},
{id: 2, name: "sean"},
{id: 1, name: "jerry"}
],
(a, b) => a.id === b.id
);
...
As others have said, there is no way to do it with the current version of Set.
My suggestion is to do it using a combination of arrays and maps.
The code snipped below will create a map of unique keys based on your own defined key and then transform that map of unique items into an array.
const array =
[
{ "name": "Joe", "age": 17 },
{ "name": "Bob", "age": 17 },
{ "name": "Carl", "age": 35 }
]
const key = 'age';
const arrayUniqueByKey = [...new Map(array.map(item =>
[item[key], item])).values()];
console.log(arrayUniqueByKey);
/*OUTPUT
[
{ "name": "Bob", "age": 17 },
{ "name": "Carl", "age": 35 }
]
*/
// Note: this will pick the last duplicated item in the list.
To someone who found this question on Google (as me) wanting to get a value of a Map using an object as Key:
Warning: this answer will not work with all objects
var map = new Map<string,string>();
map.set(JSON.stringify({"A":2} /*string of object as key*/), "Worked");
console.log(map.get(JSON.stringify({"A":2}))||"Not worked");
Output:
Worked

How do you access an object within an object from an argument in Javascript? [duplicate]

This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
Accessing nested JavaScript objects with string key
I have the function
function _get(name) {
return plugin._optionsObj[name] !== undefined ?
plugin._optionsObj[name] : plugin._defaults[name];
}
I would like to be able to have objects inside of my _defaults object, but then I don't know how to retrieve them but using just one set of square brackets.
i.e.
plugin._defaults = {
val1: 1,
val2: 2,
obj1: {
someVal: 3
}
}
Is it possible to access 'someVal' from the function I have above? I tried passing 'obj1.someVal' for the argument and it didn't work. Ideas?
Edit: I have found a solution and I posted it below as an answer. I've written a very nice little function to do go through the nested values with a string and I didn't have to change my function much to implement it. I hope this helps anyone in a similar situation.
I suspect that you won't always have a one-level nested object to access, so the cleaner way to do this is to use a function that traverses an object based on a string path. Here's one that is coded as a mixin for Underscore. You can then just use it like so:
_.deep(plugin._defaults, 'obj1.someVal');
This thread also has some non-Underscore alternatives.
Pass multiple arguments, and iterate over the arguments object.
function _get(/* name1, name2, namen */) {
var item = plugin._optionsObj,
defItem = plugin._defaults;
for (var i = 0; i < arguments.length; i++) {
item = item[arguments[i]];
defItem = defItem[arguments[i]];
if (item == null || defItem == null)
break;
}
return item == null ? defItem : item;
}
var opt = _get("obj1", "someVal")
I found a solution for this problem, at least one that will accommodate myself, and I'd like to share it in case it can help someone else with this problem. My biggest difficulty is that I did not know the depth of the nested value so I wanted to find a solution that would work for deeply nested objects and without requiring to redesign anything.
/* Retrieve the nested object value by using a string.
The string should be formatted by separating the properties with a period.
#param obj object to pass to the function
propertyStr string containing properties separated by periods
#return nested object value. Note: may also return an object */
function _nestedObjVal(obj, propertyStr) {
var properties = propertyStr.split('.');
if (properties.length > 1) {
var otherProperties = propertyStr.slice(properties[0].length+1); //separate the other properties
return _nestedObjVal(obj[properties[0]], otherProperties); //continue until there are no more periods in the string
} else {
return obj[propertyStr];
}
}
function _get(name) {
if (name.indexOf('.') !== -1) {
//name contains nested object
var userDefined = _nestedObjVal(plugin._optionsObj, name);
return userDefined !== undefined ? userDefined : _nestedObjVal(plugin._defaults, name);
} else {
return plugin._optionsObj[name] !== undefined ?
plugin._optionsObj[name] : plugin._defaults[name];
}
}
To retrieve objects inside of your _defaults object you'll need to improve your _get function.
For example you may pass an array of strings (each string representing a propery name) to _get to allow access to deeply nested objects.

JavaScript: Testing primitives for equality

Let's say I have two objects that only have primitives as properties for members (e.g. the object has no functions or object members):
var foo = {
start: 9,
end: 11
};
var bar = {
start: 9,
end: 11
};
Given two objects like this, I want to know if all their members have the same values.
Right now I'm simpling doing:
if (foo.start === bar.start && foo.end == bar.end) {
// same member values
}
But I'm going to have to work with objects that may have dozens of these primitive members.
Is there anything built into JavaScript to easily allow me to compare them? What's the easiest way to compare all their values?
If both objects are Objects (e.g., created via literal notation [{}] or new Object, not by [say] new Date), you can do it like this:
function primativelyEqual(a, b) {
var name;
for (name in a) {
if (!b.hasOwnProperty(name) || b[name] !== a[name]) {
// `b` doesn't have it or it's not the same
return false;
}
}
for (name in b) {
if (!a.hasOwnProperty(name)) {
// `a` doesn't have it
return false;
}
}
// All properties in both objects are present in the other,
// and have the same value down to the type
return true;
}
for..in iterates over the names of the properties of an object. hasOwnProperty tells you whether the instance itself (as opposed to a member of its prototype chain) has that property. !== checks for any inequality between two values without doing any type coercion. By looping through the names of the properties of both objects, you know that they have the same number of entries.
You can shortcut this a bit if the implementation has the new Object.keys feature from ECMAScript5:
function primativelyEqual(a, b) {
var name, checkedKeys;
checkedKeys = typeof Object.keys === "function";
if (checkedKeys && Object.keys(a).length !== Object.keys(b).length) {
// They don't have the same number of properties
return false;
}
for (name in a) {
if (!b.hasOwnProperty(name) || b[name] !== a[name]) {
// `b` doesn't have it or it's not the same
return false;
}
}
if (!checkedKeys) {
// Couldn't check for equal numbers of keys before
for (name in b) {
if (!a.hasOwnProperty(name)) {
// `a` doesn't have it
return false;
}
}
}
// All properties in both objects are present in the other,
// and have the same value down to the type
return true;
}
Live example
But both versions of the above assume that the objects don't inherit any enumerable properties from their prototypes (hence my opening statement about their being Objects). (I'm also assuming no one's added anything to Object.prototype, which is an insane thing people learned very quickly not to do.)
Definitely possible to refine that more to generalize it, and even make it descend into object properties by the same definition, but within the bounds of what you described (and within the bounds of most reasonable deployments), that should be fine.
You can use a for in loop to loop through every property in an object.
For example:
function areEqual(a, b) {
for (var prop in a)
if (a.hasOwnProperty(prop) && a[prop] !== b[prop])
return false;
return true;
}
Any properties in b but not a will be ignored.
Y'know, something's just occurred to me. Basic object literals are called JSON. The easiest way to compare those two objects is
function equalObjects(obj1, obj2) {
return JSON.stringify(obj1) === JSON.stringify(obj2);
}
If you need to use this in a browser that doesn't have native JSON support, you can use the open source JSON scripts

Categories